Deck 4: The Derivative in Graphing and Applications

ملء الشاشة (f)
exit full mode
سؤال
Find the value for which f(x) = x2 + 2 on [2, 5] satisfies the Mean-Value Theorem.

A) 2.5
B) 3.5
C) 4.5
D) 3
E) 4
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Answer true or false. A graphing utility can be used to show that Rolle's Theorem can be applied to show that f(x) = (x - 8)2 has a point where f '(x) = 0.
سؤال
Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)   <div style=padding-top: 35px> .

A) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)   <div style=padding-top: 35px>
B) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)   <div style=padding-top: 35px>
C) 0
D) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)   <div style=padding-top: 35px>
E) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)   <div style=padding-top: 35px>
سؤال
Answer true or false. According to Rolle's Theorem if a function's derivative is 0, the graph of the function must cross the y-axis.
سؤال
Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for   on [-2, 2].<div style=padding-top: 35px> on [-2, 2].
سؤال
Answer true or false. Answer true or false.   on [-3, 3] satisfies the hypotheses of Rolle's Theorem.<div style=padding-top: 35px> on [-3, 3] satisfies the hypotheses of Rolle's Theorem.
سؤال
Find the value c that satisfies the Mean-Value Theorem for f(x) = x3 on [0, 2].

A) <strong>Find the value c that satisfies the Mean-Value Theorem for f(x) = x<sup>3</sup> on [0, 2].</strong> A)   B)   C) 2 D) 0 E)   <div style=padding-top: 35px>
B) <strong>Find the value c that satisfies the Mean-Value Theorem for f(x) = x<sup>3</sup> on [0, 2].</strong> A)   B)   C) 2 D) 0 E)   <div style=padding-top: 35px>
C) 2
D) 0
E) <strong>Find the value c that satisfies the Mean-Value Theorem for f(x) = x<sup>3</sup> on [0, 2].</strong> A)   B)   C) 2 D) 0 E)   <div style=padding-top: 35px>
سؤال
If <strong>If   on [0, 8], find the value c that satisfies the Mean-Value Theorem. (Round to three decimal places.)</strong> A) 1.333 B) 1.540 C) 0.759 D) 1.923 E) 0.385 <div style=padding-top: 35px> on [0, 8], find the value c that satisfies the Mean-Value Theorem. (Round to three decimal places.)

A) 1.333
B) 1.540
C) 0.759
D) 1.923
E) 0.385
سؤال
Verify that f(x) = x3 -5x + 4 satisfies the hypothesis of the Mean-Value Theorem over the interval [-2, 3] and find all values of C that satisfy the conclusion of the theorem.
سؤال
Find the value c that satisfies Rolle's Theorem for f(x) = x3 -4x on [-2, 2].

A) -2.0
B) 1.2
C) 2.0
D) 4.0
E) -4.0
سؤال
Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for  Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for   on [0, 4  \pi ].<div style=padding-top: 35px>  on [0, 4 π\pi ].
سؤال
Verify that f(x) = x2 + 7x - 3 satisfies the hypothesis of the Mean-Value Theorem over the interval [0, 1] and find all values of C that satisfy the conclusion of the theorem.
سؤال
Answer true or false. Rolle's Theorem is used to find the zeros of a function.
سؤال
Verify that f(x) = x3 - x satisfies the hypothesis of Rolle's Theorem on the interval [-1, 1] and find all values of C in (-1, 1) such that f '(C) = 0
سؤال
Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for f(x) = cos 2x on [0, 4 π\pi ].
سؤال
Find the value c such that the conclusion of Rolle's Theorem are satisfied for f(x) = 2x2 - 2 on [-3, 3].

A) 0
B) -1
C) 1
D) 0.5
E) -0.5
سؤال
Find the value for which f(x) = x3 -8 on [3, 7] satisfies the Mean-Value Theorem.

A) 4.509
B) 3.512
C) 8.888
D) 5.132
E) 6.285
سؤال
Answer true or false. The Mean-Value Theorem can be used on f(x) = |x - 3| on [-5, 5].
سؤال
Answer true or false. The Mean-Value Theorem guarantees there is at least one c on [0, 1] such that f '(x) = 0.8 when f(x) = x.
سؤال
Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)   <div style=padding-top: 35px>  .

