Deck 18: Model Building

ملء الشاشة (f)
exit full mode
سؤال
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x2 + ε\varepsilon is referred to as a:

A) first-order model with two predictor variables with no interaction.
B) first-order model with two predictor variables with interaction.
C) second-order model with three predictor variables with no interaction.
D) second-order model with three predictor variables with interaction.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
In the first-order model y^=8+3x1+5x2\hat { y } = 8 + 3 x _ { 1 } + 5 x _ { 2 } ,a unit increase in x2,while holding x1 constant,increases the value of y on average by 5 units.
سؤال
We interpret the coefficients in a multiple regression model by holding all variables in the model constant.
سؤال
In the first-order model y~=50+25x110x26x1x2\tilde { y } = 50 + 25 x _ { 1 } - 10 x _ { 2 } - 6 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at a value of 3,decreases the value of y on average by 3 units.
سؤال
A first-order polynomial model with one predictor variable is the familiar simple linear regression model.
سؤال
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x2 + ε\varepsilon is referred to as a second-order model with two predictor variables with interaction.
سؤال
The model y~=β0+β1x1+β2x2\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } is used whenever the statistician believes that,on average,y is linearly related to x1 and x2 and the predictor variables do not interact.
سؤال
The model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon is referred to as a simple linear regression model.
سؤال
In the first-order regression model y~=12+6x1+8x2+4x1x2\tilde { y } = 12 + 6 x _ { 1 } + 8 x _ { 2 } + 4 x _ { 1 } x _ { 2 } ,a unit increase in x1 increases the value of y on average by 6 units.
سؤال
Suppose that the sample regression equation of a model is y~=4+1.5x1+2x2x1x2\tilde { y } = 4 + 1.5 x _ { 1 } + 2 x _ { 2 } - x _ { 1 } x _ { 2 } .If we examine the relationship between x1 and y for four different values of x2,we observe that the four equations produced differ only in the intercept term.
سؤال
Suppose that the sample regression equation of a model is y~=4.7+2.2x1+2.6x2x1x2\tilde { y } = 4.7 + 2.2 x _ { 1 } + 2.6 x _ { 2 } - x _ { 1 } x _ { 2 } .If we examine the relationship between y and x2 for x1 = 1,2,and 3,we observe that the three equations produced not only differ in the intercept term,but the coefficient of x2 also varies.
سؤال
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is referred to as a first-order model with two predictor variables with no interaction.
سؤال
Which of the following is not an advantage of multiple regression as compared with analysis of variance?

A) Multiple regression can be used to estimate the relationship between the dependent variable and independent variables.
B) Multiple regression handles problems with more than two independent variables easier than analysis of variance.
C) Multiple regression handles nominal variables better than analysis of variance.
D) All of these choices are true are advantages of multiple regression as compared with analysis of variance.
سؤال
Suppose that the sample regression line of the first-order model is y^=4+3x1+2x2\hat { y } = 4 + 3 x _ { 1 } + 2 x _ { 2 } .If we examine the relationship between y and x1 for three different values of x2,we observe that the effect of x1 on y remains the same no matter what the value of x2.
سؤال
In the first-order model y~=7512x1+5x23x1x2\tilde { y } = 75 - 12 x _ { 1 } + 5 x _ { 2 } - 3 x _ { 1 } x _ { 2 } ,a unit increase in x1,while holding x2 constant at a value of 2,decreases the value of y on average by 8 units.
سؤال
The model γi=β0+β1xi+β2xi2++βyxiy+εi\gamma _ { i } = \beta _ { 0 } + \beta _ { 1 } x _ { i } + \beta _ { 2 } x _ { i } ^ { 2 } + \ldots \ldots \ldots + \beta _ { y } x _ { i } ^ { y } + \varepsilon _ { i } is referred to as a polynomial model with one predictor variable.
سؤال
In the first-order model y~=60+40x110x2+5x1x2\tilde { y } = 60 + 40 x _ { 1 } - 10 x _ { 2 } + 5 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at 1,changes the value of y on average by -5 units.
سؤال
The graph of the model y~i=β0+β1xi+β2xi2\tilde { y } _ { i } = \beta _ { 0 } + \beta _ { 1 } x _ { i } + \beta _ { 2 } x _ { i } ^ { 2 } is shaped like a straight line going upwards.
سؤال
Regression analysis allows the statistics practitioner to use mathematical models to realistically describe relationships between the dependent variable and independent variables.
سؤال
In a first-order model with two predictors x1 and x2,an interaction term may be used when the relationship between the dependent variable y and the predictor variables is linear.
سؤال
The independent variable x in a polynomial model is called the ____________________ variable.
سؤال
Another term for a first-order polynomial model is a regression ____________________.
سؤال
When we plot x versus y,the graph of the model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon is shaped like a:

A) straight line going upwards.
B) circle.
C) parabola.
D) None of these choices.
سؤال
Suppose that the sample regression equation of a second-order model is given by y~=2.50+0.15x+0.45x2\tilde { y } = 2.50 + 0.15 x + 0.45 x ^ { 2 } .Then,the value 2.50 is the:

A) intercept where the response surface strikes the y-axis.
B) intercept where the response surface strikes the x-axis.
C) predicted value of y.
D) None of these choices.
سؤال
Suppose that the sample regression equation of a model is y~=10+4x1+3x2x1x2\tilde { y } = 10 + 4 x _ { 1 } + 3 x _ { 2 } - x _ { 1 } x _ { 2 } .If we examine the relationship between x1 and y for three different values of x2,we observe that the:

A) three equations produced differ not only in the intercept term but also the coefficient of x1 varies.
B) coefficient of x2 remains unchanged.
C) coefficient of x1 varies.
D) three equations produced differ only in the intercept.
سؤال
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is referred to as a:

A) first-order model with one predictor variable.
B) first-order model with two predictor variables.
C) second-order model with one predictor variable.
D) second-order model with two predictor variables.
سؤال
For the following regression equation y~=75+20x115x2+5x1x2\tilde { y } = 75 + 20 x _ { 1 } - 15 x _ { 2 } + 5 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at 1,changes the value of y on average by:

A) -5
B) +5
C) 10
D) -10
سؤال
The model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon is referred to as a:

A) simple linear regression model.
B) first-order model with one predictor variable.
C) second-order model with one predictor variable.
D) third order model with two predictor variables.
سؤال
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x2 + ε\varepsilon is a(n)____________________-order polynomial model with ____________________ predictor variables and ____________________.
سؤال
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is a(n)____________________-order polynomial model with ____________________ predictor variable(s).
سؤال
For the following regression equation y~=20+8x1+5x2+3x1x2\tilde { y } = 20 + 8 x _ { 1 } + 5 x _ { 2 } + 3 x _ { 1 } x _ { 2 } ,which combination of x1 and x2,respectively,results in the largest average value of y?

A) 3 and 5
B) 5 and 3
C) 6 and 3
D) 3 and 6
سؤال
For the following regression equation y~=15+6x1+5x2+4x1x2\tilde { y } = 15 + 6 x _ { 1 } + 5 x _ { 2 } + 4 x _ { 1 } x _ { 2 } ,a unit increase in x1 increases the value of y on average by:

A) 5
B) 30
C) 26
D) an amount that depends on the value of x2
سؤال
Suppose that the sample regression line of the first-order model is y^=8+2x1+3x2\hat { y } = 8 + 2 x _ { 1 } + 3 x _ { 2 } .If we examine the relationship between y and x1 for four different values of x2,we observe that the:

A) only difference in the four equations produced is the coefficient of x2.
B) effect of x1 on y remains the same no matter what the value of x2.
C) effect of x1 on y remains the same no matter what the value of x1.
D) Cannot answer this question without more information.
سؤال
For the following regression equation y~=50+10x14x26x1x2\tilde { y } = 50 + 10 x _ { 1 } - 4 x _ { 2 } - 6 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at a value of 3,decreases the value of y on average by:

A) 22
B) 50
C) 56
D) An amount that depends on the value of x2
سؤال
Which of the following statements is false regarding the graph of the second-order polynomial model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ?

