Deck 17: Multiple Regression

ملء الشاشة (f)
exit full mode
سؤال
In a multiple regression analysis involving 4 independent variables and 30 data points,the number of degrees of freedom associated with the sum of squares for error,SSE,is 25.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
In a multiple regression analysis involving 50 observations and 5 independent variables,the total variation in y is 475 and SSE = 71.25.Then,the coefficient of determination is 0.85.
سؤال
In reference to the equation y~=0.80+0.12x1+0.08x2\tilde { y } = - 0.80 + 0.12 x _ { 1 } + 0.08 x _ { 2 } ,the value -0.80 is the y-intercept.
سؤال
A multiple regression is called "multiple" because it has several explanatory variables.
سؤال
In order to test the significance of a multiple regression model involving 4 independent variables and 25 observations,the numerator and denominator degrees of freedom for the critical value of F are 3 and 21,respectively.
سؤال
In reference to the equation y~=1.860.51x1+0.60x2\tilde { y } = 1.86 - 0.51 x _ { 1 } + 0.60 x _ { 2 } ,the value 0.60 is the average change in y per unit change in x2,regardless of the value of x1.
سؤال
Senior Medical Students
A professor of Anatomy wanted to develop a multiple regression model to predict the students' grades in her fourth-year medical course.She decides that the two most important factors are the student's grade point average in the first three years and the student's major.She proposes the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon ,where y = Fourth-year medical course final score (out of 100),x1 = G.P.A.in first three years (range from 0 to 12),x2 = 1 if student's major is medicine and 0 if not,and x3 = 1 if student's major is biology and 0 if not.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 9.14 + 6.73x1 + 10.42x2 + 5.16x3
 Predictor  Coef  StDev T Constant 9.147.101.287x16.731.913.524x210.424.162.505x35.163.931.313\begin{array} { | c | c c c | } \hline \text { Predictor } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 9.14 & 7.10 & 1.287 \\\boldsymbol { x } _ { 1 } & 6.73 & 1.91 & 3.524 \\\boldsymbol { x } _ { 2 } & 10.42 & 4.16 & 2.505 \\\boldsymbol {x } _ { 3 } & 5.16 & 3.93 & 1.313 \\\hline\end{array} S=15.0RSq=44.2%S = 15.0 \quad R - S q = 44.2 \% ANALYSIS OF VARIANCE
 Source of Variation df SS MSF Regression 3170985699.33325.386 Error 9621553224.510 Total 9938651\begin{array}{l|ccccc}\text { Source of Variation } & d f & \text { SS } & M S & F \\\hline \text { Regression } & 3 & 17098 & 5699.333 & 25.386 \\\text { Error } & 96 & 21553 & 224.510 & \\\hline \text { Total } & 99 & 38651 & &\end{array}


-Most statistical software print a second R2 statistic,called the coefficient of determination adjusted for degrees of freedom,which has been adjusted to take into account the sample size and the number of independent variables.
سؤال
In multiple regression,the standard error of estimate is defined by sz=SSE/(nk)s _ { z } = \sqrt { \operatorname { SSE } / ( n - k ) } ,where n is the sample size and k is the number of independent variables.
سؤال
In regression analysis,the total variation in the dependent variable y,measured by (yiyˉ)2\sum \left( y _ { i } - \bar { y } \right) ^ { 2 } ,can be decomposed into two parts: the explained variation,measured by SSR,and the unexplained variation,measured by SSE.
سؤال
Senior Medical Students
A professor of Anatomy wanted to develop a multiple regression model to predict the students' grades in her fourth-year medical course.She decides that the two most important factors are the student's grade point average in the first three years and the student's major.She proposes the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon ,where y = Fourth-year medical course final score (out of 100),x1 = G.P.A.in first three years (range from 0 to 12),x2 = 1 if student's major is medicine and 0 if not,and x3 = 1 if student's major is biology and 0 if not.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 9.14 + 6.73x1 + 10.42x2 + 5.16x3
 Predictor  Coef  StDev T Constant 9.147.101.287x16.731.913.524x210.424.162.505x35.163.931.313\begin{array} { | c | c c c | } \hline \text { Predictor } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 9.14 & 7.10 & 1.287 \\\boldsymbol { x } _ { 1 } & 6.73 & 1.91 & 3.524 \\\boldsymbol { x } _ { 2 } & 10.42 & 4.16 & 2.505 \\\boldsymbol {x } _ { 3 } & 5.16 & 3.93 & 1.313 \\\hline\end{array} S=15.0RSq=44.2%S = 15.0 \quad R - S q = 44.2 \% ANALYSIS OF VARIANCE
 Source of Variation df SS MSF Regression 3170985699.33325.386 Error 9621553224.510 Total 9938651\begin{array}{l|ccccc}\text { Source of Variation } & d f & \text { SS } & M S & F \\\hline \text { Regression } & 3 & 17098 & 5699.333 & 25.386 \\\text { Error } & 96 & 21553 & 224.510 & \\\hline \text { Total } & 99 & 38651 & &\end{array}