A)  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)   <div style=padding-top: 35px>
B) 4 π\pi
C) 0
D)  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)   <div style=padding-top: 35px>
E)  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)   <div style=padding-top: 35px>
سؤال
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [-3, 3]? If so, find all values of C that satisfy the conclusion of the theorem.<div style=padding-top: 35px> satisfy the hypothesis of the Mean-Value Theorem over the interval [-3, 3]? If so, find all values of C that satisfy the conclusion of the theorem.
سؤال
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 1]? If so, find all values of C that satisfy the conclusion.<div style=padding-top: 35px> satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 1]? If so, find all values of C that satisfy the conclusion.
سؤال
A cyclist starts from rest and travels 6.25 miles along a straight road in 15 minutes. Use the Mean-Value Theorem to show that at some instant during the trip his velocity was exactly 25 miles per hour.
سؤال
Use Rolle's Theorem to prove that the equation 6x5 - 28x3 + 6 = 0 has at least one solution in the interval (0, 1).
سؤال
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 6]? If so, find all values of C that satisfy the conclusion of the theorem.<div style=padding-top: 35px> satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 6]? If so, find all values of C that satisfy the conclusion of the theorem.
سؤال
Verify that f(x) = x2 + 8 satisfies the hypothesis of the Mean-Value Theorem on the interval [0, 4] and find all values of C that satisfy the conclusion of the theorem.
سؤال
Use Rolle's Theorem to show that f(x) = 4x3 + 5x - 1 does not have more than one real root.
سؤال
Find the value of c in the interval [0, 2 π\pi ] that satisfies the Mean Value Theorem. f(x) = 6 cos x
سؤال
Use Rolle's Theorem to show that f(x) = x3 + ax + b, where a > 0, cannot have more than one real root.
سؤال
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [-5, 5]? If so, find all values of C that satisfy the conclusion.<div style=padding-top: 35px> satisfy the hypothesis of the Mean-Value Theorem over the interval [-5, 5]? If so, find all values of C that satisfy the conclusion.
سؤال
Find the value of c in the interval [0, 1] that satisfies the Mean Value Theorem. f(x) = x7
سؤال
Verify that f(x) = x3 -3x2- 3x + 1 satisfies the hypothesis of the Mean-Value Theorem over the interval [0, 2] and find all values of C that satisfy the conclusion of the theorem.
سؤال
Find the value of c in the interval [0, 4] that satisfies the Mean Value Theorem. f(x) = 5x2 + 20
سؤال
An automobile starts from rest and travels 4.5 miles along a straight road in 6 minutes. Use the Mean-Value Theorem to show that at some instant during the trip its velocity was exactly 45 miles per hour.
سؤال
Find the value of c in the interval [-1, 1] that satisfies the Mean Value Theorem. f(x) = x2 - 4x + 3
سؤال
Verify that Verify that   satisfies the hypothesis of the Mean-Value Theorem over the interval [6, 8] and find all values of C that satisfy the conclusion of the theorem.<div style=padding-top: 35px> satisfies the hypothesis of the Mean-Value Theorem over the interval [6, 8] and find all values of C that satisfy the conclusion of the theorem.
سؤال
Approximate <strong>Approximate   by applying Newton's Method to the equation x<sup>2</sup> - 5 = 0. Use 2 for your initial value and calculate three iterations.</strong> A) 2.2360680 B) 2.2359480 C) 2.2360560 D) 2.236111 E) 2.25 <div style=padding-top: 35px> by applying Newton's Method to the equation x2 - 5 = 0. Use 2 for your initial value and calculate three iterations.

A) 2.2360680
B) 2.2359480
C) 2.2360560
D) 2.236111
E) 2.25
سؤال
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 16]? If so, find all values of C that satisfy the conclusion of the theorem.<div style=padding-top: 35px> satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 16]? If so, find all values of C that satisfy the conclusion of the theorem.
سؤال
Find the value of c in the interval [0, π\pi ] that satisfies the Mean Value Theorem. f(x) = sin(6x)
سؤال
Find the value of c in the interval [0, 1] that satisfies the Mean Value Theorem. f(x) = x4 + 8
سؤال
Use Newton's Method to find the largest positive solution of x4 + x3 - 2x2- 5x -7 = 0. Use 4 for your initial value and calculate eight iterations.

A) 3.0777385
B) 2.4705751
C) 2.0313608
D) 2.1446813
E) 2.0413802
سؤال
Use Newton's Method to find the x-coordinate of the intersection of y = x4 + 2x3 and y = 2x2 + 6x + 3. Use 3 for your initial value and calculate eight iterations.

A) 2.3333333
B) 1.9347826
C) 1.7649117
D) 1.7331057
E) 1.7320508
سؤال
Use Newton's Method to find the largest positive solution of x4 + 4x3 -2x2 - 9x - 2 = 0. Use 4 for your initial value and calculate eight iterations.

A) 1.6033441
B) 1.5530570
C) 1.8062561
D) 2.2423497
E) 2.9550827
سؤال
Use Newton's Method to approximate the greatest x-coordinate of the intersection of y = x3 - 2x and y = x4 + 6x - 4. Use 3 for your initial value and calculate eight iterations.

