Deck 15: Multiple Regression Model Building

ملء الشاشة (f)
exit full mode
سؤال
Which of the following is not used to find a "best" model?

A) Mallow's Cp
B) odds ratio
C) adjusted r2
D) all of the above
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:
Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT

 Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\hline \text { Regression Statistics}\\\hline\text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfSS MS F Signifcance F  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc}\hline & d f & S S & \text { MS } & F & \text { Signifcance F } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & &\end{array}

 Coeff  Std Error t Stat p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Frice Sq 0.0000670.000070.950.3647\begin{array}{lcccc}\hline & \text { Coeff } & \text { Std Error } & t \text { Stat } & \text {p-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Frice Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647\end{array}


-Referring to Table 15-3, what is the p-value associated with the test statistic for testing whether there is an upward curvature in the response curve relating the demand (Y) and the price (X)?

A) 0.3647
B) 0.0006
C) 0.0001
D) none of the above
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:

AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:   \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, the best model using a 5% level of significance among those chosen by the C<sub>p </sub>statistic is</strong> A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>. B) X<sub>1</sub>, X<sub>3</sub>. C) either of the above D) none of the above <div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, the "best" model using a 5% level of significance among those chosen by the Cp statistic is

A) X1, X2, X3.
B) X1, X3.
C) either of the above
D) none of the above
سؤال
Using the hat matrix elements hi to determine influential points in a multiple regression model with k independent variable and n observations, Xi is an influential point if

A) hi < n(k +1)/2.
B) hi > n(k +1)/2.
C) hi < 2(k +1)/n.
D) hi > 2(k +1)/n.
سؤال
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:
Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT

 Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\hline \text { Regression Statistics}\\\hline\text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfSS MS F Signifcance F  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc}\hline & d f & S S & \text { MS } & F & \text { Signifcance F } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & &\end{array}

 Coeff  Std Error t Stat p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Frice Sq 0.0000670.000070.950.3647\begin{array}{lcccc}\hline & \text { Coeff } & \text { Std Error } & t \text { Stat } & \text {p-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Frice Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647\end{array}


-Referring to Table 15-3, what is the value of the test statistic for testing whether there is an upward curvature in the response curve relating the demand (Y) and the price (X)?

A) 0.95
B) 373
C) - 5.14
D) none of the above
سؤال
TABLE 15-4
In Hawaii, condemnation proceedings are under way to enable private citizens to own the property that their homes are
built on. Until recently, only estates were permitted to own land, and homeowners leased the land from the estate. In order to comply with the new law, a large Hawaiian estate wants to use regression analysis to estimate the fair market value of the land. The following model was fit to data collected for n = 20 properties, 10 of which are located near a cove.
where Y = Sale price of property in thousands of dollars X1 = Size of property in thousands of square feet X2 = 1 if property located near cove, 0 if not

Model 1: Y=β0+β1X1+β2X2+β3X1X2+β4X12+β5X12X2+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{4} X_{1}^{2}+\beta_{5} X_{1}^{2} X_{2}+\varepsilon


Using the data collected for the 20 properties, the following partial output obtained from Microsoft Excel is shown: SUMMARY OUTPUT

 Regression Statistics Multiple R 0.985 R Square 0.970 Standard Error 9.5 Observations 20\begin{array}{lr}\hline\text { Regression Statistics}\\\hline\text { Multiple R } & 0.985 \\\text { R Square } & 0.970 \\\text { Standard Error } & 9.5 \\\text { Observations } & 20 \\\hline\end{array}
ANOVAdf SS MSF Significance F Regression 52832456646220.0001 Residual 14127991 Total 1929063\begin{array}{l}A N O V A\\\begin{array} { l r r r r l } \hline & d f & \text { SS } & M S & F & \text { Significance } F \\\hline \text { Regression } & 5 & 28324 & 5664 & 622 & 0.0001 \\\text { Residual } & 14 & 1279 & 91 & & \\\text { Total } & 19 & 29063 & & & \\\hline\end{array}\end{array}  Coeff  STd Error t Stut p-value  Intercept 32.135.70.900.3834 Size 1225.92.050.0594 Cove 104.353.51.950.0715 Size  Cove 17.08.51.990.0661 SizeSq 0.30.21.280.2204 SizeSq  Cove 0.30.31.130.2749\begin{array} { l c r r r } \hline & \text { Coeff } & \text { STd Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & - 32.1 & 35.7 & - 0.90 & 0.3834 \\\text { Size } & 122 & 5.9 & 2.05 & 0.0594 \\\text { Cove } & - 104.3 & 53.5 & - 1.95 & 0.0715 \\\text { Size } { } ^ { * } \text { Cove } & 17.0 & 8.5 & 1.99 & 0.0661 \\\text { SizeSq } & - 0.3 & 0.2 & - 1.28 & 0.2204 \\\text { SizeSq } { } ^ { * } \text { Cove } & - 0.3 & 0.3 & - 1.13 & 0.2749\end{array}

-Referring to Table 15-4, given a quadratic relationship between sale price (Y) and property size (X1), what null hypothesis would you test to determine whether the curves differ from cove and non-cove properties?

A) H0:β2=β3=β5=0 H_{0}: \beta_{2}=\beta_{3}=\beta_{5}=0
B) H0:β3=β5=0 H_{0}: \beta_{3}=\beta_{5}=0
C) H0:β4=β5=0 H_{0}: \beta_{4}=\beta_{5}=0
D) H0:β2=0 H_{0}: \beta_{2}=0
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held

The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion. <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion. <div style=padding-top: 35px>   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion. <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion. <div style=padding-top: 35px>

The coefficient of multiple determination ( R 2 j) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.
jj

-Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?

A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model.
B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model.
C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion.
D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion.
سؤال
A regression diagnostic tool used to study the possible effects of collinearity is

A) the slope.
B) the Y-intercept.
C) the standard error of the estimate.
D) the VIF.
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held

The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above <div style=padding-top: 35px>   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above <div style=padding-top: 35px>


The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308


-Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?

A) equal variance
B) normality of errors
C) linearity
D) none of the above
سؤال
The logarithm transformation can be used

A) to overcome violations to the autocorrelation assumption.
B) to test for possible violations to the autocorrelation assumption.
C) to change a linear independent variable into a nonlinear independent variable.
D) to change a nonlinear model into a linear model.
سؤال
If a group of independent variables are not significant individually but are significant as a group at a specified level of significance, this is most likely due to

A) the absence of dummy variables.
B) autocorrelation.
C) the presence of dummy variables.
D) collinearity.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}     -Referring to Table 15-8, the better model using a 5% level of significance derived from the best model above is</strong> A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>. B) X<sub>1</sub>, X<sub>3</sub>. C) X<sub>1</sub>. D) X<sub>3</sub>. <div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}



-Referring to Table 15-8, the better model using a 5% level of significance derived from the "best" model above is

A) X1, X2, X3.
B) X1, X3.
C) X1.
D) X3.
سؤال
Using the Studentized residuals ti to determine influential points in a multiple regression model with k independent variable and n observations and letting tn-k-2 denote the upper critical value of a two-tail t test with a 0.10 level of significance, Xi is an influential point if

A) ti<tnk2 \left|t_{i}\right|< t_{n-k-2} .

B) ti>tnk1 \left|t_{i}\right|>t_{n-k-1} .

C) ti<tnk1 \left|t_{i}\right|< t_{n-k-1} .

D) ti>tnk2 \left|t_{i}\right|>t_{n-k-2} .
سؤال
An independent variable Xj is considered highly correlated with the other independent variables if

A) VIFj > VIFi for i ? j .
B) VIFj > 5.
C) VIFj < VIFi for i ?j .
D) VIFj < 5.
سؤال
TABLE 15-1
To explain personal consumption (CONS) measured in dollars, data is collected for
INC: personal income indollars\text {INC: personal income indollars}
\quad \quad CRDTLIM: $1 plus the credit limit in dollars\text {CRDTLIM: \( \$ 1 \) plus the credit limit in dollars}
\quad \quad  available to the individual \text { available to the individual }
\quad \quad APR: average annualized percentage interest rate for\text {APR: average annualized percentage interest rate for}
\quad  borrowing for the individual\text { borrowing for the individual}

ADVT: perperson advertisingexpenditure\text {ADVT: perperson advertisingexpenditure}
\quad \quad \quad  in dollars by manufacturers in the\text { in dollars by manufacturers in the}
\quad \quad \quad city where the individual lives\text {city where the individual lives}

 SEX: gender of the individual: 1 if female, 0 if male\text { SEX: gender of the individual: 1 if female, 0 if male}

A regression analysis was performed with CONS as the dependent variable and ln(CRDTLIM), ln(APR), ln(ADVT), and SEX as the independent variables. The estimated model was
y^ = 2.28 - 0.29 ln(CRDTLIM) + 5.77 ln(APR) + 2.35 ln(ADVT) + 0.39 SEX


-Referring to Table 15-1, what is the correct interpretation for the estimated coefficient for ADVT?