-In multiple regression analysis,the adjusted coefficient of determination is adjusted for the number of independent variables and the sample size.
سؤال
A multiple regression equation has a coefficient of determination of 0.81.Then,the percentage of the variation in y that is explained by the regression equation is 90%.
سؤال
In testing the significance of a multiple regression model with three independent variables,the null hypothesis is H0:β1=β2=β3H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } .
سؤال
The coefficient of determination R2 measures the proportion of variation in y that is explained by the explanatory variables included in the model.
سؤال
When an additional explanatory variable is introduced into a multiple regression model,the coefficient of determination will never decrease.
سؤال
A multiple regression model is assessed to be good if the error sum of squares SSE and the standard error of estimate s ε\varepsilon are both small,the coefficient of determination R2 is close to 1,and the value of the test statistic F is large.
سؤال
In multiple regression analysis,when the response surface (the graphical depiction of the regression equation)hits every single point,the sum of squares for error SSE = 0,the standard error of estimate s ε\varepsilon = 0,and the coefficient of determination R2 = 1.
سؤال
When an additional explanatory variable is introduced into a multiple regression model,coefficient of determination adjusted for degrees of freedom can never decrease.
سؤال
A small value of F indicates that most of the variation in y is explained by the regression equation and that the model is useful.
سؤال
In reference to the equation y~=0.80+0.12x1+0.08x2\tilde { y } = - 0.80 + 0.12 x _ { 1 } + 0.08 x _ { 2 } ,the value 0.12 is the average change in y per unit change in x1,when x2 is held constant.
سؤال
A multiple regression model involves 40 observations and 4 independent variables produces a total variation in y of 100,000 and SSR = 80,400.Then,the value of MSE is 560.
سؤال
In calculating the standard error of the estimate, sz=MSEs _ { z } = \sqrt { \mathrm { MSE } } ,there are (n \le k \le 1)degrees of freedom,where n is the sample size and k is the number of independent variables in the model.
سؤال
In a multiple regression analysis,if the model provides a poor fit,this indicates that:

A) the coefficient of determination will be close to zero.
B) the standard error of estimate will be large.
C) the sum of squares for error will be large.
D) All of these choices are true.
سؤال
A multiple regression model is assessed to be poor if the error sum of squares SSE and the standard error of estimate s ε\varepsilon are both large,the coefficient of determination R2 is close to 0,and the value of the test statistic F is large.
سؤال
When an explanatory variable is dropped from a multiple regression model,the adjusted coefficient of determination can increase.
سؤال
Suppose a multiple regression analysis involving 25 data points has sz2=1.8s _ { z } ^ { 2 } = 1.8 and SSE = 36.Then,the number of the independent variables must be:

A) 3
B) 4
C) 5
D) 6
سؤال
A multiple regression model involves 10 independent variables and 30 observations.If we want to test at the 5% significance level whether one of the coefficients is = 0 (vs. \neq 0)the critical value will be:

A) 2.228
B) 2.093
C) 1.729
D) 1.697
سؤال
In a multiple regression analysis involving k independent variables and n data points,the number of degrees of freedom associated with the sum of squares for error is:

A) k - 1
B) n - k
C) n - 1
D) n - k - 1
سؤال
The adjusted coefficient of determination is adjusted for the:

A) number of independent variables and the sample size.
B) number of dependent variables and the sample size.
C) coefficient of correlation and the significance level.
D) number of regression parameters including the y-intercept.
سؤال
A multiple regression model involves 5 independent variables and a sample of 10 data points.If we want to test the validity of the model at the 5% significance level,the critical value is:

A) 6.26
B) 3.33
C) 9.36
D) 4.24
سؤال
The total variation in y in a regression model will never exceed the regression sum of squares (SSR).
سؤال
A multiple regression model has the form: y~=5.25+2x1+6x2\tilde { y } = 5.25 + 2 x _ { 1 } + 6 x _ { 2 } .As x2 increases by one unit,holding x1 constant,then the value of y will increase by:

A) 7.25 units
B) 6 units on average
C) 2 units
D) None of these choices
سؤال
From the coefficient of determination,we cannot detect the strength of the relationship between the dependent variable y and any individual independent variable.
سؤال
A multiple regression model has the form y~=b0+b1x1+b2x2\tilde { y } = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } .The coefficient b1 is interpreted as the average change in y per unit change in x1.
سؤال
When an explanatory variable is dropped from a multiple regression model,the coefficient of determination can increase.
سؤال
A high value of the coefficient of determination significantly above 0 in multiple regression,accompanied by insignificant t-statistics on all parameter estimates,very often indicates a high correlation between independent variables in the model.
سؤال
In a multiple regression model,the mean of the probability distribution of the error variable ε\varepsilon is assumed to be:

A) k,where k is the number of independent variables included in the model.
B) 1.0
C) 0.0
D) None of these choices.
سؤال
In order to test the validity of a multiple regression model involving 5 independent variables and 30 observations,the numerator and denominator degrees of freedom for the critical value of F are,respectively,

A) 5 and 30
B) 6 and 29
C) 5 and 24
D) 6 and 25
سؤال
In multiple regression analysis,the ratio MSR/MSE yields the:

A) t-test statistic for testing each individual regression coefficient.
B) F-test statistic for testing the validity of the regression equation.
C) coefficient of determination.
D) adjusted coefficient of determination.
سؤال
A multiple regression model has the form y~=8+3x1+5x24x3\tilde { y } = 8 + 3 x _ { 1 } + 5 x _ { 2 } - 4 x _ { 3 } .As x3 increases by one unit,with x1 and x2 held constant,the y on average is expected to:

A) increase by 1 unit.
B) increase by 12 units.
C) decrease by 4 units.
D) decrease by 16 units.
سؤال
In a multiple regression analysis involving 6 independent variables,the total variation in y is 900 and SSR = 600.What is the value of SSE?

A) 300
B) 1.50
C) 0.67
D) None of these choices.
سؤال
For a multiple regression model,the total variation in y can be expressed as:

A) SSE - SSR.
B) SSR - SSE.
C) SSR + SSE.
D) SSR / SSE.
سؤال
The coefficient of determination ____________________ for degrees of freedom takes into account the sample size and the number of independent variables when assessing model fit.
سؤال
The coefficient of determination ranges from:

A) 1.0 to \infty .
B) 0.0 to 1.0.
C) 1.0 to k,where k is the number of independent variables in the model.
D) 1.0 to n,where n is the number of observations in the dependent variable.
سؤال
To test the validity of a multiple regression model,we test the null hypothesis that the regression coefficients are all zero by applying the:

A) F-test
B) t-test
C) z-test
D) None of these choices.
سؤال
In a multiple regression analysis involving 40 observations and 5 independent variables,the following statistics are given: Total variation in y = 350 and SSE = 50.Then,the coefficient of determination is:

A) 0.8408
B) 0.8571
C) 0.8469
D) 0.8529
سؤال
For a multiple regression model the following statistics are given: Total variation in y = 250,SSE = 50,k = 4,and n = 20.Then,the coefficient of determination adjusted for the degrees of freedom is:

A) 0.800
B) 0.747
C) 0.840
D) 0.775
سؤال
In a multiple regression model,the probability distribution of the error variable ε\varepsilon is assumed to be:

A) normal.
B) non-normal.
C) positively skewed.
D) negatively skewed.
سؤال
In a multiple regression model,the value of the coefficient of determination has to fall between

A) -1 and +1.
B) 0 and +1.
C) -1 and 0.
D) None of these choices.
سؤال
A multiple regression model has:

A) only one independent variable.
B) only two independent variables.
C) more than one dependent variable.
D) more than one independent variable.
سؤال
A multiple regression equation includes 5 independent variables,and the coefficient of determination is 0.81.The percentage of the variation in y that is explained by the regression equation is:

A) 81%
B) 90%
C) 86%
D) about 16%
سؤال
For the following multiple regression model: y~=23x1+4x2+5x3\tilde { y } = 2 - 3 x _ { 1 } + 4 x _ { 2 } + 5 x _ { 3 } ,a unit increase in x1,holding x2 and x3 constant,results in:

A) a decrease of 3 units on average in the value of y.
B) an increase of 8 units in the value of y.
C) an increase of 3 units on average in the value of y.
D) None of these choices.
سؤال
A multiple regression model has the form A multiple regression model has the form   .The coefficient b<sub>1</sub> is interpreted as the change in the average value of y per unit change in ________ holding ________ constant.<div style=padding-top: 35px> .The coefficient b1 is interpreted as the change in the average value of y per unit change in ________ holding ________ constant.
سؤال
In a multiple regression model,the following statistics are given: SSE = 100,R2 = 0.995,k = 5,and n = 15.Then,the coefficient of determination adjusted for degrees of freedom is:

A) 0.992
B) 0.900
C) 0.955
D) 0.855
سؤال
A multiple regression analysis involving three independent variables and 25 data points results in a value of 0.769 for the unadjusted coefficient of determination.Then,the adjusted coefficient of determination is:

A) 0.385
B) 0.877
C) 0.591
D) 0.736
سؤال
In a multiple regression analysis,there are 20 data points and 4 independent variables,and the sum of the squared differences between observed and predicted values of y is 180.The standard error of estimate will be:

A) 9.000
B) 6.708
C) 3.464
D) 3.000
سؤال
In a multiple regression model,the error variable ε\varepsilon is assumed to have a mean of:

A) -1.0
B) 0.0
C) 1.0
D) None of these choices.
سؤال
Multiple regression has four requirements for the error variable.One is that the probability distribution of the error variable is ____________________.
سؤال
For a multiple regression model,the following statistics are given: Total variation in y = 500,SSE = 80,and n = 25.Then,the coefficient of determination is:

A) 0.84
B) 0.16
C) 0.3125
D) 0.05
سؤال
For the multiple regression model: y~=75+25x115x2+10x3\tilde { y } = 75 + 25 x _ { 1 } - 15 x _ { 2 } + 10 x _ { 3 } ,if x2 were to increase by 5,holding x1 and x3 constant,the value of y will:

A) increase by 5.
B) increase by 75.
C) decrease on average by 5.
D) decrease on average by 75.
سؤال
In testing the validity of a multiple regression model in which there are four independent variables,the null hypothesis is:

A) H0:β1=β2=β3=β4=1H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } = 1
B) H0:β0=β1=β2=β3=β4H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 }
C) H0:β1=β2=β3=β4=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } = 0
D) H0:β0=β1=β2=β3=β40H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } \neq 0
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Interpret the coefficient b3.
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there enough evidence at the 5% significance level to infer that the cholesterol level and the age at death are negatively linearly related?
سؤال
The total variation in y is equal to SSR + ____________________.
سؤال
We test an individual coefficient in a multiple regression model using a(n)_________ test.
سؤال
Some of the requirements for the error variable in a multiple regression model are that the probability distribution is ____________________ with a mean of ____________________.
سؤال
When there is more than one independent variable in a regression model,we refer to the graphical depiction of the equation as a(n)____________________ rather than as a straight line.
سؤال
Student's Final Grade
A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> ,where y is the final grade (out of 100 points),x1 is the number of lectures skipped,x2 is the number of late assignments,and x3 is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below.
THE REGRESSION EQUATION IS Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> ANALYSIS OF VARIANCE
Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px>
{Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there enough evidence at the 1% significance level to infer that the average number of hours of exercise per week and the age at death are linearly related?
سؤال
Consider the following statistics of a multiple regression model: n = 25,k = 5,b1 = -6.31,and s ε\varepsilon = 2.98.Can we conclude at the 1% significance level that x1 and y are linearly related?
سؤال
Student's Final Grade
A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> ,where y is the final grade (out of 100 points),x1 is the number of lectures skipped,x2 is the number of late assignments,and x3 is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below.
THE REGRESSION EQUATION IS Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px> ANALYSIS OF VARIANCE
Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?<div style=padding-top: 35px>
{Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} What is the coefficient of determination? What does this statistic tell you?
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there enough evidence at the 5% significance level to infer that the model is useful in predicting length of life?
سؤال
Some of the requirements for the error variable in a multiple regression model are that the standard deviation is a(n)____________________ and the errors are ____________________.
سؤال
A(n)____________________ value of the F-test statistic indicates that the multiple regression model is valid.
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there sufficient evidence at the 5% significance level to infer that the number of points that the individual's blood pressure exceeded the recommended value and the age at death are negatively linearly related?
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Interpret the coefficient b1.
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} What is the adjusted coefficient of determination in this situation? What does this statistic tell you?
سؤال
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Interpret the coefficient b2.
سؤال
The validity of a multiple regression model is tested using a(n)_________ test.
سؤال
The computer output for the multiple regression model The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  <div style=padding-top: 35px> is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).
The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  <div style=padding-top: 35px> The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  <div style=padding-top: 35px> ANALYSIS OF VARIANCE
The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  <div style=padding-top: 35px>
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/156
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 17: Multiple Regression
1
In a multiple regression analysis involving 4 independent variables and 30 data points,the number of degrees of freedom associated with the sum of squares for error,SSE,is 25.
True
2
In a multiple regression analysis involving 50 observations and 5 independent variables,the total variation in y is 475 and SSE = 71.25.Then,the coefficient of determination is 0.85.
True
3
In reference to the equation y~=0.80+0.12x1+0.08x2\tilde { y } = - 0.80 + 0.12 x _ { 1 } + 0.08 x _ { 2 } ,the value -0.80 is the y-intercept.
True
4
A multiple regression is called "multiple" because it has several explanatory variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
5
In order to test the significance of a multiple regression model involving 4 independent variables and 25 observations,the numerator and denominator degrees of freedom for the critical value of F are 3 and 21,respectively.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
6
In reference to the equation y~=1.860.51x1+0.60x2\tilde { y } = 1.86 - 0.51 x _ { 1 } + 0.60 x _ { 2 } ,the value 0.60 is the average change in y per unit change in x2,regardless of the value of x1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
7
Senior Medical Students
A professor of Anatomy wanted to develop a multiple regression model to predict the students' grades in her fourth-year medical course.She decides that the two most important factors are the student's grade point average in the first three years and the student's major.She proposes the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon ,where y = Fourth-year medical course final score (out of 100),x1 = G.P.A.in first three years (range from 0 to 12),x2 = 1 if student's major is medicine and 0 if not,and x3 = 1 if student's major is biology and 0 if not.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 9.14 + 6.73x1 + 10.42x2 + 5.16x3
 Predictor  Coef  StDev T Constant 9.147.101.287x16.731.913.524x210.424.162.505x35.163.931.313\begin{array} { | c | c c c | } \hline \text { Predictor } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 9.14 & 7.10 & 1.287 \\\boldsymbol { x } _ { 1 } & 6.73 & 1.91 & 3.524 \\\boldsymbol { x } _ { 2 } & 10.42 & 4.16 & 2.505 \\\boldsymbol {x } _ { 3 } & 5.16 & 3.93 & 1.313 \\\hline\end{array} S=15.0RSq=44.2%S = 15.0 \quad R - S q = 44.2 \% ANALYSIS OF VARIANCE
 Source of Variation df SS MSF Regression 3170985699.33325.386 Error 9621553224.510 Total 9938651\begin{array}{l|ccccc}\text { Source of Variation } & d f & \text { SS } & M S & F \\\hline \text { Regression } & 3 & 17098 & 5699.333 & 25.386 \\\text { Error } & 96 & 21553 & 224.510 & \\\hline \text { Total } & 99 & 38651 & &\end{array}