A) 0.5169625
B) 0.7963536
C) 0.5080644
D) 1.4400943
E) 2.1685393
سؤال
Approximate Approximate   by applying Newton's Method to the equation x<sup>5</sup> - 83 = 0. Use -2 for your initial value and calculate nine iterations.<div style=padding-top: 35px> by applying Newton's Method to the equation x5 - 83 = 0. Use -2 for your initial value and calculate nine iterations.
سؤال
Approximate Approximate   by applying Newton's Method to the equation x<sup>3</sup> - 73 = 0. Use 4 for your initial value and calculate five iterations.<div style=padding-top: 35px> by applying Newton's Method to the equation x3 - 73 = 0. Use 4 for your initial value and calculate five iterations.
سؤال
Use Newton's Method to find the largest positive solution of x5 + 6x3-3x2 - 9 = 0. Use 3 for your initial value and calculate three iterations.

A) 2.3278689
B) 1.8122908
C) 1.4559632
D) 1.4558412
E) 1.4559512
سؤال
Use Newton's Method to find the largest positive solution of x4 + x3 - 6x - 6 = 0. Use 4 for your initial value and calculate eight iterations.

A) 1.8381538
B) 1.9835930
C) 1.8171206
D) 2.3659571
E) 3.0268456
سؤال
Approximate Approximate   by applying Newton's Method to the equation x<sup>3</sup> -29 = 0. Use 3 for your initial value and calculate five iterations.<div style=padding-top: 35px> by applying Newton's Method to the equation x3 -29 = 0. Use 3 for your initial value and calculate five iterations.
سؤال
Approximate Approximate   by applying Newton's Method to the equation x<sup>2</sup> -44 = 0. Use 6 for your initial value and calculate five iterations.<div style=padding-top: 35px> by applying Newton's Method to the equation x2 -44 = 0. Use 6 for your initial value and calculate five iterations.
سؤال
Use Newton's Method to find the largest positive solution of x4 - 3x2 - 9 = 0. Use 5 for your initial value and calculate eight iterations.

A) 2.2697369
B) 2.5222928
C) 2.2032027
D) 3.0390141
E) 3.8489362
سؤال
Use Newton's Method to find the largest positive solution of x4 - 8x2 - 9 = 0. Use 4 for your initial value and calculate eight iterations.

A) 3.380208
B) 3.0000000
C) 3.0799923
D) 3.0045383
E) 3.0000157
سؤال
Approximate <strong>Approximate   by applying Newton's Method to the equation x<sup>3</sup> - 11 = 0. Use 2.5 for your initial value and calculate four iterations.</strong> A) 2.5 B) 2.253333 C) 2.2243608 D) 2.2239800 E) 2.22398009 <div style=padding-top: 35px> by applying Newton's Method to the equation x3 - 11 = 0. Use 2.5 for your initial value and calculate four iterations.

A) 2.5
B) 2.253333
C) 2.2243608
D) 2.2239800
E) 2.22398009
سؤال
The equation, x3 - 2x - 19 = 0 has one real solution for 1 < x < 19. Approximate it by Newton's Method. Use 4.75 for your initial value and calculate eight iterations.
سؤال
Use Newton's Method to find the largest solution of x5 - 2x4 + 5x3 -x2 + 7x + 12 = 0. Use 2 for your initial value and calculate six iterations.

A) 1.2151899
B) 0.0852538
C) -1.7308568
D) -1.0071278
E) -1.2897963
سؤال
Use Newton's Method to find the largest positive solution of x3 + x2 - 4x - 5 = 3. Use 4 for your initial value and calculate eight iterations.

A) 3.0769231
B) 2.5867842
C) 2.3921405
D) 2.3307530
E) 2.3417624
سؤال
Use Newton's Method to find the largest positive solution of x4 + 4x - 5 = 0. Use 4 for your initial value and calculate eight iterations.

A) 1.0000000
B) 1.2164332
C) 1.6112108
D) 2.1938904
E) 2.9730769
سؤال
Use Newton's Method to approximate the solutions of x4- 77 = 0. Use 4 for your initial value and calculate four iterations.

A) -3.0108653, 3.0108653
B) -2.9634212, 2.9634212
C) -2.9622573, 2.9622573
D) -3.300781, 3.300781
E) -4, 4
سؤال
Use Newton's Method to find the greatest x-coordinate of the intersection of y = 4x4 -24x2 and y = 18x2 - 16. Use 9 for your initial value and calculate eight iterations.