A) A $1 increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of $2.35 on personal consumption holding other variables constant.
B) A 1% increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of 2.35% on personal consumption holding other variables constant.
C) A 100% increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of 2.35% on personal consumption holding other variables constant.
D) A 100% increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of $2.35 on personal consumption holding other variables constant.
سؤال
TABLE 15-1
To explain personal consumption (CONS) measured in dollars, data is collected for
INC: personal income indollars\text {INC: personal income indollars}
CRDTLIM: $1 plus the credit limit in dollars\text {CRDTLIM: \( \$ 1 \) plus the credit limit in dollars}
 available to the individual \text { available to the individual }
 APR: average annualized percentage interest rate for borrowing for the individual\text { APR: average annualized percentage interest rate for borrowing for the individual}

ADVT: perperson advertisingexpenditure in dollars by manufacturers in the city where the individual lives\text {ADVT: perperson advertisingexpenditure in dollars by manufacturers in the city where the individual lives}

 SEX: gender of the individual: 1 if female, 0 if male\text { SEX: gender of the individual: 1 if female, 0 if male}

A regression analysis was performed with CONS as the dependent variable and ln(CRDTLIM), ln(APR), ln(ADVT), and SEX as the independent variables. The estimated model was
y^ = 2.28 - 0.29 ln(CRDTLIM) + 5.77 ln(APR) + 2.35 ln(ADVT) + 0.39 SEX


-Referring to Table 15-1, what is the correct interpretation for the estimated coefficient for APR?

A) A 100% increase in average annualized percentage interest rate will result in an estimated average increase of $5.77 on personal consumption holding other variables constant.
B) A one percentage point increase in average annualized percentage interest rate will result in an estimated average increase of $5.77 on personal consumption holding other variables constant.
C) A 100% increase in average annualized percentage interest rate will result in an estimated average increase of 5.77% on personal consumption holding other variables constant.
D) A 1% increase in average annualized percentage interest rate will result in an estimated average increase of 5.77% on personal consumption holding other variables constant.
سؤال
The Cp statistic is used

A) if the variances of the error terms are all the same in a regression model.
B) to determine if there is a problem of collinearity.
C) to determine if there is an irregular component in a time series.
D) to choose the best model.
سؤال
TABLE 15-4
In Hawaii, condemnation proceedings are under way to enable private citizens to own the property that their homes are
built on. Until recently, only estates were permitted to own land, and homeowners leased the land from the estate. In order to comply with the new law, a large Hawaiian estate wants to use regression analysis to estimate the fair market value of the land. The following model was fit to data collected for n = 20 properties, 10 of which are located near a cove.
 Model 1: Y=β0+β1X1+β2X2+β3X1X2+β4X12+β5X12X2+ε\text { Model 1: } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{4} X_{1}^{2}+\beta_{5} X_{1}^{2} X_{2}+\varepsilon

where Y = Sale price of property in thousands of dollars
X1 = Size of property in thousands of square feet
X2 = 1 if property located near cove, 0 if not

Using the data collected for the 20 properties, the following partial output obtained from Microsoft Excel is shown:
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.985 R Square 0.970 Standard Error 9.5 Observations 20\begin{array}{lr}{\begin{array}{c}\end{array}} \\\hline\text { Regression Statistics }\\\hline\text { Multiple R } & 0.985 \\\text { R Square } & 0.970 \\\text { Standard Error } & 9.5 \\\text { Observations } & 20 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfSS MS F Significance  Regression 52832456646220.0001 Residual 14127991 Total 1929063\begin{array}{lccccl}\hline & d f & S S & \text { MS } & F & \text { Significance } \\\hline \text { Regression } & 5 & 28324 & 5664 & 622 & 0.0001 \\\text { Residual } & 14 & 1279 & 91 & & \\\text { Total } & 19 & 29063 & & & \\\hline\end{array}

 Coeff  STd Error t Stut p-value Intercept32.135.70.900.3834Size1225.92.050.0594Cove104.353.51.950.0715Size*Cove17.08.51.990.0661SizeSq0.30.21.280.2204SizeSg*Cove0.30.31.130.2749\begin{array}{ccrc}\hline& \text { Coeff } & \text { STd Error } & t \text { Stut } & p \text {-value } \\\hline\text {Intercept}&-32.1 & 35.7 & -0.90 & 0.3834 \\\text {Size}&122 & 5.9 & 2.05 & 0.0594 \\\text {Cove}&-104.3 & 53.5 & -1.95 & 0.0715 \\\text {Size*Cove}&17.0 & 8.5 & 1.99 & 0.0661 \\\text {SizeSq}&-0.3 & 0.2 & -1.28 & 0.2204 \\\text {SizeSg*Cove}&-0.3 & 0.3 & -1.13 & 0.2749 \\\hline\end{array}





-Referring to Table 15-4, given a quadratic relationship between sale price (Y) and property size (X1), what test should be used to test whether the curves differ from cove and non-cove properties?

A) t test on each of the subsets of the appropriate coefficients
B) F test for the entire regression model
C) partial F test on the subset of the appropriate coefficients
D) t test on each of the coefficients in the entire regression model
سؤال
TABLE 15-4
In Hawaii, condemnation proceedings are under way to enable private citizens to own the property that their homes are
built on. Until recently, only estates were permitted to own land, and homeowners leased the land from the estate. In order to comply with the new law, a large Hawaiian estate wants to use regression analysis to estimate the fair market value of the land. The following model was fit to data collected for n = 20 properties, 10 of which are located near a cove.

Model 1: Y=β0+β1X1+β2X2+β3X1X2+β4X12+β5X12X2+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{4} X_{1}^{2}+\beta_{5} X_{1}^{2} X_{2}+\varepsilon

where Y = Sale price of property in thousands of dollars X1 = Size of property in thousands of square feet X2 = 1 if property located near cove, 0 if not
Using the data collected for the 20 properties, the following partial output obtained from Microsoft Excel is shown: SUMMARY OUTPUT
Regression
Statistics
 Multiple R 0.985 R Square 0.970 Standard Error 9.5 Observations 20\begin{array}{lr}\text { Multiple R } & 0.985 \\\text { R Square } & 0.970 \\\text { Standard Error } & 9.5 \\\text { Observations } & 20 \\\hline\end{array}
ANOVAdf SS MSF Significance F Regression 528324566462.20.0001 Residual 14127991 Total 1929063\begin{array}{l}A N O V A\\\begin{array} { l r r r r l } \hline & d f & \text { SS } & M S & F & \text { Significance } F \\\hline \text { Regression } & 5 & 28324 & 5664 & 62.2 & 0.0001 \\\text { Residual } & 14 & 1279 & 91 & & \\\text { Total } & 19 & 29063 & & & \\\hline\end{array}\end{array}  Coeff  STd Error t Stut p-value  Intercept 32.135.70.900.3834 Size 1225.92.050.0594 Cove 104.353.51.950.0715 Size  Cove 17.08.51.990.0661 SizeSq 0.30.21.280.2204 SizeSq  Cove 0.30.31.130.2749\begin{array} { l c r r r } \hline & \text { Coeff } & \text { STd Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & - 32.1 & 35.7 & - 0.90 & 0.3834 \\\text { Size } & 122 & 5.9 & 2.05 & 0.0594 \\\text { Cove } & - 104.3 & 53.5 & - 1.95 & 0.0715 \\\text { Size } { } ^ { * } \text { Cove } & 17.0 & 8.5 & 1.99 & 0.0661 \\\text { SizeSq } & - 0.3 & 0.2 & - 1.28 & 0.2204 \\\text { SizeSq } { } ^ { * } \text { Cove } & - 0.3 & 0.3 & - 1.13 & 0.2749\end{array}

-Referring to Table 15-4, is the overall model statistically adequate at a 0.05 level of significance for predicting sale price (Y)?

A) Yes, since the p-value for the test is smaller than 0.05.
B) No, since some of the t tests for the individual variables are not significant.
C) No, since the standard deviation of the model is fairly large.
D) Yes, since none of the þ-estimates are equal to 0.
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. <div style=padding-top: 35px>   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. <div style=padding-top: 35px>


-Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?