-Most statistical software print a second R2 statistic,called the coefficient of determination adjusted for degrees of freedom,which has been adjusted to take into account the sample size and the number of independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
8
In multiple regression,the standard error of estimate is defined by sz=SSE/(nk)s _ { z } = \sqrt { \operatorname { SSE } / ( n - k ) } ,where n is the sample size and k is the number of independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
9
In regression analysis,the total variation in the dependent variable y,measured by (yiyˉ)2\sum \left( y _ { i } - \bar { y } \right) ^ { 2 } ,can be decomposed into two parts: the explained variation,measured by SSR,and the unexplained variation,measured by SSE.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
10
Senior Medical Students
A professor of Anatomy wanted to develop a multiple regression model to predict the students' grades in her fourth-year medical course.She decides that the two most important factors are the student's grade point average in the first three years and the student's major.She proposes the model y = β\beta 0 + β\beta 1x1 + β\beta 2x2 + β\beta 3x3 + ε\varepsilon ,where y = Fourth-year medical course final score (out of 100),x1 = G.P.A.in first three years (range from 0 to 12),x2 = 1 if student's major is medicine and 0 if not,and x3 = 1 if student's major is biology and 0 if not.The computer output is shown below.
THE REGRESSION EQUATION IS
y = 9.14 + 6.73x1 + 10.42x2 + 5.16x3
 Predictor  Coef  StDev T Constant 9.147.101.287x16.731.913.524x210.424.162.505x35.163.931.313\begin{array} { | c | c c c | } \hline \text { Predictor } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 9.14 & 7.10 & 1.287 \\\boldsymbol { x } _ { 1 } & 6.73 & 1.91 & 3.524 \\\boldsymbol { x } _ { 2 } & 10.42 & 4.16 & 2.505 \\\boldsymbol {x } _ { 3 } & 5.16 & 3.93 & 1.313 \\\hline\end{array} S=15.0RSq=44.2%S = 15.0 \quad R - S q = 44.2 \% ANALYSIS OF VARIANCE
 Source of Variation df SS MSF Regression 3170985699.33325.386 Error 9621553224.510 Total 9938651\begin{array}{l|ccccc}\text { Source of Variation } & d f & \text { SS } & M S & F \\\hline \text { Regression } & 3 & 17098 & 5699.333 & 25.386 \\\text { Error } & 96 & 21553 & 224.510 & \\\hline \text { Total } & 99 & 38651 & &\end{array}