A) 3.2978272
B) 3.1786982
C) 3.1888714
D) 4.3309497
E) 3.6519603
سؤال
Approximate Approximate   by applying Newton's Method to the equation x<sup>3</sup> - 88 = 0. Use 4 for your initial value and calculate nine iterations.<div style=padding-top: 35px> by applying Newton's Method to the equation x3 - 88 = 0. Use 4 for your initial value and calculate nine iterations.
سؤال
Answer true or false. For the position function graphed, the acceleration at t = 1 is positive. Answer true or false. For the position function graphed, the acceleration at t = 1 is positive.  <div style=padding-top: 35px>
سؤال
The equation, x3 + x2 - 5x - 6 = 0 has one real solution for 1 < x < 6. Approximate it by Newton's Method. Use 3 for your initial value and calculate eight iterations.
سؤال
Let s(t) = t4 - 5t + 6 be a position function. The acceleration function a(t) =

A) 4t3 - 5
B) 12t2
C) 4t3 - 5t
D) 12t2 - 5
E) 12t3
سؤال
Answer true or false. If a particle is dropped a distance of 624 m. It has a speed of 110.58 m/s (rounded to the nearest hundredth of a m/s) when it hits the ground.
سؤال
The graph represents a position function. Determine what is happening to the velocity at t = 0.  <strong>The graph represents a position function. Determine what is happening to the velocity at t = 0.  </strong> A) It is positive B) It is negative C) It is zero D) There is insufficient information to tell. E) It is + \infty  <div style=padding-top: 35px>

A) It is positive
B) It is negative
C) It is zero
D) There is insufficient information to tell.
E) It is + \infty
سؤال
Let s(t) = t9 -t be a position function of a particle. At 1 the particle's acceleration is

A) negative
B) positive
C) zero
سؤال
The graph represents a position function. Determine what is happening to the velocity at t = 1.  <strong>The graph represents a position function. Determine what is happening to the velocity at t = 1.  </strong> A) It is negative B) It is positive C) It is zero D) There is insufficient information to tell. E) It is + \infty  <div style=padding-top: 35px>

A) It is negative
B) It is positive
C) It is zero
D) There is insufficient information to tell.
E) It is + \infty
سؤال
s(t) = 4t - 3t2, t \ge 0. The velocity function is

A) 4 - 3t
B) 4t - 6t2
C) 4 - 6t
D) 8 - 6t
E) 4t - 3t
سؤال
A projectile is dropped, and reaches the ground at 40 m/s. How long does it take the projectile to reach ground? (Assume the position function is <strong>A projectile is dropped, and reaches the ground at 40 m/s. How long does it take the projectile to reach ground? (Assume the position function is   , where a = -10   .)</strong> A) 2 s B) 8 s C) 4.47 s D) 4 s E) 3.16 s <div style=padding-top: 35px> , where a = -10 <strong>A projectile is dropped, and reaches the ground at 40 m/s. How long does it take the projectile to reach ground? (Assume the position function is   , where a = -10   .)</strong> A) 2 s B) 8 s C) 4.47 s D) 4 s E) 3.16 s <div style=padding-top: 35px> .)

A) 2 s
B) 8 s
C) 4.47 s
D) 4 s
E) 3.16 s
سؤال
Let s(t) = sin 4t be a position function of a particle. At <strong>Let s(t) = sin 4t be a position function of a particle. At   the particle's velocity is</strong> A) Positive B) Negative C) Zero <div style=padding-top: 35px> the particle's velocity is

A) Positive
B) Negative
C) Zero
سؤال
The graph represents a velocity function. The acceleration at t = 2 is  <strong>The graph represents a velocity function. The acceleration at t = 2 is  </strong> A) positive B) negative C) zero D) There is insufficient information to tell. E) It is + \infty  <div style=padding-top: 35px>

A) positive
B) negative
C) zero
D) There is insufficient information to tell.
E) It is + \infty
سؤال
Find s when a = 0.

A) 48
B) -48
C) 6
D) -6
E) 0
سؤال
Answer true or false. This can be the graph of a particle's position if the particle is moving to the right at t = 3.3. Answer true or false. This can be the graph of a particle's position if the particle is moving to the right at t = 3.3.  <div style=padding-top: 35px>
سؤال
Let s(t) = 5t6 -4t be a position function. Find v when t = 3.

A) 7,290
B) 1,455
C) 7,286
D) 3,633
E) 4
سؤال
The equation, The equation,   has one real solution for   . Approximate it by Newton's Method. Use 2 for your initial value and calculate eight iterations.<div style=padding-top: 35px> has one real solution for The equation,   has one real solution for   . Approximate it by Newton's Method. Use 2 for your initial value and calculate eight iterations.<div style=padding-top: 35px> . Approximate it by Newton's Method. Use 2 for your initial value and calculate eight iterations.
سؤال
s(t) = 5t-4t3, t \ge 0. The acceleration function is

A) 5 - 8t
B) 8t
C) 5 - 8t2
D) 24t
E) 5t - 4t
سؤال
Answer true or false. If the graph on the left is a position function, the graph on the right represents the corresponding velocity function.
y = x2 Answer true or false. If the graph on the left is a position function, the graph on the right represents the corresponding velocity function. y = x<sup>2</sup>    <div style=padding-top: 35px> Answer true or false. If the graph on the left is a position function, the graph on the right represents the corresponding velocity function. y = x<sup>2</sup>    <div style=padding-top: 35px>
سؤال
The equation, x3 - x2 - 4x - 4 = 0 has one real solution for 1 < x < 4. Approximate it by Newton's Method. Use 3 for your initial value and calculate eight iterations.
سؤال
s(t) = 5t5- 11. Find t when a = 0.

