Deck 16: Trigonometric Models

ملء الشاشة (f)
exit full mode
سؤال
Evaluate the integral. (10x+25)sin(x2+5x)dx\int ( 10 x + 25 ) \sin \left( x ^ { 2 } + 5 x \right) \mathrm { d } x

A) 5xsin(x2+5x)+C- 5 x \sin \left( x ^ { 2 } + 5 x \right) + C
B) 5cos(x2+5x)+C5 \cos \left( x ^ { 2 } + 5 x \right) + C
C) 5xcos(x2+5x)+C5 x \cos \left( x ^ { 2 } + 5 x \right) + C
D) 5cos(x2+5x)+C- 5 \cos \left( x ^ { 2 } + 5 x \right) + C
E) 5sin(x2+5x)+C5 \sin \left( x ^ { 2 } + 5 x \right) + C
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Recall that the average of a function f(x)f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x)dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x
Find the average of the given function.
f(x)=sin(5x)f ( x ) = \sin ( 5 x ) over [0,5π][ 0,5 \pi ]

A)Average = 225π\frac { 2 } { 25 \pi }
B) Average = 25π2\frac { 25 \pi } { 2 }
C) Average = π5\frac { \pi } { 5 }
D) Average = 25π4\frac { 25 \pi } { 4 }
E) Average = 5π\frac { 5 } { \pi }
سؤال
Use geometry to compute the given integral. π6π62sinxdx\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x

A) π6π62sinxdx=6\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 6
B) π6π62sinx dx=4\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x \mathrm {~d} x = - 4
C) π6π62sinxdx=0\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 0
D) π6π62sinxdx=8\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 8
E) none of these
سؤال
Evaluate the integral. π3π4sinx dx\int _ { - \frac { \pi } { 3 } } ^ { \frac { \pi } { 4 } } \sin x \mathrm {~d} x

A) cosπ4cosπ\cos \frac { \pi } { 4 } - \cos \pi
B) sinπ3+sinπ4\sin \frac { \pi } { 3 } + \sin \frac { \pi } { 4 }
C) sinπ3cosπ5\sin \frac { \pi } { 3 } - \cos \frac { \pi } { 5 }
D) cosπ3cosπ4\cos \frac { \pi } { 3 } - \cos \frac { \pi } { 4 }
E) none of these
سؤال
Evaluate the integral. ? (8cosx4.1sinx9.3)dx\int ( 8 \cos x - 4.1 \sin x - 9.3 ) \mathrm { d } x ?

A) 8sinx+4.1cosx9.3x+C8 \sin x + 4.1 \cos x - 9.3 x + C
B) 8sinx+4.1cosx+C- 8 \sin x + 4.1 \cos x + C
C) 8sinx4.1cosx9.3x+C8 \sin x - 4.1 \cos x - 9.3 x + C
D) 8sinx4.1cosx+C- 8 \sin x - 4.1 \cos x + C
E) 8sinx4.1cosx+9.3x+C8 \sin x - 4.1 \cos x + 9.3 x + C
سؤال
Recall that the total income received from time t=at = a to time t=bt = b from a continuous income stream of R(t)R ( t ) dollars per year is
Total value = TV = abR(t)dt\int _ { a } ^ { b } R ( t ) \mathrm { d } t
Find the total value of the given income stream and also find its future value (at the end of the given interval) using the given interest rate.
R(t)=800,000sin(2πt)R ( t ) = 800,000 \sin ( 2 \pi t ) , 0t50 \leq t \leq 5 , at 9%

A)TV = $0, FV = $72,344.91
B) TV = $0, FV = $327,074.77
C) TV = $1,600,000, FV = $834,722.23
D) TV = $0, FV = $256,372.45
E) none of these
سؤال
Evaluate the integral. (3.4sec2x+cosx1.43.6ex)dx\int \left( 3.4 \sec ^ { 2 } x + \frac { \cos x } { 1.4 } - 3.6 e ^ { x } \right) \mathrm { d } x