A) As the high temperature increases by one degree, the paid attendance will increase by 51.70.
B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.
C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70.
D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.
سؤال
Using the Cook's distance statistic Di to determine influential points in a multiple regression model with k independent variable and n observations and letting Fv1,v 2 denote the critical value of an F distribution with v1 and v2 degrees of freedom at a 0.50 level of significance, Xi is an influential point if

A) Di > Fk+1,n-k-1
B) Di < Fn-k-1,k+1
C) Di < Fk+1,n-k-1
D)Di>Fn-k-1,k+1
سؤال
The logarithm transformation can be used

A) to overcome violations to the homoscedasticity assumption.
B) to test for possible violations to the homoscedasticity assumption.
C) to overcome violations to the autocorrelation assumption.
D) to test for possible violations to the autocorrelation assumption.
سؤال
In multiple regression, the procedure permits variables to enter and leave the model at different stages of its development.

A) stepwise regression
B) residual analysis
C) backward elimination
D) forward selection
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above <div style=padding-top: 35px>   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above <div style=padding-top: 35px>

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308



-Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?

A) equal variance
B) linearity
C) normality of errors
D) none of the above
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:

AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:   \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, which of the following models should be taken into consideration using the Mallows' Cp statistic?</strong> A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub><sub> </sub> B) X<sub>1</sub>, X<sub>3</sub> C) both of the above D) none of the above <div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, which of the following models should be taken into consideration using the Mallows' Cp statistic?

A) X1, X2, X3
B) X1, X3
C) both of the above
D) none of the above
سؤال
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:
Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon
where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT
Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc} \text {Regression Statistics}\\\hline \text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}


 ANOVA dfSS MS F Sgnificance  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{l}\text { ANOVA }\\\begin{array}{lrrrrr}\hline & d f & S S & \text { MS } & F & \text { Sgnificance } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & & \\\hline\end{array}\end{array}


 Coeff  Std Error t Stad p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Price Sq 0.0000670.000070.950.3647\begin{array}{lrccc} & \text { Coeff } & \text { Std Error } & t \text { Stad } & p \text {-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Price Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647 \\\hline\end{array}


-Referring to Table 15-3, what is the correct interpretation of the coefficient of multiple determination?

A) 98.8% of the total variation in demand can be explained by the addition of the square term in price.
B) 98.8% of the total variation in demand can be explained by just the square term in price.
C) 98.8% of the total variation in demand can be explained by the quadratic relationship between demand and price.
D) 98.8% of the total variation in demand can be explained by the linear relationship between demand and price.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub> j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}    -Referring to Table 15-8, which of the following predictors should first be dropped to remove collinearity?</strong> A) X1 B) X3 C) X<sub>2</sub><sub> </sub> D) none of the above <div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}


-Referring to Table 15-8, which of the following predictors should first be dropped to remove collinearity?

A) X1
B) X3
C) X2
D) none of the above
سؤال
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. A statistical analyst discovers that capital spending by corporations has a significant inverse relationship with wage spending. What should the microeconomist who developed this multiple regression model be particularly concerned with?

A) collinearity
B) randomness of error terms
C) normality of residuals
D) missing observations
سؤال
As a project for his business statistics class, a student examined the factors that determined parking meter rates throughout the campus area. Data were collected for the price per hour of parking, blocks to the quadrangle, and one of the three jurisdictions: on campus, in downtown and off campus, or outside of downtown and off campus. The population regression model hypothesized is Yi=α+β1X1i+β2X2i+β3X3i+ε Y_{i}=\alpha+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\varepsilon where
Y is the meter price
X1 is the number of blocks to the quad
X2 is a dummy variable that takes the value 1 if the meter is located in downtown and off campus and the value 0 otherwise
X3 is a dummy variable that takes the value 1 if the meter is located outside of downtown and off campus, and the value 0 otherwise
Suppose that whether the meter is located on campus is an important explanatory factor. Why should the variable that depicts this attribute not be included in the model?

A) Its inclusion will introduce autocorrelation.
B) Its inclusion will inflate the standard errors of the estimated coefficients.
C) Its inclusion will introduce collinearity.
D) both B and C
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}     -Referring to Table 15-8, the best model chosen using the adjusted R-square statistic is</strong> A) X1, X2, X3. B) X1, X3. C) either of the above D) none of the above <div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}



-Referring to Table 15-8, the "best" model chosen using the adjusted R-square statistic is

A) X1, X2, X3.
B) X1, X3.
C) either of the above
D) none of the above
سؤال
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. The business literature involving human capital shows that education influences an individual's annual income. Combined, these may influence family size. With this in mind, what should the real estate builder be particularly concerned with when analyzing the multiple regression model?

A) missing observations
B) normality of residuals
C) collinearity
D) randomness of error terms
سؤال
Which of the following is used to determine observations that have influential effect on the fitted model?

A) Cook's distance statistic
B) the Cp statistic
C) variance inflationary factor
D) Durbin Watson statistic
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above <div style=padding-top: 35px>   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above <div style=padding-top: 35px>

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308

-Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?

A) normality of errors
B) equal variance
C) linearity
D) none of the above
سؤال
The Variance Inflationary Factor (VIF) measures the

A) correlation of the X variables with each other.
B) contribution of each X variable with the Y variable after all other X variables are included in the model.
C) standard deviation of the slope.
D) correlation of the X variables with the Y variable.
سؤال
Which of the following is not used to determine observations that have influential effect on the fitted model?

A) Cook's distance statistic
B) the studentized deleted residuals ti
C) the hat matrix elements hi
D) the Cp statistic
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}    -Referring to Table 15-8, what are, respectively, the values of the variance inflationary factor of the 3 predictors?<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}


-Referring to Table 15-8, what are, respectively, the values of the variance inflationary factor of the 3 predictors?
سؤال
Using the best-subsets approach to model building, models are being considered when their

A) Cp ? (k + 1).
B) Cp > (k + 1).
C) Cp ? k.
D) Cp > k.
سؤال
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:

Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT
Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\text {Regression Statistics}\\\hline \text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

ANOVA\text {ANOVA}
dfSS MS F Significance  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc} \hline& d f & S S & \text { MS } & F & \text { Significance } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & & \\\hline\end{array}


 Coeff  Std Error t Stat p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Price Sq0.0000670.000070.950.3647\begin{array}{lrccc} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text {-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Price } S q & 0.000067 & 0.00007 & 0.95 & 0.3647 \\\hline\end{array}



-Referring to Table 15-3, does there appear to be significant upward curvature in the response curve relating the demand (Y) and the price (X) at 10% level of significance?

A) No, since the p-value for the test is greater than 0.10.
B) Yes, since the value of þ2 is positive.
C) Yes, since the p-value for the test is less than 0.10.
D) No, since the value of þ2 is near 0.
سؤال
Which of the following will not change a nonlinear model into a linear model?

A) logarithmic transformation
B) square-root transformation
C) variance inflationary factor
D) quadratic regression model
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise
PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.

 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above <div style=padding-top: 35px>   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above <div style=padding-top: 35px>

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above <div style=padding-top: 35px>

The coefficient of multiple determination ( R 2 j) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.


-Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?

A) normality of errors
B) linearity
C) equal variance
D) none of the above
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f &{ \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, the prediction of time to relief for a person receiving a dose of the drug 10 units above the average dose , is____ .
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308


-Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.<div style=padding-top: 35px>
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>
The coefficient of multiple determination ( R 2 j) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.
jj

-Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. The p-value of the test is_______
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a curvilinear model without a linear term and a curvilinear model that includes a linear term. The value of the test statistic is ____ .
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."

SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term. The p-value of the test statistic for the contribution of the curvilinear term is______
.
سؤال
The_____ (larger/smaller) the value of the Variance Inflationary Factor, the higher is the collinearity of the X variables.
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. The value of the test statistic is______ .
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline \text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a curvilinear model without a linear term and a curvilinear
model that includes a linear term. The p-value of the test is _______.
سؤال
The Variance Inflationary Factor (VIF) measures the correlation of the X variables with the Y variable.
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
سؤال
In multiple regression, the_____ procedure permits variables to enter and leave the model at different stages of its development.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, what is the p-value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, what is the p-value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?<div style=padding-top: 35px>
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
سؤال
A regression diagnostic tool used to study the possible effects of collinearity is ______.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is not significant at a 5% level of significance.<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is not significant at a 5% level of significance.
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.<div style=padding-top: 35px>
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, what is the value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, what is the value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?<div style=padding-top: 35px>

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.

-Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 TABLE 15-7 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a centered curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been centered. SUMMARY OUTPUT    \begin{array}{l} \begin{array} { l r } \begin{array} { l }  \end{array} \\ \hline\text { Regression  Statistics }\\ \hline \text { Multiple R } & 0.747 \\ \text { RSquare } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \\ \hline \end{array}\\ \text { ANOVA }\\\\ \begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\ \hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \\ \hline \end{array}\\\\ \begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\ \hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\ \hline \end{array} \end{array}   -Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.01 she would decide that there is a significant curvilinear relationship.<div style=padding-top: 35px>   Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.01 she would decide that there is a significant curvilinear relationship.
سؤال
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.<div style=padding-top: 35px>   TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.<div style=padding-top: 35px>

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.<div style=padding-top: 35px>



The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308

-Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.
سؤال
One of the consequences of collinearity in multiple regression is inflated standard errors in some or all of the estimated slope coefficients.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}    -Referring to Table 15-8, the residual plot suggests that a nonlinear model on % attendance may be a better model.<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}


-Referring to Table 15-8, the residual plot suggests that a nonlinear model on % attendance may be a better model.
سؤال
One of the consequences of collinearity in multiple regression is biased estimates on the slope coefficients.
سؤال
Only when all three of the hat matrix elements hi, the Studentized deleted residuals ti and the Cook's distance statistic Di reveal consistent result should an observation be removed from the regression analysis.
سؤال
Two simple regression models were used to predict a single dependent variable. Both models were highly significant, but when the two independent variables were placed in the same multiple regression model for the dependent variable, R2 did not increase substantially and the parameter estimates for the model were not significantly different from 0. This is probably an example of collinearity.
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 TABLE 15-7 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a centered curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been centered. SUMMARY OUTPUT    \begin{array}{l} \begin{array} { l r } \begin{array} { l }  \end{array} \\ \hline\text { Regression  Statistics }\\ \hline \text { Multiple R } & 0.747 \\ \text { RSquare } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \\ \hline \end{array}\\ \text { ANOVA }\\\\ \begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\ \hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \\ \hline \end{array}\\\\ \begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\ \hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\ \hline \end{array} \end{array}   -Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.05, she would decide that there is a significant curvilinear relationship.<div style=padding-top: 35px>   Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.05, she would decide that there is a significant curvilinear relationship.
سؤال
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:

Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT
 Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\text { Regression Statistics}\\\hline\text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

ANOVAANOVA
dfSS MS F Signifcance  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc}\hline & d f & S S & \text { MS } & F & \text { Signifcance } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & & \\\hline\end{array}


 Coeff  Std Error t Stat  p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Price Sq 0.0000670.000070.950.3647\begin{array}{lrccc}\hline & \text { Coeff } & \text { Std Error } & t \text { Stat } & \text { p-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Price Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647\end{array}


-Referring to Table 15-3, a more parsimonious simple linear model is likely to be statistically superior to the fitted curvilinear for predicting sale price (Y).
سؤال
Collinearity is present when there is a high degree of correlation between independent variables.
سؤال
The goals of model building are to find a good model with the fewest independent variables that is easier to interpret and has lower probability of collinearity.
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term. If she used a level of significance of 0.02, she would decide that the linear model is sufficient.
سؤال
In stepwise regression, an independent variable is not allowed to be removed from the model once it has entered into the model.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
Following is the residual plot for % Attendance:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted Following is the residual plot for % Attendance:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, there is reason to suspect collinearity between some pairs of predictors.<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, there is reason to suspect collinearity between some pairs of predictors.
سؤال
Collinearity is present when there is a high degree of correlation between the dependent variable and any of the independent variables.
سؤال
Collinearity is present if the dependent variable is linearly related to one of the explanatory variables.
سؤال
A high value of R2 significantly above 0 in multiple regression accompanied by insignificant
t-values on all parameter estimates very often indicates a high correlation between independent variables in the model.
سؤال
In data mining where huge data sets are being explored to discover relationships among a large number of variables, the best-subsets approach is more practical than the stepwise regression approach.
سؤال
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
Following is the residual plot for % Attendance:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted Following is the residual plot for % Attendance:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, the null hypothesis should be rejected when testing whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance.<div style=padding-top: 35px>

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, the null hypothesis should be rejected when testing whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance.
سؤال
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\\\end{array}\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f &{ \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a curvilinear model without a linear term and a curvilinear model that includes a linear term. Using a level of significance of 0.05, she would decide that the curvilinear model should include a linear term.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/88
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 15: Multiple Regression Model Building
1
Which of the following is not used to find a "best" model?

A) Mallow's Cp
B) odds ratio
C) adjusted r2
D) all of the above
odds ratio
2
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:
Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT

 Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\hline \text { Regression Statistics}\\\hline\text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfSS MS F Signifcance F  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc}\hline & d f & S S & \text { MS } & F & \text { Signifcance F } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & &\end{array}

 Coeff  Std Error t Stat p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Frice Sq 0.0000670.000070.950.3647\begin{array}{lcccc}\hline & \text { Coeff } & \text { Std Error } & t \text { Stat } & \text {p-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Frice Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647\end{array}


-Referring to Table 15-3, what is the p-value associated with the test statistic for testing whether there is an upward curvature in the response curve relating the demand (Y) and the price (X)?

A) 0.3647
B) 0.0006
C) 0.0001
D) none of the above
0.3647
3
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:

AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:   \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, the best model using a 5% level of significance among those chosen by the C<sub>p </sub>statistic is</strong> A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>. B) X<sub>1</sub>, X<sub>3</sub>. C) either of the above D) none of the above

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, the "best" model using a 5% level of significance among those chosen by the Cp statistic is

A) X1, X2, X3.
B) X1, X3.
C) either of the above
D) none of the above
X1, X3.
4
Using the hat matrix elements hi to determine influential points in a multiple regression model with k independent variable and n observations, Xi is an influential point if

A) hi < n(k +1)/2.
B) hi > n(k +1)/2.
C) hi < 2(k +1)/n.
D) hi > 2(k +1)/n.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
5
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:
Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT

 Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\hline \text { Regression Statistics}\\\hline\text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfSS MS F Signifcance F  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc}\hline & d f & S S & \text { MS } & F & \text { Signifcance F } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & &\end{array}

 Coeff  Std Error t Stat p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Frice Sq 0.0000670.000070.950.3647\begin{array}{lcccc}\hline & \text { Coeff } & \text { Std Error } & t \text { Stat } & \text {p-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Frice Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647\end{array}


-Referring to Table 15-3, what is the value of the test statistic for testing whether there is an upward curvature in the response curve relating the demand (Y) and the price (X)?

A) 0.95
B) 373
C) - 5.14
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
6
TABLE 15-4
In Hawaii, condemnation proceedings are under way to enable private citizens to own the property that their homes are
built on. Until recently, only estates were permitted to own land, and homeowners leased the land from the estate. In order to comply with the new law, a large Hawaiian estate wants to use regression analysis to estimate the fair market value of the land. The following model was fit to data collected for n = 20 properties, 10 of which are located near a cove.
where Y = Sale price of property in thousands of dollars X1 = Size of property in thousands of square feet X2 = 1 if property located near cove, 0 if not

Model 1: Y=β0+β1X1+β2X2+β3X1X2+β4X12+β5X12X2+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{4} X_{1}^{2}+\beta_{5} X_{1}^{2} X_{2}+\varepsilon


Using the data collected for the 20 properties, the following partial output obtained from Microsoft Excel is shown: SUMMARY OUTPUT

 Regression Statistics Multiple R 0.985 R Square 0.970 Standard Error 9.5 Observations 20\begin{array}{lr}\hline\text { Regression Statistics}\\\hline\text { Multiple R } & 0.985 \\\text { R Square } & 0.970 \\\text { Standard Error } & 9.5 \\\text { Observations } & 20 \\\hline\end{array}
ANOVAdf SS MSF Significance F Regression 52832456646220.0001 Residual 14127991 Total 1929063\begin{array}{l}A N O V A\\\begin{array} { l r r r r l } \hline & d f & \text { SS } & M S & F & \text { Significance } F \\\hline \text { Regression } & 5 & 28324 & 5664 & 622 & 0.0001 \\\text { Residual } & 14 & 1279 & 91 & & \\\text { Total } & 19 & 29063 & & & \\\hline\end{array}\end{array}  Coeff  STd Error t Stut p-value  Intercept 32.135.70.900.3834 Size 1225.92.050.0594 Cove 104.353.51.950.0715 Size  Cove 17.08.51.990.0661 SizeSq 0.30.21.280.2204 SizeSq  Cove 0.30.31.130.2749\begin{array} { l c r r r } \hline & \text { Coeff } & \text { STd Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & - 32.1 & 35.7 & - 0.90 & 0.3834 \\\text { Size } & 122 & 5.9 & 2.05 & 0.0594 \\\text { Cove } & - 104.3 & 53.5 & - 1.95 & 0.0715 \\\text { Size } { } ^ { * } \text { Cove } & 17.0 & 8.5 & 1.99 & 0.0661 \\\text { SizeSq } & - 0.3 & 0.2 & - 1.28 & 0.2204 \\\text { SizeSq } { } ^ { * } \text { Cove } & - 0.3 & 0.3 & - 1.13 & 0.2749\end{array}

-Referring to Table 15-4, given a quadratic relationship between sale price (Y) and property size (X1), what null hypothesis would you test to determine whether the curves differ from cove and non-cove properties?