A) 100
B) -100
C) 5
D) -5
E) 0
سؤال
s(t) = t5 -10, t <strong>s(t) = t<sup>5</sup> -10, t   0. Find s when a = 0. 		</strong> A)  20 B)  -20 C)  10 D)  -10 E)  0 <div style=padding-top: 35px> 0. Find s when a = 0.

A) 20
B) -20
C) 10
D) -10
E) 0

فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/656
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 4: The Derivative in Graphing and Applications
1
Find the value for which f(x) = x2 + 2 on [2, 5] satisfies the Mean-Value Theorem.

A) 2.5
B) 3.5
C) 4.5
D) 3
E) 4
3.5
2
Answer true or false. A graphing utility can be used to show that Rolle's Theorem can be applied to show that f(x) = (x - 8)2 has a point where f '(x) = 0.
False
3
Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)   .

A) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)
B) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)
C) 0
D) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)
E) <strong>Find the value c that satisfies Rolle's Theorem for f(x) = 9 cos 6x on   .</strong> A)   B)   C) 0 D)   E)
0
4
Answer true or false. According to Rolle's Theorem if a function's derivative is 0, the graph of the function must cross the y-axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
5
Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for   on [-2, 2]. on [-2, 2].
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
6
Answer true or false. Answer true or false.   on [-3, 3] satisfies the hypotheses of Rolle's Theorem. on [-3, 3] satisfies the hypotheses of Rolle's Theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the value c that satisfies the Mean-Value Theorem for f(x) = x3 on [0, 2].

A) <strong>Find the value c that satisfies the Mean-Value Theorem for f(x) = x<sup>3</sup> on [0, 2].</strong> A)   B)   C) 2 D) 0 E)
B) <strong>Find the value c that satisfies the Mean-Value Theorem for f(x) = x<sup>3</sup> on [0, 2].</strong> A)   B)   C) 2 D) 0 E)
C) 2
D) 0
E) <strong>Find the value c that satisfies the Mean-Value Theorem for f(x) = x<sup>3</sup> on [0, 2].</strong> A)   B)   C) 2 D) 0 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
8
If <strong>If   on [0, 8], find the value c that satisfies the Mean-Value Theorem. (Round to three decimal places.)</strong> A) 1.333 B) 1.540 C) 0.759 D) 1.923 E) 0.385 on [0, 8], find the value c that satisfies the Mean-Value Theorem. (Round to three decimal places.)

A) 1.333
B) 1.540
C) 0.759
D) 1.923
E) 0.385
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
9
Verify that f(x) = x3 -5x + 4 satisfies the hypothesis of the Mean-Value Theorem over the interval [-2, 3] and find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the value c that satisfies Rolle's Theorem for f(x) = x3 -4x on [-2, 2].

A) -2.0
B) 1.2
C) 2.0
D) 4.0
E) -4.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
11
Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for  Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for   on [0, 4  \pi ]. on [0, 4 π\pi ].
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
12
Verify that f(x) = x2 + 7x - 3 satisfies the hypothesis of the Mean-Value Theorem over the interval [0, 1] and find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
13
Answer true or false. Rolle's Theorem is used to find the zeros of a function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
14
Verify that f(x) = x3 - x satisfies the hypothesis of Rolle's Theorem on the interval [-1, 1] and find all values of C in (-1, 1) such that f '(C) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
15
Answer true or false. The hypotheses of the Mean-Value Theorem are satisfied for f(x) = cos 2x on [0, 4 π\pi ].
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the value c such that the conclusion of Rolle's Theorem are satisfied for f(x) = 2x2 - 2 on [-3, 3].

A) 0
B) -1
C) 1
D) 0.5
E) -0.5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the value for which f(x) = x3 -8 on [3, 7] satisfies the Mean-Value Theorem.

A) 4.509
B) 3.512
C) 8.888
D) 5.132
E) 6.285
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
18
Answer true or false. The Mean-Value Theorem can be used on f(x) = |x - 3| on [-5, 5].
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
19
Answer true or false. The Mean-Value Theorem guarantees there is at least one c on [0, 1] such that f '(x) = 0.8 when f(x) = x.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)    .