A) If β\beta 2 is negative,the graph is concave,while if β\beta 2 is positive,the graph is convex.
B) The greater the absolute value of β\beta 2,the smaller the rate of curvature.
C) When we plot x versus y,the graph is shaped like a parabola.
D) All of these choices are true.
سؤال
For the following regression equation y~=10012x1+5x24x1x2\tilde { y } = 100 - 12 x _ { 1 } + 5 x _ { 2 } - 4 x _ { 1 } x _ { 2 } ,a unit increase in x1,while holding x2 constant at a value of 2,decreases the value of y on average by:

A) 92
B) 85
C) 20
D) an amount that depends on the value of x1.
سؤال
For the following regression equation y~=10+3x1+4x2\tilde { y } = 10 + 3 x _ { 1 } + 4 x _ { 2 } ,a unit increase in x2 increases the value of y on average by:

A) 4
B) 7
C) 17
D) an amount that depends on the value of x1.
سؤال
The model y = β\beta 0 + β\beta 1x + β\beta 2x2 +.........+ β\beta pxp + ε\varepsilon is referred to as a polynomial model with:

A) one predictor variable.
B) p predictor variables.
C) (p + 1)predictor variables.
D) x predictor variables.
سؤال
Suppose that the sample regression equation of a second-order model is given by y~=2.50+0.15x+0.45x2\tilde { y } = 2.50 + 0.15 x + 0.45 x ^ { 2 } .Then,the value 4.60 is the:

A) predicted value of y for any positive value of x.
B) predicted value of y when x = 2.
C) estimated change in y when x increases by 1 unit .
D) intercept where the response surface strikes the x-axis.
سؤال
A second-order polynomial model is shaped like a(n)____________________.
سؤال
Computer Training
Consider the following data for two variables,x and y.The independent variable x represents the amount of training time (in hours)for a salesperson starting in a new computer store to adjust fully,and the dependent variable y represents the weekly sales (in $1000s).
Computer Training Consider the following data for two variables,x and y.The independent variable x represents the amount of training time (in hours)for a salesperson starting in a new computer store to adjust fully,and the dependent variable y represents the weekly sales (in $1000s).   Use statistical software to answer the following question(s). {Computer Training Narrative} Develop an estimated regression equation of the form   .<div style=padding-top: 35px> Use statistical software to answer the following question(s).
{Computer Training Narrative} Develop an estimated regression equation of the form Computer Training Consider the following data for two variables,x and y.The independent variable x represents the amount of training time (in hours)for a salesperson starting in a new computer store to adjust fully,and the dependent variable y represents the weekly sales (in $1000s).   Use statistical software to answer the following question(s). {Computer Training Narrative} Develop an estimated regression equation of the form   .<div style=padding-top: 35px> .
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x2 term should be retained in the model.
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x1 term should be retained in the model.
سؤال
{Computer Training Narrative} Determine if there is sufficient evidence at the 5% significance level to infer that the relationship between x and y is positive and significant.
سؤال
____________________ means that the effect of x1 on y is influenced by the value of x2,and vice versa.
سؤال
{Computer Training Narrative} Develop a scatter diagram for the data.Does the scatter diagram suggest an estimated regression equation of the form {Computer Training Narrative} Develop a scatter diagram for the data.Does the scatter diagram suggest an estimated regression equation of the form   ? Explain.<div style=padding-top: 35px> ? Explain.
سؤال
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Test to determine at the 10% significance level if the x2 term should be retained.
سؤال
{Computer Training Narrative} Estimate the value of y when x = 45 using the estimated linear regression equation in the previous question.
سؤال
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Predict the winning percentage for a hockey team with an average of 6 years of professional experience.
سؤال
{Computer Training Narrative} Use the quadratic model to predict the value of y when x = 45.
سؤال
{Computer Training Narrative} Develop an estimated regression equation of the form {Computer Training Narrative} Develop an estimated regression equation of the form   .<div style=padding-top: 35px> .
سؤال
{Computer Training Narrative} Determine the coefficient of determination quadratic model.What does this statistic tell you about this model?
سؤال
In a first-order polynomial model with no interaction,the effect of x1 on y remains the same no matter what the value of x2 is.The graph of this model produces straight lines that are ____________________ to each other.
سؤال
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Do these results allow us to conclude at the 5% significance level that the model is useful in predicting the team's winning percentage?
سؤال
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Test to determine at the 10% significance level if the linear term should be retained.
سؤال
If a quadratic relationship exists between y and each of x1 and x2,you use a(n)____________________-order polynomial model.
سؤال
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} What is the coefficient of determination? Explain what this statistic tells you about the model.
سؤال
{Computer Training Narrative} Find the coefficient of determination of this simple linear model.What does this statistic tell you about the model?
سؤال
{Computer Training Narrative} Determine if there is sufficient evidence at the 5% significance level to infer that the quadratic relationship between y,x,and x2 in the previous question is significant.
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Is there enough evidence at the 5% significance level to conclude that the model is useful in predicting the number of fatalities?
سؤال
In order to represent a nominal variable with m categories,we must create m - 1 indicator variables.
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} What does the coefficient of x12x _ { 1 } ^ { 2 } tell you about the model?
سؤال
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Interpret the coefficient b2.
سؤال
In explaining the amount of money spent on gifts for a child's birthday each year,the independent variable,age of child,is best represented by a dummy variable.
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the interaction term should be retained in the model.
سؤال
An indicator variable (also called a dummy variable)is a variable that can assume either one of two values (usually 0 and 1),where one value represents the existence of a certain condition,and the other value indicates that the condition does not hold.
سؤال
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Is there sufficient evidence at the 1% significance level to conclude that the price of a barrel of oil and the price of silver are linearly related?
سؤال
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Interpret the coefficient b1.
سؤال
In regression analysis,a nominal independent variable such as color,with three different categories such as red,white,and blue,is best represented by three indicator variables to represent the three colors.
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x22x _ { 2 } ^ { 2 } term should be retained in the model.
سؤال
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Do these results allow us at the 5% significance level to conclude that the model is useful in predicting the price of silver?
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} What does the coefficient of x22x _ { 2 } ^ { 2 } tell you about the model?
سؤال
It is not possible to incorporate nominal variables into a regression model.
سؤال
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Is there sufficient evidence at the 1% significance level to conclude that the interest rate and the price of silver are linearly related?
سؤال
In regression analysis,indicator variables are also called dependent variables.
سؤال
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Is there sufficient evidence at the 1% significance level to conclude that the interaction term should be retained?
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x12x _ { 1 } ^ { 2 } term should be retained in the model.
سؤال
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?<div style=padding-top: 35px> (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?<div style=padding-top: 35px> Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?<div style=padding-top: 35px> Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?<div style=padding-top: 35px> ANALYSIS OF VARIANCE
Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?<div style=padding-top: 35px>
{Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?
سؤال
In general,to represent a nominal independent variable that has c possible categories,we would create (c -1)dummy variables.
سؤال
When a dummy variable is included in a multiple regression model,the interpretation of the estimated slope coefficient does not make any sense anymore.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/137
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 18: Model Building
1
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x2 + ε\varepsilon is referred to as a:

A) first-order model with two predictor variables with no interaction.
B) first-order model with two predictor variables with interaction.
C) second-order model with three predictor variables with no interaction.
D) second-order model with three predictor variables with interaction.
first-order model with two predictor variables with interaction.
2
In the first-order model y^=8+3x1+5x2\hat { y } = 8 + 3 x _ { 1 } + 5 x _ { 2 } ,a unit increase in x2,while holding x1 constant,increases the value of y on average by 5 units.
True
3
We interpret the coefficients in a multiple regression model by holding all variables in the model constant.
False
4
In the first-order model y~=50+25x110x26x1x2\tilde { y } = 50 + 25 x _ { 1 } - 10 x _ { 2 } - 6 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at a value of 3,decreases the value of y on average by 3 units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
5
A first-order polynomial model with one predictor variable is the familiar simple linear regression model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
6
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x2 + ε\varepsilon is referred to as a second-order model with two predictor variables with interaction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
7
The model y~=β0+β1x1+β2x2\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } is used whenever the statistician believes that,on average,y is linearly related to x1 and x2 and the predictor variables do not interact.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
8
The model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon is referred to as a simple linear regression model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
9
In the first-order regression model y~=12+6x1+8x2+4x1x2\tilde { y } = 12 + 6 x _ { 1 } + 8 x _ { 2 } + 4 x _ { 1 } x _ { 2 } ,a unit increase in x1 increases the value of y on average by 6 units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
10
Suppose that the sample regression equation of a model is y~=4+1.5x1+2x2x1x2\tilde { y } = 4 + 1.5 x _ { 1 } + 2 x _ { 2 } - x _ { 1 } x _ { 2 } .If we examine the relationship between x1 and y for four different values of x2,we observe that the four equations produced differ only in the intercept term.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
11
Suppose that the sample regression equation of a model is y~=4.7+2.2x1+2.6x2x1x2\tilde { y } = 4.7 + 2.2 x _ { 1 } + 2.6 x _ { 2 } - x _ { 1 } x _ { 2 } .If we examine the relationship between y and x2 for x1 = 1,2,and 3,we observe that the three equations produced not only differ in the intercept term,but the coefficient of x2 also varies.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
12
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is referred to as a first-order model with two predictor variables with no interaction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
13
Which of the following is not an advantage of multiple regression as compared with analysis of variance?