A) H0:β2=β3=β5=0 H_{0}: \beta_{2}=\beta_{3}=\beta_{5}=0
B) H0:β3=β5=0 H_{0}: \beta_{3}=\beta_{5}=0
C) H0:β4=β5=0 H_{0}: \beta_{4}=\beta_{5}=0
D) H0:β2=0 H_{0}: \beta_{2}=0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
7
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held

The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion.

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion.   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion.

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?</strong> A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model. C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion. D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion.

The coefficient of multiple determination ( R 2 j) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.
jj

-Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for PROMOTION?

A) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model.
B) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion taking into consideration all the other independent variables included in the model.
C) The estimated mean paid attendance on promotion day will be 6927.88 higher than when there is no promotion.
D) The paid attendance on promotion day will be 6927.88 higher than when there is no promotion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
8
A regression diagnostic tool used to study the possible effects of collinearity is

A) the slope.
B) the Y-intercept.
C) the standard error of the estimate.
D) the VIF.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
9
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held

The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held  The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?</strong> A) equal variance B) normality of errors C) linearity D) none of the above


The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308


-Referring to Table 15-9, which of the following assumptions is most likely violated based on the normal probability plot?

A) equal variance
B) normality of errors
C) linearity
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
10
The logarithm transformation can be used

A) to overcome violations to the autocorrelation assumption.
B) to test for possible violations to the autocorrelation assumption.
C) to change a linear independent variable into a nonlinear independent variable.
D) to change a nonlinear model into a linear model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
11
If a group of independent variables are not significant individually but are significant as a group at a specified level of significance, this is most likely due to

A) the absence of dummy variables.
B) autocorrelation.
C) the presence of dummy variables.
D) collinearity.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
12
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}     -Referring to Table 15-8, the better model using a 5% level of significance derived from the best model above is</strong> A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>. B) X<sub>1</sub>, X<sub>3</sub>. C) X<sub>1</sub>. D) X<sub>3</sub>.

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}



-Referring to Table 15-8, the better model using a 5% level of significance derived from the "best" model above is

A) X1, X2, X3.
B) X1, X3.
C) X1.
D) X3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
13
Using the Studentized residuals ti to determine influential points in a multiple regression model with k independent variable and n observations and letting tn-k-2 denote the upper critical value of a two-tail t test with a 0.10 level of significance, Xi is an influential point if

A) ti<tnk2 \left|t_{i}\right|< t_{n-k-2} .

B) ti>tnk1 \left|t_{i}\right|>t_{n-k-1} .

C) ti<tnk1 \left|t_{i}\right|< t_{n-k-1} .

D) ti>tnk2 \left|t_{i}\right|>t_{n-k-2} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
14
An independent variable Xj is considered highly correlated with the other independent variables if

A) VIFj > VIFi for i ? j .
B) VIFj > 5.
C) VIFj < VIFi for i ?j .
D) VIFj < 5.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
15
TABLE 15-1
To explain personal consumption (CONS) measured in dollars, data is collected for
INC: personal income indollars\text {INC: personal income indollars}
\quad \quad CRDTLIM: $1 plus the credit limit in dollars\text {CRDTLIM: \( \$ 1 \) plus the credit limit in dollars}
\quad \quad  available to the individual \text { available to the individual }
\quad \quad APR: average annualized percentage interest rate for\text {APR: average annualized percentage interest rate for}
\quad  borrowing for the individual\text { borrowing for the individual}

ADVT: perperson advertisingexpenditure\text {ADVT: perperson advertisingexpenditure}
\quad \quad \quad  in dollars by manufacturers in the\text { in dollars by manufacturers in the}
\quad \quad \quad city where the individual lives\text {city where the individual lives}

 SEX: gender of the individual: 1 if female, 0 if male\text { SEX: gender of the individual: 1 if female, 0 if male}

A regression analysis was performed with CONS as the dependent variable and ln(CRDTLIM), ln(APR), ln(ADVT), and SEX as the independent variables. The estimated model was
y^ = 2.28 - 0.29 ln(CRDTLIM) + 5.77 ln(APR) + 2.35 ln(ADVT) + 0.39 SEX


-Referring to Table 15-1, what is the correct interpretation for the estimated coefficient for ADVT?

A) A $1 increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of $2.35 on personal consumption holding other variables constant.
B) A 1% increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of 2.35% on personal consumption holding other variables constant.
C) A 100% increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of 2.35% on personal consumption holding other variables constant.
D) A 100% increase in per person advertising expenditure by the manufacturer will result in an estimated average increase of $2.35 on personal consumption holding other variables constant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
16
TABLE 15-1
To explain personal consumption (CONS) measured in dollars, data is collected for
INC: personal income indollars\text {INC: personal income indollars}
CRDTLIM: $1 plus the credit limit in dollars\text {CRDTLIM: \( \$ 1 \) plus the credit limit in dollars}
 available to the individual \text { available to the individual }
 APR: average annualized percentage interest rate for borrowing for the individual\text { APR: average annualized percentage interest rate for borrowing for the individual}

ADVT: perperson advertisingexpenditure in dollars by manufacturers in the city where the individual lives\text {ADVT: perperson advertisingexpenditure in dollars by manufacturers in the city where the individual lives}

 SEX: gender of the individual: 1 if female, 0 if male\text { SEX: gender of the individual: 1 if female, 0 if male}

A regression analysis was performed with CONS as the dependent variable and ln(CRDTLIM), ln(APR), ln(ADVT), and SEX as the independent variables. The estimated model was
y^ = 2.28 - 0.29 ln(CRDTLIM) + 5.77 ln(APR) + 2.35 ln(ADVT) + 0.39 SEX


-Referring to Table 15-1, what is the correct interpretation for the estimated coefficient for APR?

A) A 100% increase in average annualized percentage interest rate will result in an estimated average increase of $5.77 on personal consumption holding other variables constant.
B) A one percentage point increase in average annualized percentage interest rate will result in an estimated average increase of $5.77 on personal consumption holding other variables constant.
C) A 100% increase in average annualized percentage interest rate will result in an estimated average increase of 5.77% on personal consumption holding other variables constant.
D) A 1% increase in average annualized percentage interest rate will result in an estimated average increase of 5.77% on personal consumption holding other variables constant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
17
The Cp statistic is used

A) if the variances of the error terms are all the same in a regression model.
B) to determine if there is a problem of collinearity.
C) to determine if there is an irregular component in a time series.
D) to choose the best model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
18
TABLE 15-4
In Hawaii, condemnation proceedings are under way to enable private citizens to own the property that their homes are
built on. Until recently, only estates were permitted to own land, and homeowners leased the land from the estate. In order to comply with the new law, a large Hawaiian estate wants to use regression analysis to estimate the fair market value of the land. The following model was fit to data collected for n = 20 properties, 10 of which are located near a cove.
 Model 1: Y=β0+β1X1+β2X2+β3X1X2+β4X12+β5X12X2+ε\text { Model 1: } Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{4} X_{1}^{2}+\beta_{5} X_{1}^{2} X_{2}+\varepsilon

where Y = Sale price of property in thousands of dollars
X1 = Size of property in thousands of square feet
X2 = 1 if property located near cove, 0 if not

Using the data collected for the 20 properties, the following partial output obtained from Microsoft Excel is shown:
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.985 R Square 0.970 Standard Error 9.5 Observations 20\begin{array}{lr}{\begin{array}{c}\end{array}} \\\hline\text { Regression Statistics }\\\hline\text { Multiple R } & 0.985 \\\text { R Square } & 0.970 \\\text { Standard Error } & 9.5 \\\text { Observations } & 20 \\\hline\end{array}