A) 3.4tanx+sinx1.43.6ex+C3.4 \tan x + \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
B) 3.4tanx+sinx1.43.6ex+C\frac { 3.4 } { \tan x } + \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
C) 3.4tanxsinx1.43.6ex+C3.4 \tan x - \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
D) 3.4tanxsinx1.43.6ex+C- \frac { 3.4 } { \tan x } - \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
E) 3.4tanx+sinx1.43.6ex+C- \frac { 3.4 } { \tan x } + \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
سؤال
Evaluate the integral. (x3+x4)sec2(5x4+4x5)dx\int \left( x ^ { 3 } + x ^ { 4 } \right) \sec ^ { 2 } \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) \mathrm { d } x

A) 15tan(5x4+4x5)+C\frac { 1 } { 5 } \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
B) 120tan(5x4+4x5)+C\frac { 1 } { 20 } \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
C) 14tan(5x4+4x5)+C\frac { 1 } { 4 } \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
D) tan(5x4+4x5)+C\tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
E) 20tan(5x4+4x5)+C20 \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
سؤال
Evaluate the integral.
Evaluate the integral. ​  <div style=padding-top: 35px>
سؤال
Decide whether the integral converges. If the integral converges, compute its value. 0+e3xcos(3x)dx\int _ { 0 } ^ { + \infty } e ^ { - 3 x } \cos ( 3 x ) \mathrm { d } x

A) 15\frac { 1 } { 5 }
B) 12\frac { 1 } { 2 }
C) 16\frac { 1 } { 6 }
D) 13\frac { 1 } { 3 }
E) diverges
سؤال
Evaluate the integral. π4π4tanx dx\int _ { - \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \tan x \mathrm {~d} x

A) lnsec(π4)lnsec(π4)\ln \left| \sec \left( \frac { \pi } { 4 } \right) \right| - \ln \left| \sec \left( - \frac { \pi } { 4 } \right) \right|
B) lnsin(π4)lnsin(π4)\ln \left| \sin \left( \frac { \pi } { 4 } \right) \right| - \ln \left| \sin \left( \frac { \pi } { 4 } \right) \right|
C) sin(π4)sin(π4)\sin \left( - \frac { \pi } { 4 } \right) - \sin \left( \frac { \pi } { 4 } \right)
D) cos(π4)cos(π4)\cos \left( \frac { \pi } { 4 } \right) - \cos \left( - \frac { \pi } { 4 } \right)
E) none of these
سؤال
Recall that the average of a function f(x)f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x)dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x
Calculate the 9-unit moving average of the function.
f(x)=cos(πx18)f ( x ) = \cos \left( \frac { \pi x } { 18 } \right)

A) fˉ(x)=2π(sin(πx18)cos(πx18))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 18 } \right) \right)
B) fˉ(x)=2π(sin(πx18)cos(πx3))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 3 } \right) \right)
C) fˉ(x)=2π(sin(πx18)+cos(πx2))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 2 } \right) \right)
D) fˉ(x)=2π(cos(πx18)sin(πx18))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \cos \left( \frac { \pi x } { 18 } \right) - \sin \left( \frac { \pi x } { 18 } \right) \right)
E) fˉ(x)=2π(sin(πx18)+cos(πx18))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 18 } \right) \right)
سؤال
Evaluate the integral. sin(4x7)dx\int - \sin ( - 4 x - 7 ) \mathrm { d } x

A) cos(4x+7)4+C\frac { \cos ( 4 x + 7 ) } { 4 } + C
B) 4cos(4x7)+C4 \cos ( 4 x - 7 ) + C
C) cos(4x+7)4+C- \frac { \cos ( 4 x + 7 ) } { 4 } + C
D) 4cos(4x+7)+C- 4 \cos ( 4 x + 7 ) + C
E) cos(4x7)4+C- \frac { \cos ( 4 x - 7 ) } { 4 } + C
سؤال
Evaluate the integral.
Evaluate the integral. ​   ​ Use the symbol C to write the constant.<div style=padding-top: 35px>
Use the symbol C to write the constant.
سؤال
Evaluate the integral.
Evaluate the integral. ​   ​ Use the symbol C to write the constant.<div style=padding-top: 35px>
Use the symbol C to write the constant.
سؤال
Evaluate the integral 1π3π9sin(1x)x2 dx\int _ { \frac { 1 } { \pi } } ^ { \frac { 3 } { \pi } } 9 \frac { \sin \left( \frac { 1 } { x } \right) } { x ^ { 2 } } \mathrm {~d} x