-In multiple regression analysis,the adjusted coefficient of determination is adjusted for the number of independent variables and the sample size.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
11
A multiple regression equation has a coefficient of determination of 0.81.Then,the percentage of the variation in y that is explained by the regression equation is 90%.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
12
In testing the significance of a multiple regression model with three independent variables,the null hypothesis is H0:β1=β2=β3H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
13
The coefficient of determination R2 measures the proportion of variation in y that is explained by the explanatory variables included in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
14
When an additional explanatory variable is introduced into a multiple regression model,the coefficient of determination will never decrease.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
15
A multiple regression model is assessed to be good if the error sum of squares SSE and the standard error of estimate s ε\varepsilon are both small,the coefficient of determination R2 is close to 1,and the value of the test statistic F is large.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
16
In multiple regression analysis,when the response surface (the graphical depiction of the regression equation)hits every single point,the sum of squares for error SSE = 0,the standard error of estimate s ε\varepsilon = 0,and the coefficient of determination R2 = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
17
When an additional explanatory variable is introduced into a multiple regression model,coefficient of determination adjusted for degrees of freedom can never decrease.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
18
A small value of F indicates that most of the variation in y is explained by the regression equation and that the model is useful.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
19
In reference to the equation y~=0.80+0.12x1+0.08x2\tilde { y } = - 0.80 + 0.12 x _ { 1 } + 0.08 x _ { 2 } ,the value 0.12 is the average change in y per unit change in x1,when x2 is held constant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
20
A multiple regression model involves 40 observations and 4 independent variables produces a total variation in y of 100,000 and SSR = 80,400.Then,the value of MSE is 560.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
21
In calculating the standard error of the estimate, sz=MSEs _ { z } = \sqrt { \mathrm { MSE } } ,there are (n \le k \le 1)degrees of freedom,where n is the sample size and k is the number of independent variables in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
22
In a multiple regression analysis,if the model provides a poor fit,this indicates that:

A) the coefficient of determination will be close to zero.
B) the standard error of estimate will be large.
C) the sum of squares for error will be large.
D) All of these choices are true.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
23
A multiple regression model is assessed to be poor if the error sum of squares SSE and the standard error of estimate s ε\varepsilon are both large,the coefficient of determination R2 is close to 0,and the value of the test statistic F is large.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
24
When an explanatory variable is dropped from a multiple regression model,the adjusted coefficient of determination can increase.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
25
Suppose a multiple regression analysis involving 25 data points has sz2=1.8s _ { z } ^ { 2 } = 1.8 and SSE = 36.Then,the number of the independent variables must be:

A) 3
B) 4
C) 5
D) 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
26
A multiple regression model involves 10 independent variables and 30 observations.If we want to test at the 5% significance level whether one of the coefficients is = 0 (vs. \neq 0)the critical value will be:

A) 2.228
B) 2.093
C) 1.729
D) 1.697
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
27
In a multiple regression analysis involving k independent variables and n data points,the number of degrees of freedom associated with the sum of squares for error is:

A) k - 1
B) n - k
C) n - 1
D) n - k - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
28
The adjusted coefficient of determination is adjusted for the:

A) number of independent variables and the sample size.
B) number of dependent variables and the sample size.
C) coefficient of correlation and the significance level.
D) number of regression parameters including the y-intercept.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
29
A multiple regression model involves 5 independent variables and a sample of 10 data points.If we want to test the validity of the model at the 5% significance level,the critical value is:

A) 6.26
B) 3.33
C) 9.36
D) 4.24
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
30
The total variation in y in a regression model will never exceed the regression sum of squares (SSR).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
31
A multiple regression model has the form: y~=5.25+2x1+6x2\tilde { y } = 5.25 + 2 x _ { 1 } + 6 x _ { 2 } .As x2 increases by one unit,holding x1 constant,then the value of y will increase by:

A) 7.25 units
B) 6 units on average
C) 2 units
D) None of these choices
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
32
From the coefficient of determination,we cannot detect the strength of the relationship between the dependent variable y and any individual independent variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
33
A multiple regression model has the form y~=b0+b1x1+b2x2\tilde { y } = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } .The coefficient b1 is interpreted as the average change in y per unit change in x1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
34
When an explanatory variable is dropped from a multiple regression model,the coefficient of determination can increase.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
35
A high value of the coefficient of determination significantly above 0 in multiple regression,accompanied by insignificant t-statistics on all parameter estimates,very often indicates a high correlation between independent variables in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
36
In a multiple regression model,the mean of the probability distribution of the error variable ε\varepsilon is assumed to be:

A) k,where k is the number of independent variables included in the model.
B) 1.0
C) 0.0
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
37
In order to test the validity of a multiple regression model involving 5 independent variables and 30 observations,the numerator and denominator degrees of freedom for the critical value of F are,respectively,

A) 5 and 30
B) 6 and 29
C) 5 and 24
D) 6 and 25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
38
In multiple regression analysis,the ratio MSR/MSE yields the:

A) t-test statistic for testing each individual regression coefficient.
B) F-test statistic for testing the validity of the regression equation.
C) coefficient of determination.
D) adjusted coefficient of determination.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
39
A multiple regression model has the form y~=8+3x1+5x24x3\tilde { y } = 8 + 3 x _ { 1 } + 5 x _ { 2 } - 4 x _ { 3 } .As x3 increases by one unit,with x1 and x2 held constant,the y on average is expected to:

A) increase by 1 unit.
B) increase by 12 units.
C) decrease by 4 units.
D) decrease by 16 units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
40
In a multiple regression analysis involving 6 independent variables,the total variation in y is 900 and SSR = 600.What is the value of SSE?