 ANOVA \text { ANOVA }
dfSS MS F Significance  Regression 52832456646220.0001 Residual 14127991 Total 1929063\begin{array}{lccccl}\hline & d f & S S & \text { MS } & F & \text { Significance } \\\hline \text { Regression } & 5 & 28324 & 5664 & 622 & 0.0001 \\\text { Residual } & 14 & 1279 & 91 & & \\\text { Total } & 19 & 29063 & & & \\\hline\end{array}

 Coeff  STd Error t Stut p-value Intercept32.135.70.900.3834Size1225.92.050.0594Cove104.353.51.950.0715Size*Cove17.08.51.990.0661SizeSq0.30.21.280.2204SizeSg*Cove0.30.31.130.2749\begin{array}{ccrc}\hline& \text { Coeff } & \text { STd Error } & t \text { Stut } & p \text {-value } \\\hline\text {Intercept}&-32.1 & 35.7 & -0.90 & 0.3834 \\\text {Size}&122 & 5.9 & 2.05 & 0.0594 \\\text {Cove}&-104.3 & 53.5 & -1.95 & 0.0715 \\\text {Size*Cove}&17.0 & 8.5 & 1.99 & 0.0661 \\\text {SizeSq}&-0.3 & 0.2 & -1.28 & 0.2204 \\\text {SizeSg*Cove}&-0.3 & 0.3 & -1.13 & 0.2749 \\\hline\end{array}





-Referring to Table 15-4, given a quadratic relationship between sale price (Y) and property size (X1), what test should be used to test whether the curves differ from cove and non-cove properties?

A) t test on each of the subsets of the appropriate coefficients
B) F test for the entire regression model
C) partial F test on the subset of the appropriate coefficients
D) t test on each of the coefficients in the entire regression model
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
19
TABLE 15-4
In Hawaii, condemnation proceedings are under way to enable private citizens to own the property that their homes are
built on. Until recently, only estates were permitted to own land, and homeowners leased the land from the estate. In order to comply with the new law, a large Hawaiian estate wants to use regression analysis to estimate the fair market value of the land. The following model was fit to data collected for n = 20 properties, 10 of which are located near a cove.

Model 1: Y=β0+β1X1+β2X2+β3X1X2+β4X12+β5X12X2+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{4} X_{1}^{2}+\beta_{5} X_{1}^{2} X_{2}+\varepsilon

where Y = Sale price of property in thousands of dollars X1 = Size of property in thousands of square feet X2 = 1 if property located near cove, 0 if not
Using the data collected for the 20 properties, the following partial output obtained from Microsoft Excel is shown: SUMMARY OUTPUT
Regression
Statistics
 Multiple R 0.985 R Square 0.970 Standard Error 9.5 Observations 20\begin{array}{lr}\text { Multiple R } & 0.985 \\\text { R Square } & 0.970 \\\text { Standard Error } & 9.5 \\\text { Observations } & 20 \\\hline\end{array}
ANOVAdf SS MSF Significance F Regression 528324566462.20.0001 Residual 14127991 Total 1929063\begin{array}{l}A N O V A\\\begin{array} { l r r r r l } \hline & d f & \text { SS } & M S & F & \text { Significance } F \\\hline \text { Regression } & 5 & 28324 & 5664 & 62.2 & 0.0001 \\\text { Residual } & 14 & 1279 & 91 & & \\\text { Total } & 19 & 29063 & & & \\\hline\end{array}\end{array}  Coeff  STd Error t Stut p-value  Intercept 32.135.70.900.3834 Size 1225.92.050.0594 Cove 104.353.51.950.0715 Size  Cove 17.08.51.990.0661 SizeSq 0.30.21.280.2204 SizeSq  Cove 0.30.31.130.2749\begin{array} { l c r r r } \hline & \text { Coeff } & \text { STd Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & - 32.1 & 35.7 & - 0.90 & 0.3834 \\\text { Size } & 122 & 5.9 & 2.05 & 0.0594 \\\text { Cove } & - 104.3 & 53.5 & - 1.95 & 0.0715 \\\text { Size } { } ^ { * } \text { Cove } & 17.0 & 8.5 & 1.99 & 0.0661 \\\text { SizeSq } & - 0.3 & 0.2 & - 1.28 & 0.2204 \\\text { SizeSq } { } ^ { * } \text { Cove } & - 0.3 & 0.3 & - 1.13 & 0.2749\end{array}

-Referring to Table 15-4, is the overall model statistically adequate at a 0.05 level of significance for predicting sale price (Y)?

A) Yes, since the p-value for the test is smaller than 0.05.
B) No, since some of the t tests for the individual variables are not significant.
C) No, since the standard deviation of the model is fairly large.
D) Yes, since none of the þ-estimates are equal to 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
20
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                -Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?</strong> A) As the high temperature increases by one degree, the paid attendance will increase by 51.70. B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model. C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70. D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.


-Referring to Table 15-9, what is the correct interpretation for the estimated coefficient for TEMP?

A) As the high temperature increases by one degree, the paid attendance will increase by 51.70.
B) As the high temperature increases by one degree, the paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.
C) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70.
D) As the high temperature increases by one degree, the estimated mean paid attendance will increase by 51.70 taking into consideration all the other independent variables included in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
21
Using the Cook's distance statistic Di to determine influential points in a multiple regression model with k independent variable and n observations and letting Fv1,v 2 denote the critical value of an F distribution with v1 and v2 degrees of freedom at a 0.50 level of significance, Xi is an influential point if

A) Di > Fk+1,n-k-1
B) Di < Fn-k-1,k+1
C) Di < Fk+1,n-k-1
D)Di>Fn-k-1,k+1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
22
The logarithm transformation can be used

A) to overcome violations to the homoscedasticity assumption.
B) to test for possible violations to the homoscedasticity assumption.
C) to overcome violations to the autocorrelation assumption.
D) to test for possible violations to the autocorrelation assumption.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
23
In multiple regression, the procedure permits variables to enter and leave the model at different stages of its development.

A) stepwise regression
B) residual analysis
C) backward elimination
D) forward selection
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
24
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308    -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?</strong> A) equal variance B) linearity C) normality of errors D) none of the above

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308



-Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for OPWIN%?

A) equal variance
B) linearity
C) normality of errors
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
25
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:

AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:   \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, which of the following models should be taken into consideration using the Mallows' Cp statistic?</strong> A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub><sub> </sub> B) X<sub>1</sub>, X<sub>3</sub> C) both of the above D) none of the above

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, which of the following models should be taken into consideration using the Mallows' Cp statistic?

A) X1, X2, X3
B) X1, X3
C) both of the above
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
26
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:
Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon
where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT
Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc} \text {Regression Statistics}\\\hline \text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}


 ANOVA dfSS MS F Sgnificance  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{l}\text { ANOVA }\\\begin{array}{lrrrrr}\hline & d f & S S & \text { MS } & F & \text { Sgnificance } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & & \\\hline\end{array}\end{array}


 Coeff  Std Error t Stad p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Price Sq 0.0000670.000070.950.3647\begin{array}{lrccc} & \text { Coeff } & \text { Std Error } & t \text { Stad } & p \text {-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Price Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647 \\\hline\end{array}


-Referring to Table 15-3, what is the correct interpretation of the coefficient of multiple determination?

A) 98.8% of the total variation in demand can be explained by the addition of the square term in price.
B) 98.8% of the total variation in demand can be explained by just the square term in price.
C) 98.8% of the total variation in demand can be explained by the quadratic relationship between demand and price.
D) 98.8% of the total variation in demand can be explained by the linear relationship between demand and price.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
27
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub> j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}    -Referring to Table 15-8, which of the following predictors should first be dropped to remove collinearity?</strong> A) X1 B) X3 C) X<sub>2</sub><sub> </sub> D) none of the above

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}


-Referring to Table 15-8, which of the following predictors should first be dropped to remove collinearity?

A) X1
B) X3
C) X2
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
28
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. A statistical analyst discovers that capital spending by corporations has a significant inverse relationship with wage spending. What should the microeconomist who developed this multiple regression model be particularly concerned with?

A) collinearity
B) randomness of error terms
C) normality of residuals
D) missing observations
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
29
As a project for his business statistics class, a student examined the factors that determined parking meter rates throughout the campus area. Data were collected for the price per hour of parking, blocks to the quadrangle, and one of the three jurisdictions: on campus, in downtown and off campus, or outside of downtown and off campus. The population regression model hypothesized is Yi=α+β1X1i+β2X2i+β3X3i+ε Y_{i}=\alpha+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\varepsilon where
Y is the meter price
X1 is the number of blocks to the quad
X2 is a dummy variable that takes the value 1 if the meter is located in downtown and off campus and the value 0 otherwise
X3 is a dummy variable that takes the value 1 if the meter is located outside of downtown and off campus, and the value 0 otherwise
Suppose that whether the meter is located on campus is an important explanatory factor. Why should the variable that depicts this attribute not be included in the model?