A)9.5
B) 9
C) 31.5
D) 22.5
E) 13.5
سؤال
Evaluate the integral. 6sec(3x7)dx\int 6 \sec ( 3 x - 7 ) \mathrm { d } x

A) 2lntan(3x7)+C2 \ln | \tan ( 3 x - 7 ) | + C
B) 2lnsec(3x7)+tan(3x7)+C2 \ln | \sec ( 3 x - 7 ) + \tan ( 3 x - 7 ) | + C
C) 6lnsec(3x7)+tan(3x7)+C6 \ln | \sec ( 3 x - 7 ) + \tan ( 3 x - 7 ) | + C
D) lnsec(3x7)+tan(3x7)+C\ln | \sec ( 3 x - 7 ) + \tan ( 3 x - 7 ) | + C
E) 2lnsec(3x7)+C2 \ln | \sec ( 3 x - 7 ) | + C
سؤال
Evaluate the integral. 10.8cos(6x1)dx\int 10.8 \cos ( 6 x - 1 ) \mathrm { d } x

A) 10.8sin(6x1)+C10.8 \sin ( 6 x - 1 ) + C
B) 1.8cos(6x1)+C1.8 \cos ( 6 x - 1 ) + C
C) 1.8sin(6x1)+C1.8 \sin ( 6 x - 1 ) + C
D) 1.8sin(6x1)+C- 1.8 \sin ( 6 x - 1 ) + C
E) 1.8sin(6x2x)+C1.8 \sin \left( 6 x ^ { 2 } - x \right) + C
سؤال
Evaluate the integral. 1π2+14xcos(x21)dx\int _ { 1 } ^ { \sqrt { \frac { \pi } { 2 } + 1 } } 4 x \cos \left( x ^ { 2 } - 1 \right) \mathrm { d } x

A)2
B) 10
C) 1
D) 6
E) 4
سؤال
Use geometry to compute the given integral. 05π6cosxdx\int _ { 0 } ^ { 5 \pi } 6 \cos x d x

A) 05π6cosxdx=5\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 5
B) 05π6cosxdx=12\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 12
C) 05π6cosxdx=1\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 1
D) 05π6cosxdx=0\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 0
E) none of these
سؤال
Calculate the derivative. ddx([lnx][cot(6x+5)])\frac { d } { d x } ( [ \ln | x | ] [ \cot ( 6 x + 5 ) ] )

A) cot(6x5)x6lnxcsc2(6x5)\frac { \cot ( 6 x - 5 ) } { x } - 6 \ln | x | \csc ^ { 2 } ( 6 x - 5 )
B) cot(6x+5)x6lnxcsc2(6x+5)\frac { \cot ( 6 x + 5 ) } { x } - 6 \ln | x | \csc ^ { 2 } ( 6 x + 5 )
C) 6lnxcsc2(6x+5)- 6 \ln | x | \csc ^ { 2 } ( 6 x + 5 )
D) cot(6x+5)x\frac { \cot ( 6 x + 5 ) } { x }
E) tan(6x+5)x6lnxcsc2(6x5)\frac { \tan ( 6 x + 5 ) } { x } - 6 \ln | x | \csc ^ { 2 } ( 6 x - 5 )
سؤال
Find the derivative of the function. w(x)=2sec(x)tan(x22)w ( x ) = 2 \sec ( x ) \cdot \tan \left( x ^ { 2 } - 2 \right)

A) w(x)=2sec2xsinxtan(x22)+4xsecxsec2(x22)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } \left( x ^ { 2 } - 2 \right)
B) w(x)=2sec2xsinxtan(x22)+4xsecxsec2(2x2)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } ( 2 x - 2 )
C) w(x)=2sec2xsinxtan(x2+2)+4xsecxsec2(2x2)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } + 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } ( 2 x - 2 )
D) w(x)=2sec2xsinxtan(x22)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right)
E) w(x)=2sec2xsinxtan(x22)+4xsecxsec2(x24)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } \left( x ^ { 2 } - 4 \right)
سؤال
Calculate the derivative. ddx[sec(6x3x21)]\frac { d } { d x } \left[ \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \right]