A) Multiple regression can be used to estimate the relationship between the dependent variable and independent variables.
B) Multiple regression handles problems with more than two independent variables easier than analysis of variance.
C) Multiple regression handles nominal variables better than analysis of variance.
D) All of these choices are true are advantages of multiple regression as compared with analysis of variance.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
14
Suppose that the sample regression line of the first-order model is y^=4+3x1+2x2\hat { y } = 4 + 3 x _ { 1 } + 2 x _ { 2 } .If we examine the relationship between y and x1 for three different values of x2,we observe that the effect of x1 on y remains the same no matter what the value of x2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
15
In the first-order model y~=7512x1+5x23x1x2\tilde { y } = 75 - 12 x _ { 1 } + 5 x _ { 2 } - 3 x _ { 1 } x _ { 2 } ,a unit increase in x1,while holding x2 constant at a value of 2,decreases the value of y on average by 8 units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
16
The model γi=β0+β1xi+β2xi2++βyxiy+εi\gamma _ { i } = \beta _ { 0 } + \beta _ { 1 } x _ { i } + \beta _ { 2 } x _ { i } ^ { 2 } + \ldots \ldots \ldots + \beta _ { y } x _ { i } ^ { y } + \varepsilon _ { i } is referred to as a polynomial model with one predictor variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
17
In the first-order model y~=60+40x110x2+5x1x2\tilde { y } = 60 + 40 x _ { 1 } - 10 x _ { 2 } + 5 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at 1,changes the value of y on average by -5 units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
18
The graph of the model y~i=β0+β1xi+β2xi2\tilde { y } _ { i } = \beta _ { 0 } + \beta _ { 1 } x _ { i } + \beta _ { 2 } x _ { i } ^ { 2 } is shaped like a straight line going upwards.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
19
Regression analysis allows the statistics practitioner to use mathematical models to realistically describe relationships between the dependent variable and independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
20
In a first-order model with two predictors x1 and x2,an interaction term may be used when the relationship between the dependent variable y and the predictor variables is linear.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
21
The independent variable x in a polynomial model is called the ____________________ variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
22
Another term for a first-order polynomial model is a regression ____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
23
When we plot x versus y,the graph of the model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon is shaped like a:

A) straight line going upwards.
B) circle.
C) parabola.
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
24
Suppose that the sample regression equation of a second-order model is given by y~=2.50+0.15x+0.45x2\tilde { y } = 2.50 + 0.15 x + 0.45 x ^ { 2 } .Then,the value 2.50 is the:

A) intercept where the response surface strikes the y-axis.
B) intercept where the response surface strikes the x-axis.
C) predicted value of y.
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
25
Suppose that the sample regression equation of a model is y~=10+4x1+3x2x1x2\tilde { y } = 10 + 4 x _ { 1 } + 3 x _ { 2 } - x _ { 1 } x _ { 2 } .If we examine the relationship between x1 and y for three different values of x2,we observe that the:

A) three equations produced differ not only in the intercept term but also the coefficient of x1 varies.
B) coefficient of x2 remains unchanged.
C) coefficient of x1 varies.
D) three equations produced differ only in the intercept.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
26
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is referred to as a:

A) first-order model with one predictor variable.
B) first-order model with two predictor variables.
C) second-order model with one predictor variable.
D) second-order model with two predictor variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
27
For the following regression equation y~=75+20x115x2+5x1x2\tilde { y } = 75 + 20 x _ { 1 } - 15 x _ { 2 } + 5 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at 1,changes the value of y on average by:

A) -5
B) +5
C) 10
D) -10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
28
The model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon is referred to as a:

A) simple linear regression model.
B) first-order model with one predictor variable.
C) second-order model with one predictor variable.
D) third order model with two predictor variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
29
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x2 + ε\varepsilon is a(n)____________________-order polynomial model with ____________________ predictor variables and ____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
30
The model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + ε\varepsilon is a(n)____________________-order polynomial model with ____________________ predictor variable(s).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
31
For the following regression equation y~=20+8x1+5x2+3x1x2\tilde { y } = 20 + 8 x _ { 1 } + 5 x _ { 2 } + 3 x _ { 1 } x _ { 2 } ,which combination of x1 and x2,respectively,results in the largest average value of y?