A)  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)
B) 4 π\pi
C) 0
D)  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)
E)  <strong>Find the value c that satisfies Rolle's Theorem for f(x) = cos 4x on   .</strong> A)   B) 4  \pi  C) 0 D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
21
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [-3, 3]? If so, find all values of C that satisfy the conclusion of the theorem. satisfy the hypothesis of the Mean-Value Theorem over the interval [-3, 3]? If so, find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
22
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 1]? If so, find all values of C that satisfy the conclusion. satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 1]? If so, find all values of C that satisfy the conclusion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
23
A cyclist starts from rest and travels 6.25 miles along a straight road in 15 minutes. Use the Mean-Value Theorem to show that at some instant during the trip his velocity was exactly 25 miles per hour.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
24
Use Rolle's Theorem to prove that the equation 6x5 - 28x3 + 6 = 0 has at least one solution in the interval (0, 1).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
25
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 6]? If so, find all values of C that satisfy the conclusion of the theorem. satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 6]? If so, find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
26
Verify that f(x) = x2 + 8 satisfies the hypothesis of the Mean-Value Theorem on the interval [0, 4] and find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use Rolle's Theorem to show that f(x) = 4x3 + 5x - 1 does not have more than one real root.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the value of c in the interval [0, 2 π\pi ] that satisfies the Mean Value Theorem. f(x) = 6 cos x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
29
Use Rolle's Theorem to show that f(x) = x3 + ax + b, where a > 0, cannot have more than one real root.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
30
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [-5, 5]? If so, find all values of C that satisfy the conclusion. satisfy the hypothesis of the Mean-Value Theorem over the interval [-5, 5]? If so, find all values of C that satisfy the conclusion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the value of c in the interval [0, 1] that satisfies the Mean Value Theorem. f(x) = x7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
32
Verify that f(x) = x3 -3x2- 3x + 1 satisfies the hypothesis of the Mean-Value Theorem over the interval [0, 2] and find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the value of c in the interval [0, 4] that satisfies the Mean Value Theorem. f(x) = 5x2 + 20
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
34
An automobile starts from rest and travels 4.5 miles along a straight road in 6 minutes. Use the Mean-Value Theorem to show that at some instant during the trip its velocity was exactly 45 miles per hour.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the value of c in the interval [-1, 1] that satisfies the Mean Value Theorem. f(x) = x2 - 4x + 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
36
Verify that Verify that   satisfies the hypothesis of the Mean-Value Theorem over the interval [6, 8] and find all values of C that satisfy the conclusion of the theorem. satisfies the hypothesis of the Mean-Value Theorem over the interval [6, 8] and find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
37
Approximate <strong>Approximate   by applying Newton's Method to the equation x<sup>2</sup> - 5 = 0. Use 2 for your initial value and calculate three iterations.</strong> A) 2.2360680 B) 2.2359480 C) 2.2360560 D) 2.236111 E) 2.25 by applying Newton's Method to the equation x2 - 5 = 0. Use 2 for your initial value and calculate three iterations.

A) 2.2360680
B) 2.2359480
C) 2.2360560
D) 2.236111
E) 2.25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
38
Does Does   satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 16]? If so, find all values of C that satisfy the conclusion of the theorem. satisfy the hypothesis of the Mean-Value Theorem over the interval [0, 16]? If so, find all values of C that satisfy the conclusion of the theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the value of c in the interval [0, π\pi ] that satisfies the Mean Value Theorem. f(x) = sin(6x)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the value of c in the interval [0, 1] that satisfies the Mean Value Theorem. f(x) = x4 + 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
41
Use Newton's Method to find the largest positive solution of x4 + x3 - 2x2- 5x -7 = 0. Use 4 for your initial value and calculate eight iterations.

A) 3.0777385
B) 2.4705751
C) 2.0313608
D) 2.1446813
E) 2.0413802
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
42
Use Newton's Method to find the x-coordinate of the intersection of y = x4 + 2x3 and y = 2x2 + 6x + 3. Use 3 for your initial value and calculate eight iterations.

A) 2.3333333
B) 1.9347826
C) 1.7649117
D) 1.7331057
E) 1.7320508
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
43
Use Newton's Method to find the largest positive solution of x4 + 4x3 -2x2 - 9x - 2 = 0. Use 4 for your initial value and calculate eight iterations.

A) 1.6033441
B) 1.5530570
C) 1.8062561
D) 2.2423497
E) 2.9550827
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
44
Use Newton's Method to approximate the greatest x-coordinate of the intersection of y = x3 - 2x and y = x4 + 6x - 4. Use 3 for your initial value and calculate eight iterations.