A) 6x418x2(x21)2csc(6x3x21)tan(6x3x21)\frac { 6 x ^ { 4 } - 18 x ^ { 2 } } { \left( x ^ { 2 } - 1 \right) ^ { 2 } } \csc \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
B) 6x3x21csc(6x3x21)tan(6x3x21)\frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \csc \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
C) 6x418x2(x21)2sec(6x3x21)tan(6x3x21)\frac { 6 x ^ { 4 } - 18 x ^ { 2 } } { \left( x ^ { 2 } - 1 \right) ^ { 2 } } \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
D) 6x318x2x21sec(6x3x21)tan(6x3x21)\frac { 6 x ^ { 3 } - 18 x ^ { 2 } } { x ^ { 2 } - 1 } \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
E) 6x418x2(x2+1)2sec(6x3x21)tan(6x3x2+1)\frac { 6 x ^ { 4 } - 18 x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 2 } } \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } + 1 } \right)
سؤال
Find the derivative of the function. t(x)=cotx4+8secxt ( x ) = \frac { \cot x } { 4 + 8 \sec x }

A) t(x)=(48secx)csc2x+8secx(48secx)2t ^ { \prime } ( x ) = - \frac { ( 4 - 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 - 8 \sec x ) ^ { 2 } }
B) t(x)=(4+8secx)csc2x+8secx(4+8secx)2t ^ { \prime } ( x ) = - \frac { ( 4 + 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 + 8 \sec x ) ^ { 2 } }
C) t(x)=(4+8secx)csc2x+8secx(4+8secx)2t ^ { \prime } ( x ) = \frac { ( 4 + 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 + 8 \sec x ) ^ { 2 } }
D) t(x)=(4+8secx)csc2x+8secx(48secx)2t ^ { \prime } ( x ) = - \frac { ( 4 + 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 - 8 \sec x ) ^ { 2 } }
E) t(x)=(48secx)csc2x8secx(48secx)2t ^ { \prime } ( x ) = - \frac { ( 4 - 8 \sec x ) \csc ^ { 2 } x - 8 \sec x } { ( 4 - 8 \sec x ) ^ { 2 } }
سؤال
Calculate the derivative. ddx[sin(7x)]0.5\frac { d } { d x } [ \sin ( 7 x ) ] ^ { 0.5 }

A) 3.5sin(7x)cos(7x)3.5 \sin ( 7 x ) \cdot \cos ( 7 x )
B) 3.5(sin(7x))0.5cos(7x)3.5 ( \sin ( 7 x ) ) ^ { - 0.5 } \cdot \cos ( 7 x )
C) (sin(7x))0.5cos(7x)( \sin ( 7 x ) ) ^ { - 0.5 } \cdot \cos ( 7 x )
D) 7(sin(7x))0.5cos(7x)7 ( \sin ( 7 x ) ) ^ { - 0.5 } \cdot \cos ( 7 x )
E) 7(sin(7x))0.5cos(7x)7 ( \sin ( 7 x ) ) ^ { 0.5 } \cdot \cos ( 7 x )
سؤال
Find the derivative of the function. g(x)=9sin(x)tanxg ( x ) = 9 \sin ( x ) \cdot \tan x

A) g(x)=9cos(x)tanx+9sin(x)csc2xg' ( x ) = 9 \cos ( x ) \cdot \tan x + 9 \sin ( x ) \cdot \csc ^ { 2 } x
B) g(x)=9cos(x)tanx+9sin(x)sec2xg '( x ) = 9 \cos ( x ) \cdot \tan x + 9 \sin ( x ) \cdot \sec ^ { 2 } x
C) g(x)=9cos(x)tanx9sin(x)cotxg '( x ) = 9 \cos ( x ) \cdot \tan x - 9 \sin ( x ) \cdot \cot x
D) g(x)=9cos(x)tanx+9cos(x)cotxg' ( x ) = 9 \cos ( x ) \cdot \tan x + 9 \cos ( x ) \cdot \cot x
E) g(x)=9cos(x)tanx9sin(x)sec2xg '( x ) = 9 \cos ( x ) \cdot \tan x - 9 \sin ( x ) \cdot \sec ^ { 2 } x
سؤال
Calculate the derivative. ddx[e3xsin(3πx)]\frac { d } { d x } \left[ e ^ { - 3 x } \sin ( 3 \pi x ) \right]