A) 3 and 5
B) 5 and 3
C) 6 and 3
D) 3 and 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
32
For the following regression equation y~=15+6x1+5x2+4x1x2\tilde { y } = 15 + 6 x _ { 1 } + 5 x _ { 2 } + 4 x _ { 1 } x _ { 2 } ,a unit increase in x1 increases the value of y on average by:

A) 5
B) 30
C) 26
D) an amount that depends on the value of x2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
33
Suppose that the sample regression line of the first-order model is y^=8+2x1+3x2\hat { y } = 8 + 2 x _ { 1 } + 3 x _ { 2 } .If we examine the relationship between y and x1 for four different values of x2,we observe that the:

A) only difference in the four equations produced is the coefficient of x2.
B) effect of x1 on y remains the same no matter what the value of x2.
C) effect of x1 on y remains the same no matter what the value of x1.
D) Cannot answer this question without more information.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
34
For the following regression equation y~=50+10x14x26x1x2\tilde { y } = 50 + 10 x _ { 1 } - 4 x _ { 2 } - 6 x _ { 1 } x _ { 2 } ,a unit increase in x2,while holding x1 constant at a value of 3,decreases the value of y on average by:

A) 22
B) 50
C) 56
D) An amount that depends on the value of x2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
35
Which of the following statements is false regarding the graph of the second-order polynomial model y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ?

A) If β\beta 2 is negative,the graph is concave,while if β\beta 2 is positive,the graph is convex.
B) The greater the absolute value of β\beta 2,the smaller the rate of curvature.
C) When we plot x versus y,the graph is shaped like a parabola.
D) All of these choices are true.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
36
For the following regression equation y~=10012x1+5x24x1x2\tilde { y } = 100 - 12 x _ { 1 } + 5 x _ { 2 } - 4 x _ { 1 } x _ { 2 } ,a unit increase in x1,while holding x2 constant at a value of 2,decreases the value of y on average by:

A) 92
B) 85
C) 20
D) an amount that depends on the value of x1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
37
For the following regression equation y~=10+3x1+4x2\tilde { y } = 10 + 3 x _ { 1 } + 4 x _ { 2 } ,a unit increase in x2 increases the value of y on average by:

A) 4
B) 7
C) 17
D) an amount that depends on the value of x1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
38
The model y = β\beta 0 + β\beta 1x + β\beta 2x2 +.........+ β\beta pxp + ε\varepsilon is referred to as a polynomial model with:

A) one predictor variable.
B) p predictor variables.
C) (p + 1)predictor variables.
D) x predictor variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
39
Suppose that the sample regression equation of a second-order model is given by y~=2.50+0.15x+0.45x2\tilde { y } = 2.50 + 0.15 x + 0.45 x ^ { 2 } .Then,the value 4.60 is the:

A) predicted value of y for any positive value of x.
B) predicted value of y when x = 2.
C) estimated change in y when x increases by 1 unit .
D) intercept where the response surface strikes the x-axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
40
A second-order polynomial model is shaped like a(n)____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
41
Computer Training
Consider the following data for two variables,x and y.The independent variable x represents the amount of training time (in hours)for a salesperson starting in a new computer store to adjust fully,and the dependent variable y represents the weekly sales (in $1000s).
Computer Training Consider the following data for two variables,x and y.The independent variable x represents the amount of training time (in hours)for a salesperson starting in a new computer store to adjust fully,and the dependent variable y represents the weekly sales (in $1000s).   Use statistical software to answer the following question(s). {Computer Training Narrative} Develop an estimated regression equation of the form   . Use statistical software to answer the following question(s).
{Computer Training Narrative} Develop an estimated regression equation of the form Computer Training Consider the following data for two variables,x and y.The independent variable x represents the amount of training time (in hours)for a salesperson starting in a new computer store to adjust fully,and the dependent variable y represents the weekly sales (in $1000s).   Use statistical software to answer the following question(s). {Computer Training Narrative} Develop an estimated regression equation of the form   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
42
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x2 term should be retained in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
43
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x1 term should be retained in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
44
{Computer Training Narrative} Determine if there is sufficient evidence at the 5% significance level to infer that the relationship between x and y is positive and significant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
45
____________________ means that the effect of x1 on y is influenced by the value of x2,and vice versa.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
46
{Computer Training Narrative} Develop a scatter diagram for the data.Does the scatter diagram suggest an estimated regression equation of the form {Computer Training Narrative} Develop a scatter diagram for the data.Does the scatter diagram suggest an estimated regression equation of the form   ? Explain. ? Explain.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
47
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Test to determine at the 10% significance level if the x2 term should be retained.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
48
{Computer Training Narrative} Estimate the value of y when x = 45 using the estimated linear regression equation in the previous question.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
49
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Predict the winning percentage for a hockey team with an average of 6 years of professional experience.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
50
{Computer Training Narrative} Use the quadratic model to predict the value of y when x = 45.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
51
{Computer Training Narrative} Develop an estimated regression equation of the form {Computer Training Narrative} Develop an estimated regression equation of the form   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
52
{Computer Training Narrative} Determine the coefficient of determination quadratic model.What does this statistic tell you about this model?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
53
In a first-order polynomial model with no interaction,the effect of x1 on y remains the same no matter what the value of x2 is.The graph of this model produces straight lines that are ____________________ to each other.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
54
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Do these results allow us to conclude at the 5% significance level that the model is useful in predicting the team's winning percentage?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
55
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} Test to determine at the 10% significance level if the linear term should be retained.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
56
If a quadratic relationship exists between y and each of x1 and x2,you use a(n)____________________-order polynomial model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
57
Hockey Teams
An avid hockey fan was in the process of examining the factors that determine the success or failure of hockey teams.He noticed that teams with many rookies and teams with many veterans seem to do quite poorly.To further analyze his beliefs he took a random sample of 20 teams and proposed a second-order model with one independent variable,average years of professional experience.The selected model is y = β\beta 0 + β\beta 1x + β\beta 2x2 + ε\varepsilon ,where y = winning team's percentage,and x = average years of professional experience.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 32.6 + 5.96x - .48x2
 Predictar  Coef  StDev T Constant 32.619.31.689x5.962.412.473x2.48.222.182\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & \boldsymbol { T } \\\hline \text { Constant } & 32.6 & 19.3 & 1.689 \\\boldsymbol { x} & 5.96 & 2.41 & 2.473 \\\boldsymbol { \boldsymbol { x} ^ { 2 } } & - .48 & .22 & - 2.182 \\\hline\end{array} S = 16.1 \quad R - S q = 43.9 % ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 2345217266.663 Error 174404259.059 Total 197856\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 2 & 3452 & 1726 & 6.663 \\\text { Error } & 17 & 4404 & 259.059 & \\\hline \text { Total } & 19 & 7856 & & \\\hline\end{array}

-{Hockey Teams Narrative} What is the coefficient of determination? Explain what this statistic tells you about the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
58
{Computer Training Narrative} Find the coefficient of determination of this simple linear model.What does this statistic tell you about the model?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
59
{Computer Training Narrative} Determine if there is sufficient evidence at the 5% significance level to infer that the quadratic relationship between y,x,and x2 in the previous question is significant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
60
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Is there enough evidence at the 5% significance level to conclude that the model is useful in predicting the number of fatalities?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
61
In order to represent a nominal variable with m categories,we must create m - 1 indicator variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
62
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} What does the coefficient of x12x _ { 1 } ^ { 2 } tell you about the model?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
63
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Interpret the coefficient b2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
64
In explaining the amount of money spent on gifts for a child's birthday each year,the independent variable,age of child,is best represented by a dummy variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
65
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the interaction term should be retained in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
66
An indicator variable (also called a dummy variable)is a variable that can assume either one of two values (usually 0 and 1),where one value represents the existence of a certain condition,and the other value indicates that the condition does not hold.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
67
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Is there sufficient evidence at the 1% significance level to conclude that the price of a barrel of oil and the price of silver are linearly related?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
68
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Interpret the coefficient b1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
69
In regression analysis,a nominal independent variable such as color,with three different categories such as red,white,and blue,is best represented by three indicator variables to represent the three colors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
70
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x22x _ { 2 } ^ { 2 } term should be retained in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
71
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Do these results allow us at the 5% significance level to conclude that the model is useful in predicting the price of silver?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
72
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} What does the coefficient of x22x _ { 2 } ^ { 2 } tell you about the model?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
73
It is not possible to incorporate nominal variables into a regression model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
74
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Is there sufficient evidence at the 1% significance level to conclude that the interest rate and the price of silver are linearly related?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
75
In regression analysis,indicator variables are also called dependent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
76
Silver Prices
An economist is in the process of developing a model to predict the price of silver.She believes that the two most important variables are the price of a barrel of oil (x1)and the interest rate (x2).She proposes the first-order model with interaction: y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x1x3 + ε\varepsilon .A random sample of 20 daily observations was taken.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 115.6 + 22.3x1 + 14.7x2 - 1.36x1x2
 Predictar  Coef  StDev T Constant 115.678.11.480x122.37.13.141x214.76.32.333x1x21.36.522.615\begin{array} { | c | c c c | } \hline \text { Predictar } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 115.6 & 78.1 & 1.480 \\\boldsymbol { x } _ { 1 } & 22.3 & 7.1 & 3.141 \\\boldsymbol { x } _ { 2 } & 14.7 & 6.3 & 2.333 \\\boldsymbol { x } _ { 1 } x _ { 2 } & - 1.36 & .52 & - 2.615 \\\hline\end{array} S=20.9RSq=55.4%S= 20.9 \quad R - S q = 55.4 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regressian 386612887.06.626 Errorr 166971435.7 Total 1915632\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Regressian } & 3 & 8661 & 2887.0 & 6.626 \\\text { Errorr } & 16 & 6971 & 435.7 & \\\hline \text { Total } & 19 & 15632 & & \\\hline\end{array}