A) Its inclusion will introduce autocorrelation.
B) Its inclusion will inflate the standard errors of the estimated coefficients.
C) Its inclusion will introduce collinearity.
D) both B and C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
30
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 <strong>TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}     -Referring to Table 15-8, the best model chosen using the adjusted R-square statistic is</strong> A) X1, X2, X3. B) X1, X3. C) either of the above D) none of the above

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}



-Referring to Table 15-8, the "best" model chosen using the adjusted R-square statistic is

A) X1, X2, X3.
B) X1, X3.
C) either of the above
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
31
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. The business literature involving human capital shows that education influences an individual's annual income. Combined, these may influence family size. With this in mind, what should the real estate builder be particularly concerned with when analyzing the multiple regression model?

A) missing observations
B) normality of residuals
C) collinearity
D) randomness of error terms
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
32
Which of the following is used to determine observations that have influential effect on the fitted model?

A) Cook's distance statistic
B) the Cp statistic
C) variance inflationary factor
D) Durbin Watson statistic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
33
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?</strong> A) normality of errors B) equal variance C) linearity D) none of the above

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308

-Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for TEMP?

A) normality of errors
B) equal variance
C) linearity
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
34
The Variance Inflationary Factor (VIF) measures the

A) correlation of the X variables with each other.
B) contribution of each X variable with the Y variable after all other X variables are included in the model.
C) standard deviation of the slope.
D) correlation of the X variables with the Y variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
35
Which of the following is not used to determine observations that have influential effect on the fitted model?

A) Cook's distance statistic
B) the studentized deleted residuals ti
C) the hat matrix elements hi
D) the Cp statistic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
36
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}    -Referring to Table 15-8, what are, respectively, the values of the variance inflationary factor of the 3 predictors?

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}


-Referring to Table 15-8, what are, respectively, the values of the variance inflationary factor of the 3 predictors?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
37
Using the best-subsets approach to model building, models are being considered when their

A) Cp ? (k + 1).
B) Cp > (k + 1).
C) Cp ? k.
D) Cp > k.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
38
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:

Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT
Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\text {Regression Statistics}\\\hline \text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

ANOVA\text {ANOVA}
dfSS MS F Significance  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc} \hline& d f & S S & \text { MS } & F & \text { Significance } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & & \\\hline\end{array}


 Coeff  Std Error t Stat p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Price Sq0.0000670.000070.950.3647\begin{array}{lrccc} & \text { Coeff } & \text { Std Error } & t \text { Stat } & p \text {-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Price } S q & 0.000067 & 0.00007 & 0.95 & 0.3647 \\\hline\end{array}



-Referring to Table 15-3, does there appear to be significant upward curvature in the response curve relating the demand (Y) and the price (X) at 10% level of significance?

A) No, since the p-value for the test is greater than 0.10.
B) Yes, since the value of þ2 is positive.
C) Yes, since the p-value for the test is less than 0.10.
D) No, since the value of þ2 is near 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
39
Which of the following will not change a nonlinear model into a linear model?

A) logarithmic transformation
B) square-root transformation
C) variance inflationary factor
D) quadratic regression model
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
40
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise
PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.

 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above   <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above

 <strong>TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.   -Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?</strong> A) normality of errors B) linearity C) equal variance D) none of the above

The coefficient of multiple determination ( R 2 j) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.


-Referring to Table 15-9, which of the following assumptions is most likely violated based on the residual plot for WIN%?

A) normality of errors
B) linearity
C) equal variance
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
41
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f &{ \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, the prediction of time to relief for a person receiving a dose of the drug 10 units above the average dose , is____ .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
42
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup><sub> j </sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308   -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308


-Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
43
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9,_____ of the variation in ATTENDANCE can be explained by the five independent variables after taking into consideration the number of independent variables and the number of observations.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
44
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup><sup> </sup><sub>j</sub>) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  j   -Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
The coefficient of multiple determination ( R 2 j) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.
jj

-Referring to Table 15-9, what is the value of the test statistic to determine whether PROMOTION makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
45
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. The p-value of the test is_______
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
46
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a curvilinear model without a linear term and a curvilinear model that includes a linear term. The value of the test statistic is ____ .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
47
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."

SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term. The p-value of the test statistic for the contribution of the curvilinear term is______
.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
48
The_____ (larger/smaller) the value of the Variance Inflationary Factor, the higher is the collinearity of the X variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
49
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. The value of the test statistic is______ .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
50
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline \text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a curvilinear model without a linear term and a curvilinear
model that includes a linear term. The p-value of the test is _______.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
51
The Variance Inflationary Factor (VIF) measures the correlation of the X variables with the Y variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
52
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9, what is the value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
53
In multiple regression, the_____ procedure permits variables to enter and leave the model at different stages of its development.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
54
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, what is the p-value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, what is the p-value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
55
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9, what is the p-value of the test statistic to determine whether TEMP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
56
A regression diagnostic tool used to study the possible effects of collinearity is ______.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
57
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is not significant at a 5% level of significance.

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is not significant at a 5% level of significance.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
58
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}              The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.    -Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.
The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.



-Referring to Table 15-9,_______ of the variation in ATTENDANCE can be explained by the five independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
59
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, what is the value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, what is the value of the test statistic to determine whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
60
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}


 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}               The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.  -Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?

The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308.

-Referring to Table 15-9, what are, respectively, the values of the variance inflationary factor of the 5 predictors?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
61
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 TABLE 15-7 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a centered curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been centered. SUMMARY OUTPUT    \begin{array}{l} \begin{array} { l r } \begin{array} { l }  \end{array} \\ \hline\text { Regression  Statistics }\\ \hline \text { Multiple R } & 0.747 \\ \text { RSquare } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \\ \hline \end{array}\\ \text { ANOVA }\\\\ \begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\ \hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \\ \hline \end{array}\\\\ \begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\ \hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\ \hline \end{array} \end{array}   -Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.01 she would decide that there is a significant curvilinear relationship.  Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.01 she would decide that there is a significant curvilinear relationship.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
62
TABLE 15-9
Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected.
ATTENDANCE = Paid attendance for the game
TEMP = High temperature for the day
WIN% = Team's winning percentage at the time of the game
OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held
The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.
 Regression Statistics  Multiple R 0.5487 R Square 0.3011 Adjusted R Square 0.2538 Standard Error 6442.4456 Observations 80\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\\text { R Square } & 0.3011 \\\text { Adjusted R Square } & 0.2538 \\\text { Standard Error } & 6442.4456 \\\text { Observations } & 80 \\\hline\end{array}\end{array}

 ANOVA df SS  MS  F  Significance F Regression 51322911703.0671264582340.61346.37470.0001 Residual 743071377751.120441505104.7449 Total 794394289454.1875\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\\hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\\text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\\text { Total } & 79 & 4394289454.1875 & & & \\\hline\end{array}\end{array}

Coefficients Standard Error t Statp-valueIntercept3862.48086180.94520.62490.5340 Temp 51.703162.94390.82140.4140 Win% 21.108516.23381.30030.1975 OpWin% 11.34536.46171.75580.0833 Weekend 367.53772786.26390.13190.8954 Promotion 6927.88202784.34422.48820.0151\begin{array}{lrrrr}\hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\\hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\\text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\\text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\\text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\\text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\\text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\\hline\end{array}

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.  TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.