A) e3x(3sin(3πx)3πcos(3πx))e ^ { 3 x } ( - 3 \sin ( 3 \pi x ) - 3 \pi \cos ( 3 \pi x ) )
B) e3x(3sin(3πx)+3πcos(3πx))e ^ { - 3 x } ( - 3 \sin ( 3 \pi x ) + 3 \pi \cos ( 3 \pi x ) )
C) e3x(3sin(3πx)3πcos(3πx))e ^ { - 3 x } ( - 3 \sin ( 3 \pi x ) - 3 \pi \cos ( 3 \pi x ) )
D) e3x(sin(3πx)+cos(3πx))e ^ { - 3 x } ( \sin ( 3 \pi x ) + \cos ( 3 \pi x ) )
E) e3x(sin(3πx)3πcos(3πx))e ^ { - 3 x } ( \sin ( 3 \pi x ) - 3 \pi \cos ( 3 \pi x ) )
سؤال
Find the derivative of the function. u(x)=sec(x5.2+2.8x9)u ( x ) = \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right)

A) u(x)=(5.2x4.2+2.8)sec(x5.22.8x9)tan(x5.22.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } + 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } - 2.8 x - 9 \right)
B) u(x)=(5.2x4.22.8)sec(x5.2+2.8x9)tan(x5.2+2.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
C) u(x)=(5.2x4.22.8)sec(x5.22.8x9)tan(x5.2+2.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
D) u(x)=(5.2x4.2+2.8)sec(x5.2+2.8x9)tan(x5.2+2.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } + 2.8 \right) \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
E) u(x)=(5.2x4.22.8)sec(x5.22.8x9)tan(x5.22.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } - 2.8 x - 9 \right)
سؤال
Find the derivative of the function. s(x)=2cos2xs ( x ) = 2 \cos ^ { 2 } x

A) s(x)=4cos(x)cosxs '( x ) = - 4 \cos ( x ) \cdot \cos x
B) s(x)=4cos(x)sinxs '( x ) = - 4 \cos ( x ) \cdot \sin x
C) s(x)=2cos2(x)sinxs ^ { \prime } ( x ) = - 2 \cos ^ { 2 } ( x ) \cdot \sin x
D) s(x)=2cos(x)sinxs' ( x ) = - 2 \cos ( x ) \cdot \sin x
E) s(x)=4cscxs' ( x ) = - 4 \csc x
سؤال
Find the derivative of the function. y(x)=7cos(ex)+9excosxy ( x ) = 7 \cos \left( e ^ { x } \right) + 9 e ^ { x } \cos x

A) y(x)=ex(7sin(ex)+9cosx9sinx)y' ( x ) = e ^ { x } \left( - 7 \sin \left( e ^ { x } \right) + 9 \cos x - 9 \sin x \right)
B) y(x)=7sin(ex)+9sinx9cosxy' ( x ) = - 7 \sin \left( e ^ { x } \right) + 9 \sin x - 9 \cos x
C) y(x)=7sin(ex)+9cosx9sinxy' ( x ) = - 7 \sin \left( e ^ { x } \right) + 9 \cos x - 9 \sin x
D) y(x)=ex(7sin(ex)9cosx+9sinx)y '( x ) = e ^ { x } \left( - 7 \sin \left( e ^ { x } \right) - 9 \cos x + 9 \sin x \right)
E) y(x)=ex2(7sin(ex)9cosx+9sinx)y ^ { \prime } ( x ) = e ^ { x ^ { 2 } } \left( - 7 \sin \left( e ^ { x } \right) - 9 \cos x + 9 \sin x \right)
سؤال
Find the derivative of the function. z(x)=3ln4(secx+tanx)z ( x ) = 3 \ln \mid 4 ( \sec x + \tan x )