-{Silver Prices Narrative} Is there sufficient evidence at the 1% significance level to conclude that the interaction term should be retained?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
77
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model y~=β0+β1x1+β2x2+β3x12+β4x22+β5x1x2+ε\tilde { y } = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } ^ { 2 } + \beta _ { 4 } x _ { 2 } ^ { 2 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \varepsilon (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS y=69.7+11.3x1+7.61x21.15x120.51x220.13x1x2y = 69.7 + 11.3 x _ { 1 } + 7.61 x _ { 2 } - 1.15 x _ { 1 } ^ { 2 } - 0.51 x _ { 2 } ^ { 2 } - 0.13 x _ { 1 } x _ { 2 }  Predictor Coef  StDev T Constant69.741.31.688x111.35.12.216x27.612.552.984x121.15.641.797x22.51.202.55x1x2.13.101.30\begin{array}{ccc}\text { Predictor}&\text { Coef } & \text { StDev } & T \\\hline\text { Constant}& 69.7 & 41.3 & 1.688 \\x_{1} &11.3 & 5.1 & 2.216 \\ x_{2}&7.61 & 2.55 & 2.984 \\x_1^2&-1.15 & .64 & -1.797 \\& & \\x_2^2&-.51 & .20 & -2.55 \\& & \\& & \\ x_{1} x_{2}&-.13 & .10 & -1.30\end{array} S=15.2RSq=47.2%S= 15.2 \quad \mathrm { R } - \mathrm { Sq } = 47.2 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 559591191.8005.181 Error 296671230.034 Total 3412630\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { S S } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 5 & 5959 & 1191.800 & 5.181 \\\text { Error } & 29 & 6671 & 230.034 & \\\hline \text { Total } & 34 & 12630 & & \\\hline\end{array}

-{Motorcycle Fatalities Narrative} Test at the 1% significance level to determine if the x12x _ { 1 } ^ { 2 } term should be retained in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
78
Motorcycle Fatalities
A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model? (the second-order model with interaction),where y = number of annual fatalities per county,x1 = number of motorcycles registered in the county (in 10,000),and x2 = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below:
THE REGRESSION EQUATION IS Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model? Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model? Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model? ANALYSIS OF VARIANCE
Motorcycle Fatalities A traffic consultant has analyzed the factors that affect the number of motorcycle fatalities.She has come to the conclusion that two important variables are the number of motorcycle and the number of cars.She proposed the model   (the second-order model with interaction),where y = number of annual fatalities per county,x<sub>1</sub> = number of motorcycles registered in the county (in 10,000),and x<sub>2</sub> = number of cars registered in the county (in 1000).The computer output (based on a random sample of 35 counties)is shown below: THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?
{Motorcycle Fatalities Narrative} What is the multiple coefficient of determination? What does this statistic tell you about the model?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
79
In general,to represent a nominal independent variable that has c possible categories,we would create (c -1)dummy variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
80
When a dummy variable is included in a multiple regression model,the interpretation of the estimated slope coefficient does not make any sense anymore.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 137 في هذه المجموعة.