A) 0.5169625
B) 0.7963536
C) 0.5080644
D) 1.4400943
E) 2.1685393
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
45
Approximate Approximate   by applying Newton's Method to the equation x<sup>5</sup> - 83 = 0. Use -2 for your initial value and calculate nine iterations. by applying Newton's Method to the equation x5 - 83 = 0. Use -2 for your initial value and calculate nine iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
46
Approximate Approximate   by applying Newton's Method to the equation x<sup>3</sup> - 73 = 0. Use 4 for your initial value and calculate five iterations. by applying Newton's Method to the equation x3 - 73 = 0. Use 4 for your initial value and calculate five iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
47
Use Newton's Method to find the largest positive solution of x5 + 6x3-3x2 - 9 = 0. Use 3 for your initial value and calculate three iterations.

A) 2.3278689
B) 1.8122908
C) 1.4559632
D) 1.4558412
E) 1.4559512
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
48
Use Newton's Method to find the largest positive solution of x4 + x3 - 6x - 6 = 0. Use 4 for your initial value and calculate eight iterations.

A) 1.8381538
B) 1.9835930
C) 1.8171206
D) 2.3659571
E) 3.0268456
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
49
Approximate Approximate   by applying Newton's Method to the equation x<sup>3</sup> -29 = 0. Use 3 for your initial value and calculate five iterations. by applying Newton's Method to the equation x3 -29 = 0. Use 3 for your initial value and calculate five iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
50
Approximate Approximate   by applying Newton's Method to the equation x<sup>2</sup> -44 = 0. Use 6 for your initial value and calculate five iterations. by applying Newton's Method to the equation x2 -44 = 0. Use 6 for your initial value and calculate five iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
51
Use Newton's Method to find the largest positive solution of x4 - 3x2 - 9 = 0. Use 5 for your initial value and calculate eight iterations.

A) 2.2697369
B) 2.5222928
C) 2.2032027
D) 3.0390141
E) 3.8489362
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use Newton's Method to find the largest positive solution of x4 - 8x2 - 9 = 0. Use 4 for your initial value and calculate eight iterations.

A) 3.380208
B) 3.0000000
C) 3.0799923
D) 3.0045383
E) 3.0000157
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
53
Approximate <strong>Approximate   by applying Newton's Method to the equation x<sup>3</sup> - 11 = 0. Use 2.5 for your initial value and calculate four iterations.</strong> A) 2.5 B) 2.253333 C) 2.2243608 D) 2.2239800 E) 2.22398009 by applying Newton's Method to the equation x3 - 11 = 0. Use 2.5 for your initial value and calculate four iterations.

A) 2.5
B) 2.253333
C) 2.2243608
D) 2.2239800
E) 2.22398009
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
54
The equation, x3 - 2x - 19 = 0 has one real solution for 1 < x < 19. Approximate it by Newton's Method. Use 4.75 for your initial value and calculate eight iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
55
Use Newton's Method to find the largest solution of x5 - 2x4 + 5x3 -x2 + 7x + 12 = 0. Use 2 for your initial value and calculate six iterations.

A) 1.2151899
B) 0.0852538
C) -1.7308568
D) -1.0071278
E) -1.2897963
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
56
Use Newton's Method to find the largest positive solution of x3 + x2 - 4x - 5 = 3. Use 4 for your initial value and calculate eight iterations.

A) 3.0769231
B) 2.5867842
C) 2.3921405
D) 2.3307530
E) 2.3417624
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
57
Use Newton's Method to find the largest positive solution of x4 + 4x - 5 = 0. Use 4 for your initial value and calculate eight iterations.

A) 1.0000000
B) 1.2164332
C) 1.6112108
D) 2.1938904
E) 2.9730769
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
58
Use Newton's Method to approximate the solutions of x4- 77 = 0. Use 4 for your initial value and calculate four iterations.

A) -3.0108653, 3.0108653
B) -2.9634212, 2.9634212
C) -2.9622573, 2.9622573
D) -3.300781, 3.300781
E) -4, 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
59
Use Newton's Method to find the greatest x-coordinate of the intersection of y = 4x4 -24x2 and y = 18x2 - 16. Use 9 for your initial value and calculate eight iterations.

A) 3.2978272
B) 3.1786982
C) 3.1888714
D) 4.3309497
E) 3.6519603
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
60
Approximate Approximate   by applying Newton's Method to the equation x<sup>3</sup> - 88 = 0. Use 4 for your initial value and calculate nine iterations. by applying Newton's Method to the equation x3 - 88 = 0. Use 4 for your initial value and calculate nine iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
61
Answer true or false. For the position function graphed, the acceleration at t = 1 is positive. Answer true or false. For the position function graphed, the acceleration at t = 1 is positive.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
62
The equation, x3 + x2 - 5x - 6 = 0 has one real solution for 1 < x < 6. Approximate it by Newton's Method. Use 3 for your initial value and calculate eight iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
63
Let s(t) = t4 - 5t + 6 be a position function. The acceleration function a(t) =