A) z(x)=9secxz ( x ) = 9 \sec x
B) z(x)=3secx4z ^ { \prime } ( x ) = \frac { 3 \sec x } { 4 }
C) z(x)=3(1+tan2x)z ^ { \prime } ( x ) = 3 \left( 1 + \tan ^ { 2 } x \right)
D) z(x)=secxz ^ { \prime } ( x ) = \sec x
E) z(x)=3secxz ( x ) = 3 \sec x
سؤال
Find the derivative of the function. r(x)=4xcosx+9x2+8r ( x ) = 4 x \cos x + 9 x ^ { 2 } + 8

A) r(x)=4xcosx+4cosx+18xr'( x ) = - 4 x \cos x + 4 \cos x + 18 x
B) r(x)=4xsinx+4cosx+18xr' ( x ) = - 4 x \sin x + 4 \cos x + 18 x
C) r(x)=4xsinx+4cosx18xr '( x ) = - 4 x \sin x + 4 \cos x - 18 x
D) r(x)=4xsinx+4sinx+18xr '( x ) = - 4 x \sin x + 4 \sin x + 18 x
E) r(x)=4xsinx4cosx+18xr '( x ) = 4 x \sin x - 4 \cos x + 18 x
سؤال
Find the derivative of the function. f(x)=9sinx8cosxf ( x ) = 9 \sin x - 8 \cos x

A) f(x)=9cosx+8sinxf ^ { \prime } ( x ) = 9 \cos x + 8 \sin x
B) f(x)=8cosx9sinxf ^ { \prime } ( x ) = 8 \cos x - 9 \sin x
C) f(x)=9cosx8sinxf ^ { \prime } ( x ) = 9 \cos x - 8 \sin x
D) f(x)=9cosx8sinxf ^ { \prime } ( x ) = - 9 \cos x - 8 \sin x
E) f(x)=8cosx+9sinxf ^ { \prime } ( x ) = 8 \cos x + 9 \sin x
سؤال
Decide whether each integral converges. If the integral converges, compute its value.
Choose the correct letter for each question.


-converges to 14\frac { 1 } { 4 }

A) 0+sin(2x)dx\int _ { 0 } ^ { + \infty } \sin ( 2 x ) \mathrm { d } x
B) 0+e2xsin(2x)dx\int _ { 0 } ^ { + \infty } e ^ { - 2 x } \sin ( 2 x ) \mathrm { d } x
سؤال
Decide whether each integral converges. If the integral converges, compute its value.
Choose the correct letter for each question.


-diverges

A) 0+sin(2x)dx\int _ { 0 } ^ { + \infty } \sin ( 2 x ) \mathrm { d } x
B) 0+e2xsin(2x)dx\int _ { 0 } ^ { + \infty } e ^ { - 2 x } \sin ( 2 x ) \mathrm { d } x
سؤال
Find the derivative of the function. u(x)=cos(x22x)u ( x ) = \cos \left( x ^ { 2 } - 2 x \right)

A) u(x)=(2x2)cos(x22x)u ^ { \prime } ( x ) = ( 2 x - 2 ) \cos \left( x ^ { 2 } - 2 x \right)
B) u(x)=(2x+2)sin(x22x)u ^ { \prime } ( x ) = - ( 2 x + 2 ) \sin \left( x ^ { 2 } - 2 x \right)
C) u(x)=(2x2)cos(x22x)u ^ { \prime } ( x ) = - ( 2 x - 2 ) \cos \left( x ^ { 2 } - 2 x \right)
D) u(x)=(2x2)sin(x22x)u ^ { \prime } ( x ) = - ( 2 x - 2 ) \sin \left( x ^ { 2 } - 2 x \right)
E) u(x)=(2x+2)sin(x22x)u ^ { \prime } ( x ) = ( 2 x + 2 ) \sin \left( x ^ { 2 } - 2 x \right)
سؤال
Find the derivative of the function. j(x)=7sec2xj ( x ) = 7 \sec ^ { 2 } x

A) j(x)=14sec2xtanxj '( x ) = 14 \sec ^ { 2 } x \cdot \tan x
B) j(x)=7sec2xtanxj '( x ) = 7 \sec ^ { 2 } x \cdot \tan x
C) j(x)=14sec2xtan2xj '( x ) = 14 \sec ^ { 2 } x \cdot \tan ^ { 2 } x
D) j(x)=14sec2xtanxj ^ { \prime } ( x ) = - 14 \sec ^ { 2 } x \cdot \tan x
E) j(x)=14secxtanxj '( x ) = 14 \sec x \cdot \tan x
سؤال
Find the derivative of the function. s(x)=(4x22x+2)tanxs ( x ) = \left( 4 x ^ { 2 } - 2 x + 2 \right) \tan x