A) 300
B) 1.50
C) 0.67
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
41
For a multiple regression model,the total variation in y can be expressed as:

A) SSE - SSR.
B) SSR - SSE.
C) SSR + SSE.
D) SSR / SSE.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
42
The coefficient of determination ____________________ for degrees of freedom takes into account the sample size and the number of independent variables when assessing model fit.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
43
The coefficient of determination ranges from:

A) 1.0 to \infty .
B) 0.0 to 1.0.
C) 1.0 to k,where k is the number of independent variables in the model.
D) 1.0 to n,where n is the number of observations in the dependent variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
44
To test the validity of a multiple regression model,we test the null hypothesis that the regression coefficients are all zero by applying the:

A) F-test
B) t-test
C) z-test
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
45
In a multiple regression analysis involving 40 observations and 5 independent variables,the following statistics are given: Total variation in y = 350 and SSE = 50.Then,the coefficient of determination is:

A) 0.8408
B) 0.8571
C) 0.8469
D) 0.8529
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
46
For a multiple regression model the following statistics are given: Total variation in y = 250,SSE = 50,k = 4,and n = 20.Then,the coefficient of determination adjusted for the degrees of freedom is:

A) 0.800
B) 0.747
C) 0.840
D) 0.775
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
47
In a multiple regression model,the probability distribution of the error variable ε\varepsilon is assumed to be:

A) normal.
B) non-normal.
C) positively skewed.
D) negatively skewed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
48
In a multiple regression model,the value of the coefficient of determination has to fall between

A) -1 and +1.
B) 0 and +1.
C) -1 and 0.
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
49
A multiple regression model has:

A) only one independent variable.
B) only two independent variables.
C) more than one dependent variable.
D) more than one independent variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
50
A multiple regression equation includes 5 independent variables,and the coefficient of determination is 0.81.The percentage of the variation in y that is explained by the regression equation is:

A) 81%
B) 90%
C) 86%
D) about 16%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
51
For the following multiple regression model: y~=23x1+4x2+5x3\tilde { y } = 2 - 3 x _ { 1 } + 4 x _ { 2 } + 5 x _ { 3 } ,a unit increase in x1,holding x2 and x3 constant,results in:

A) a decrease of 3 units on average in the value of y.
B) an increase of 8 units in the value of y.
C) an increase of 3 units on average in the value of y.
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
52
A multiple regression model has the form A multiple regression model has the form   .The coefficient b<sub>1</sub> is interpreted as the change in the average value of y per unit change in ________ holding ________ constant. .The coefficient b1 is interpreted as the change in the average value of y per unit change in ________ holding ________ constant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
53
In a multiple regression model,the following statistics are given: SSE = 100,R2 = 0.995,k = 5,and n = 15.Then,the coefficient of determination adjusted for degrees of freedom is:

A) 0.992
B) 0.900
C) 0.955
D) 0.855
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
54
A multiple regression analysis involving three independent variables and 25 data points results in a value of 0.769 for the unadjusted coefficient of determination.Then,the adjusted coefficient of determination is:

A) 0.385
B) 0.877
C) 0.591
D) 0.736
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
55
In a multiple regression analysis,there are 20 data points and 4 independent variables,and the sum of the squared differences between observed and predicted values of y is 180.The standard error of estimate will be:

A) 9.000
B) 6.708
C) 3.464
D) 3.000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
56
In a multiple regression model,the error variable ε\varepsilon is assumed to have a mean of:

A) -1.0
B) 0.0
C) 1.0
D) None of these choices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
57
Multiple regression has four requirements for the error variable.One is that the probability distribution of the error variable is ____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
58
For a multiple regression model,the following statistics are given: Total variation in y = 500,SSE = 80,and n = 25.Then,the coefficient of determination is:

A) 0.84
B) 0.16
C) 0.3125
D) 0.05
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
59
For the multiple regression model: y~=75+25x115x2+10x3\tilde { y } = 75 + 25 x _ { 1 } - 15 x _ { 2 } + 10 x _ { 3 } ,if x2 were to increase by 5,holding x1 and x3 constant,the value of y will:

A) increase by 5.
B) increase by 75.
C) decrease on average by 5.
D) decrease on average by 75.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
60
In testing the validity of a multiple regression model in which there are four independent variables,the null hypothesis is:

A) H0:β1=β2=β3=β4=1H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } = 1
B) H0:β0=β1=β2=β3=β4H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 }
C) H0:β1=β2=β3=β4=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } = 0
D) H0:β0=β1=β2=β3=β40H _ { 0 } : \beta _ { 0 } = \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } \neq 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
61
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Interpret the coefficient b3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
62
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there enough evidence at the 5% significance level to infer that the cholesterol level and the age at death are negatively linearly related?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
63
The total variation in y is equal to SSR + ____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
64
We test an individual coefficient in a multiple regression model using a(n)_________ test.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
65
Some of the requirements for the error variable in a multiple regression model are that the probability distribution is ____________________ with a mean of ____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
66
When there is more than one independent variable in a regression model,we refer to the graphical depiction of the equation as a(n)____________________ rather than as a straight line.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
67
Student's Final Grade
A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you? ,where y is the final grade (out of 100 points),x1 is the number of lectures skipped,x2 is the number of late assignments,and x3 is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below.
THE REGRESSION EQUATION IS Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you? Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you? Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you? ANALYSIS OF VARIANCE
Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?
{Student's Final Grade Narrative} What is the coefficient of determination? What does this statistic tell you?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
68
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there enough evidence at the 1% significance level to infer that the average number of hours of exercise per week and the age at death are linearly related?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
69
Consider the following statistics of a multiple regression model: n = 25,k = 5,b1 = -6.31,and s ε\varepsilon = 2.98.Can we conclude at the 1% significance level that x1 and y are linearly related?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
70
Student's Final Grade
A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you? ,where y is the final grade (out of 100 points),x1 is the number of lectures skipped,x2 is the number of late assignments,and x3 is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below.
THE REGRESSION EQUATION IS Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you? Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you? Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you? ANALYSIS OF VARIANCE
Student's Final Grade A statistics professor investigated some of the factors that affect an individual student's final grade in her course.She proposed the multiple regression model   ,where y is the final grade (out of 100 points),x<sub>1</sub> is the number of lectures skipped,x<sub>2</sub> is the number of late assignments,and x<sub>3</sub> is the midterm exam score (out of 100).The professor recorded the data for 50 randomly selected students.The computer output is shown below. THE REGRESSION EQUATION IS       ANALYSIS OF VARIANCE   {Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?
{Student's Final Grade Narrative} What is the adjusted coefficient of determination? What does this statistic tell you?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
71
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} What is the coefficient of determination? What does this statistic tell you?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
72
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there enough evidence at the 5% significance level to infer that the model is useful in predicting length of life?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
73
Some of the requirements for the error variable in a multiple regression model are that the standard deviation is a(n)____________________ and the errors are ____________________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
74
A(n)____________________ value of the F-test statistic indicates that the multiple regression model is valid.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
75
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Is there sufficient evidence at the 5% significance level to infer that the number of points that the individual's blood pressure exceeded the recommended value and the age at death are negatively linearly related?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
76
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Interpret the coefficient b1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
77
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} What is the adjusted coefficient of determination in this situation? What does this statistic tell you?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
78
Life Expectancy
An actuary wanted to develop a model to predict how long individuals will live.After consulting a number of physicians,she collected the age at death (y),the average number of hours of exercise per week (x1),the cholesterol level (x2),and the number of points that the individual's blood pressure exceeded the recommended value (x3).A random sample of 40 individuals was selected.The computer output of the multiple regression model is shown below.
THE REGRESSION EQUATION IS
y = 55.8 + 1.79x1 -0.021x2 -0.061x3
 Predicter  Coef  StDev T Constant 55.811.84.729x11.790.444.068x20.0210.0111.909x30.0160.0141.143\begin{array} { | c | c c c | } \hline \text { Predicter } & \text { Coef } & \text { StDev } & T \\\hline \text { Constant } & 55.8 & 11.8 & 4.729 \\\boldsymbol { x } _ { 1 } & 1.79 & 0.44 & 4.068 \\x_ { 2 } & - 0.021 & 0.011 & - 1.909 \\x _ { 3 } & - 0.016 & 0.014 & - 1.143 \\\hline\end{array} S=9.47RSq=22.5%S = 9.47 \quad R - S q = 22.5 \% ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Repressian 39363123.477 Error 36323089.722 Total 394166\begin{array} { | l | c c c c | } \hline \text { Source of Variation } & \boldsymbol { df } & \mathbf { SS } & \boldsymbol { M S } & \boldsymbol { F } \\\hline \text { Repressian } & 3 & 936 & 312 & 3.477 \\\text { Error } & 36 & 3230 & 89.722 & \\\hline \text { Total } & 39 & 4166 & & \\\hline\end{array}

-{Life Expectancy Narrative} Interpret the coefficient b2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
79
The validity of a multiple regression model is tested using a(n)_________ test.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
80
The computer output for the multiple regression model The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).
The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE  ANALYSIS OF VARIANCE
The computer output for the multiple regression model   is shown below.However,because of a printer malfunction some of the results are not shown.These are indicated by the boldface letters a to i.Fill in the missing results (up to three decimal places).     ANALYSIS OF VARIANCE
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 156 في هذه المجموعة.