A) 4t3 - 5
B) 12t2
C) 4t3 - 5t
D) 12t2 - 5
E) 12t3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
64
Answer true or false. If a particle is dropped a distance of 624 m. It has a speed of 110.58 m/s (rounded to the nearest hundredth of a m/s) when it hits the ground.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
65
The graph represents a position function. Determine what is happening to the velocity at t = 0.  <strong>The graph represents a position function. Determine what is happening to the velocity at t = 0.  </strong> A) It is positive B) It is negative C) It is zero D) There is insufficient information to tell. E) It is + \infty

A) It is positive
B) It is negative
C) It is zero
D) There is insufficient information to tell.
E) It is + \infty
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
66
Let s(t) = t9 -t be a position function of a particle. At 1 the particle's acceleration is

A) negative
B) positive
C) zero
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
67
The graph represents a position function. Determine what is happening to the velocity at t = 1.  <strong>The graph represents a position function. Determine what is happening to the velocity at t = 1.  </strong> A) It is negative B) It is positive C) It is zero D) There is insufficient information to tell. E) It is + \infty

A) It is negative
B) It is positive
C) It is zero
D) There is insufficient information to tell.
E) It is + \infty
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
68
s(t) = 4t - 3t2, t \ge 0. The velocity function is

A) 4 - 3t
B) 4t - 6t2
C) 4 - 6t
D) 8 - 6t
E) 4t - 3t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
69
A projectile is dropped, and reaches the ground at 40 m/s. How long does it take the projectile to reach ground? (Assume the position function is <strong>A projectile is dropped, and reaches the ground at 40 m/s. How long does it take the projectile to reach ground? (Assume the position function is   , where a = -10   .)</strong> A) 2 s B) 8 s C) 4.47 s D) 4 s E) 3.16 s , where a = -10 <strong>A projectile is dropped, and reaches the ground at 40 m/s. How long does it take the projectile to reach ground? (Assume the position function is   , where a = -10   .)</strong> A) 2 s B) 8 s C) 4.47 s D) 4 s E) 3.16 s .)

A) 2 s
B) 8 s
C) 4.47 s
D) 4 s
E) 3.16 s
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
70
Let s(t) = sin 4t be a position function of a particle. At <strong>Let s(t) = sin 4t be a position function of a particle. At   the particle's velocity is</strong> A) Positive B) Negative C) Zero the particle's velocity is

A) Positive
B) Negative
C) Zero
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
71
The graph represents a velocity function. The acceleration at t = 2 is  <strong>The graph represents a velocity function. The acceleration at t = 2 is  </strong> A) positive B) negative C) zero D) There is insufficient information to tell. E) It is + \infty

A) positive
B) negative
C) zero
D) There is insufficient information to tell.
E) It is + \infty
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find s when a = 0.

A) 48
B) -48
C) 6
D) -6
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
73
Answer true or false. This can be the graph of a particle's position if the particle is moving to the right at t = 3.3. Answer true or false. This can be the graph of a particle's position if the particle is moving to the right at t = 3.3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
74
Let s(t) = 5t6 -4t be a position function. Find v when t = 3.

A) 7,290
B) 1,455
C) 7,286
D) 3,633
E) 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
75
The equation, The equation,   has one real solution for   . Approximate it by Newton's Method. Use 2 for your initial value and calculate eight iterations. has one real solution for The equation,   has one real solution for   . Approximate it by Newton's Method. Use 2 for your initial value and calculate eight iterations. . Approximate it by Newton's Method. Use 2 for your initial value and calculate eight iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
76
s(t) = 5t-4t3, t \ge 0. The acceleration function is

A) 5 - 8t
B) 8t
C) 5 - 8t2
D) 24t
E) 5t - 4t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
77
Answer true or false. If the graph on the left is a position function, the graph on the right represents the corresponding velocity function.
y = x2 Answer true or false. If the graph on the left is a position function, the graph on the right represents the corresponding velocity function. y = x<sup>2</sup>    Answer true or false. If the graph on the left is a position function, the graph on the right represents the corresponding velocity function. y = x<sup>2</sup>
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
78
The equation, x3 - x2 - 4x - 4 = 0 has one real solution for 1 < x < 4. Approximate it by Newton's Method. Use 3 for your initial value and calculate eight iterations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
79
s(t) = 5t5- 11. Find t when a = 0.

A) 100
B) -100
C) 5
D) -5
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
80
s(t) = t5 -10, t <strong>s(t) = t<sup>5</sup> -10, t   0. Find s when a = 0. 		</strong> A)  20 B)  -20 C)  10 D)  -10 E)  0 0. Find s when a = 0.

A) 20
B) -20
C) 10
D) -10
E) 0

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 656 في هذه المجموعة.