A) s(x)=(8x2)tanx+(4x22x2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x - 2 \right) \sec ^ { 2 } x
B) s(x)=(8x2)tanx+(4x22x+2)secxs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec x
C) s(x)=(8x2)tanx+(4x2+2x+2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } + 2 x + 2 \right) \sec ^ { 2 } x
D) s(x)=(8x2)tanx+(4x22x+2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec ^ { 2 } x
E) s(x)=(8x2)tanx(4x22x+2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x - \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec ^ { 2 } x
سؤال
Find the derivative of the function. p(x)=3+2sin(π2(x1))p ( x ) = 3 + 2 \sin \left( \frac { \pi } { 2 } ( x - 1 ) \right)

A) p(x)=πcos(π2(x1))p ^ { \prime } ( x ) = \pi \cos \left( \frac { \pi } { 2 } ( x - 1 ) \right)
B) p(x)=2cos(π2(x1))p ^ { \prime } ( x ) = 2 \cos \left( \frac { \pi } { 2 } ( x - 1 ) \right)
C) p(x)=πcos(π2(x+1))p ^ { \prime } ( x ) = \pi \cos \left( \frac { \pi } { 2 } ( x + 1 ) \right)
D) p(x)=πsin(π2(x1))p ^ { \prime } ( x ) = \pi \sin \left( \frac { \pi } { 2 } ( x - 1 ) \right)
E) p(x)=3+πcos(π2(x1))p ^ { \prime } ( x ) = 3 + \pi \cos \left( \frac { \pi } { 2 } ( x - 1 ) \right)
سؤال
Find the derivative of the function. y(x)=sec(e4x)y ( x ) = \sec \left( e ^ { 4 x } \right)

A) y(x)=4e4xcsc(e4x)tan2(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \csc \left( e ^ { 4 x } \right) \tan ^ { 2 } \left( e ^ { 4 x } \right)
B) y(x)=16e4xsec(e4x)tan(e4x)y ^ { \prime } ( x ) = 16 e ^ { 4 x } \sec \left( e ^ { 4 x } \right) \tan \left( e ^ { 4 x } \right)
C) y(x)=4e4xsec(e4x)tan(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \sec \left( e ^ { 4 x } \right) \tan \left( e ^ { 4 x } \right)
D) y(x)=4e4xcsc2(e4x)tan2(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \csc ^ { 2 } \left( e ^ { 4 x } \right) \tan ^ { 2 } \left( e ^ { 4 x } \right)
E) y(x)=4e4xcsc(e4x)tan(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \csc \left( e ^ { 4 x } \right) \tan \left( e ^ { 4 x } \right)
سؤال
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.    Note that the period of the curve is  P = \frac { 1 } { 6 }  and its range is  [ - 1,1 ]  . </strong> A)  f ( x ) = \cos ( 12 x )  B)  f ( x ) = \cos \left( \frac { \pi x } { 12 } \right)  C)  f ( x ) = \cos ( 12 \pi x )  D)  f ( x ) = 12 \cos ( \pi x )  E)  f ( x ) = \cos \left( \frac { x } { 12 } \right)  <div style=padding-top: 35px>
Note that the period of the curve is P=16P = \frac { 1 } { 6 } and its range is [1,1][ - 1,1 ] .

A) f(x)=cos(12x)f ( x ) = \cos ( 12 x )
B) f(x)=cos(πx12)f ( x ) = \cos \left( \frac { \pi x } { 12 } \right)
C) f(x)=cos(12πx)f ( x ) = \cos ( 12 \pi x )
D) f(x)=12cos(πx)f ( x ) = 12 \cos ( \pi x )
E) f(x)=cos(x12)f ( x ) = \cos \left( \frac { x } { 12 } \right)
سؤال
The cost of Dig-It brand snow shovels is given by c(t)=3sin(2π(t0.75))c ( t ) = 3 \sin ( 2 \pi ( t - 0.75 ) )
Where t is time in years since January 1, 1997. How fast, in dollars per year, is the cost increasing on October 30, 1997

A)$21.85 per year
B) $18.85 per year
C) $9.42 per year
D) $20.85 per year
E) $6.00 per year
سؤال
Starting with the identity sin2x+cos2x=1\sin ^ { 2 } x + \cos ^ { 2 } x = 1 , choose the right trigonometric identity.