 TABLE 15-9 Many factors determine the attendance at Major League Baseball games. These factors can include when the game is played, the weather, the opponent, whether or not the team is having a good season, and whether or not a marketing promotion is held. Data from 80 games of the Kansas City Royals for the following variables are collected. ATTENDANCE = Paid attendance for the game TEMP = High temperature for the day WIN% = Team's winning percentage at the time of the game OPWIN% = Opponent team's winning percentage at the time of the game WEEKEND - 1 if game played on Friday, Saturday or Sunday; 0 otherwise PROMOTION - 1 = if a promotion was held; 0 = if no promotion was held The regression results using attendance as the dependent variable and the remaining five variables as the independent variables are presented below.  \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l r } \hline \text { Multiple R } & 0.5487 \\ \text { R Square } & 0.3011 \\ \text { Adjusted R Square } & 0.2538 \\ \text { Standard Error } & 6442.4456 \\ \text { Observations } & 80 \\ \hline \end{array} \end{array}    \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c } \hline & \mathrm { df } & \text { SS } & \text { MS } & \text { F } & \text { Significance } \mathrm { F } \\ \hline \text { Regression } & 5 & 1322911703.0671 & 264582340.6134 & 6.3747 & 0.0001 \\ \text { Residual } & 74 & 3071377751.1204 & 41505104.7449 & & \\ \text { Total } & 79 & 4394289454.1875 & & & \\ \hline \end{array} \end{array}    \begin{array}{lrrrr} \hline&\text{Coefficients}&\text{ Standard Error}&\text{ t Stat}&\text{p-value}\\ \hline\text{Intercept}&-3862.4808&6180.9452&-0.6249&0.5340\\ \text { Temp } & 51.7031 & 62.9439 & 0.8214 & 0.4140 \\ \text { Win\% } & 21.1085 & 16.2338 & 1.3003 & 0.1975 \\ \text { OpWin\% } & 11.3453 & 6.4617 & 1.7558 & 0.0833 \\ \text { Weekend } & 367.5377 & 2786.2639 & 0.1319 & 0.8954 \\ \text { Promotion } & 6927.8820 & 2784.3442 & 2.4882 & 0.0151 \\ \hline \end{array}                The coefficient of multiple determination ( R <sup>2</sup> <sub>j</sub> ) of each of the 5 predictors with all the other remaining predictors are, respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308  -Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.



The coefficient of multiple determination ( R 2 j ) of each of the 5 predictors with all the other remaining predictors are,
respectively, 0.2675, 0.3101, 0.1038, 0.7325, and 0.7308

-Referring to Table 15-9, there is reason to suspect collinearity between some pairs of predictors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
63
One of the consequences of collinearity in multiple regression is inflated standard errors in some or all of the estimated slope coefficients.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
64
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}    -Referring to Table 15-8, the residual plot suggests that a nonlinear model on % attendance may be a better model.

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}


-Referring to Table 15-8, the residual plot suggests that a nonlinear model on % attendance may be a better model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
65
One of the consequences of collinearity in multiple regression is biased estimates on the slope coefficients.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
66
Only when all three of the hat matrix elements hi, the Studentized deleted residuals ti and the Cook's distance statistic Di reveal consistent result should an observation be removed from the regression analysis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
67
Two simple regression models were used to predict a single dependent variable. Both models were highly significant, but when the two independent variables were placed in the same multiple regression model for the dependent variable, R2 did not increase substantially and the parameter estimates for the model were not significantly different from 0. This is probably an example of collinearity.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
68
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 TABLE 15-7 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a centered curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been centered. SUMMARY OUTPUT    \begin{array}{l} \begin{array} { l r } \begin{array} { l }  \end{array} \\ \hline\text { Regression  Statistics }\\ \hline \text { Multiple R } & 0.747 \\ \text { RSquare } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \\ \hline \end{array}\\ \text { ANOVA }\\\\ \begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\ \hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \\ \hline \end{array}\\\\ \begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\ \hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\ \hline \end{array} \end{array}   -Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.05, she would decide that there is a significant curvilinear relationship.  Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.05, she would decide that there is a significant curvilinear relationship.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
69
TABLE 15-3
A certain type of rare gem serves as a status symbol for many of its owners. In theory, for low prices, the demand increases and it decreases as the price of the gem increases. However, experts hypothesize that when the gem is valued at very high prices, the demand increases with price due to the status owners believe they gain in obtaining the gem. Thus, the model proposed to best explain the demand for the gem by its price is the quadratic model:

Y=β0+β1X+β2X2+ε Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\varepsilon

where Y = demand (in thousands) and X = retail price per carat.
This model was fit to data collected for a sample of 12 rare gems of this type. A portion of the computer analysis obtained from Microsoft Excel is shown below:
SUMMARY OUTPUT
 Regression Statistics Multiple R 0.994 R Square 0.988 Standard Error 12.42 Observations 12\begin{array}{lc}\text { Regression Statistics}\\\hline\text { Multiple R } & 0.994 \\\text { R Square } & 0.988 \\\text { Standard Error } & 12.42 \\\text { Observations } & 12 \\\hline\end{array}

ANOVAANOVA
dfSS MS F Signifcance  Regression 2115145575733730.0001 Residual 91388154 Total 11116533\begin{array}{lrrrrc}\hline & d f & S S & \text { MS } & F & \text { Signifcance } \\\hline \text { Regression } & 2 & 115145 & 57573 & 373 & 0.0001 \\\text { Residual } & 9 & 1388 & 154 & & \\\text { Total } & 11 & 116533 & & & \\\hline\end{array}


 Coeff  Std Error t Stat  p-value  Intercept 286.429.6629.640.0001 Price 0.310.065.140.0006 Price Sq 0.0000670.000070.950.3647\begin{array}{lrccc}\hline & \text { Coeff } & \text { Std Error } & t \text { Stat } & \text { p-value } \\\hline \text { Intercept } & 286.42 & 9.66 & 29.64 & 0.0001 \\\text { Price } & -0.31 & 0.06 & -5.14 & 0.0006 \\\text { Price Sq } & 0.000067 & 0.00007 & 0.95 & 0.3647\end{array}


-Referring to Table 15-3, a more parsimonious simple linear model is likely to be statistically superior to the fitted curvilinear for predicting sale price (Y).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
70
Collinearity is present when there is a high degree of correlation between independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
71
The goals of model building are to find a good model with the fewest independent variables that is easier to interpret and has lower probability of collinearity.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
72
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\end{array}\\\text { ANOVA }\\\\\begin{array} { l r r r l l } \hline & d f & { \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term. If she used a level of significance of 0.02, she would decide that the linear model is sufficient.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
73
In stepwise regression, an independent variable is not allowed to be removed from the model once it has entered into the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
74
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
Following is the residual plot for % Attendance:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted Following is the residual plot for % Attendance:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, there is reason to suspect collinearity between some pairs of predictors.

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, there is reason to suspect collinearity between some pairs of predictors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
75
Collinearity is present when there is a high degree of correlation between the dependent variable and any of the independent variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
76
Collinearity is present if the dependent variable is linearly related to one of the explanatory variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
77
A high value of R2 significantly above 0 in multiple regression accompanied by insignificant
t-values on all parameter estimates very often indicates a high correlation between independent variables in the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
78
In data mining where huge data sets are being explored to discover relationships among a large number of variables, the best-subsets approach is more practical than the stepwise regression approach.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
79
TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
Adjusted
Following is the residual plot for % Attendance:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below: Adjusted Following is the residual plot for % Attendance:  \begin{array}{llcclcc} & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}       -Referring to Table 15-8, the null hypothesis should be rejected when testing whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance.

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}





-Referring to Table 15-8, the null hypothesis should be rejected when testing whether the quadratic effect of daily average of the percentage of students attending class on percentage of students passing the proficiency test is significant at a 5% level of significance.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
80
TABLE 15-7
A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered."
SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.747 RSquare 0.558 Adjusted R Square 0.478 Standard Error 863.1 Observations 14 ANOVA df SS  MS F Significance F Regression 21034479751723996.940.0110 Residual 118193929744903 Total 1318538726 Coeff  Std Error t Stut p-value  Intercept 1283.0352.03.650.0040 CenDose 25.2288.6312.920.0140 CenDoseSq 0.86040.37222.310.0410\begin{array}{l}\begin{array} { l r } \begin{array} { l } \end{array} \\\hline\text { Regression Statistics }\\\hline \text { Multiple R } & 0.747 \\\text { RSquare } & 0.558 \\\text { Adjusted R Square } & 0.478 \\\text { Standard Error } & 863.1 \\\text { Observations } & 14 \\\hline\\\end{array}\\\text { ANOVA }\\\begin{array} { l r r r l l } \hline & d f &{ \text { SS } } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\\text { Residual } & 11 & 8193929 & 744903 & & \\\text { Total } & 13 & 18538726 & & & \\\hline\end{array}\\\\\begin{array} { l c c c c } \hline & \text { Coeff } & \text { Std Error } & t \text { Stut } & p \text {-value } \\\hline \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\\text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\\text { CenDoseSq } & 0.8604 & 0.3722 & 2.31 & 0.0410 \\\hline\end{array}\end{array}

-Referring to Table 15-7, suppose the chemist decides to use a t test to determine if there is a significant difference between a curvilinear model without a linear term and a curvilinear model that includes a linear term. Using a level of significance of 0.05, she would decide that the curvilinear model should include a linear term.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 88 في هذه المجموعة.