A) sec2x=1+tan2x\sec ^ { 2 } x = 1 + \tan ^ { 2 } x
B) sec2x=1tan2x\sec ^ { 2 } x = 1 - \tan ^ { 2 } x
C) cot2x=1tan2x\cot ^ { 2 } x = 1 - \tan ^ { 2 } x
D) sin2x=1+tan2x\sin ^ { 2 } x = 1 + \tan ^ { 2 } x
E) sec2x=1+csc2x\sec ^ { 2 } x = 1 + \csc ^ { 2 } x
سؤال
Sketch the curves without any technological help. f(t)=2costf ( t ) = 2 \cos t ; g(t)=3.3cos(2t)g ( t ) = 3.3 \cos ( 2 t )

A)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)     <div style=padding-top: 35px>
B)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)     <div style=padding-top: 35px>
C)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)     <div style=padding-top: 35px>
D)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)     <div style=padding-top: 35px>
E)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)     <div style=padding-top: 35px>
سؤال
Sketch the curves without any technological help. f(t)=costf ( t ) = \cos t ; g(t)=cos(t+π)g ( t ) = \cos ( t + \pi )

A)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)    <div style=padding-top: 35px>
B)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)    <div style=padding-top: 35px>
C)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)    <div style=padding-top: 35px>
D)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)    <div style=padding-top: 35px>
E)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)    <div style=padding-top: 35px>
سؤال
Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function s(t)=0.468sin(1.25t+1.73)+0.79(1t6)s ( t ) = 0.468 \sin ( 1.25 t + 1.73 ) + 0.79 ( 1 \leq t \leq 6 )
Where t is time in quarters ( t=1t = 1 represents the end of the first quarter of 1995) and s(t)s ( t ) is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales.

A) smax=1.526s _ { \max } = 1.526 , smin=0.074s _ { \min } = 0.074
B) smax=0.79s _ { \max } = 0.79 , smin=0.468s _ { \min } = 0.468
C) smax=2.048s _ { \max } = 2.048 , smin=1.112s _ { \min } = 1.112
D) smax=2.194s _ { \max } = 2.194 , smin=0.146s _ { \min } = 0.146
E) smax=1.258s _ { \max } = 1.258 , smin=0.322s _ { \min } = 0.322
سؤال
Model the curve with a sine function.  <strong>Model the curve with a sine function.    Note that the period of the curve is  P = 0.4  and its range is  [ - 3 , - 1 ]  . </strong> A)  f ( x ) = 2 - \sin x  B)  f ( x ) = - 2 + 5 \sin x  C)   f ( x ) = - 2 + \sin ( 5 \pi x )  D)  f ( x ) = 2 - \sin ( 5 \pi x )  E)  f ( x ) = - 2 + \sin ( \pi x )  <div style=padding-top: 35px>
Note that the period of the curve is P=0.4P = 0.4 and its range is [3,1][ - 3 , - 1 ] .

A) f(x)=2sinxf ( x ) = 2 - \sin x
B) f(x)=2+5sinxf ( x ) = - 2 + 5 \sin x
C) f(x)=2+sin(5πx)f ( x ) = - 2 + \sin ( 5 \pi x )
D) f(x)=2sin(5πx)f ( x ) = 2 - \sin ( 5 \pi x )
E) f(x)=2+sin(πx)f ( x ) = - 2 + \sin ( \pi x )
سؤال
Use the addition formulas: sin(x+y)=sinxcosy+cosxsinysin(xy)=sinxcosycosxsinycos(x+y)=cosxcosysinxsinycos(xy)=cosxcosy+sinxsiny\begin{array} { l } \sin ( x + y ) = \sin x \cdot \cos y + \cos x \cdot \sin y \\\sin ( x - y ) = \sin x \cdot \cos y - \cos x \cdot \sin y \\\cos ( x + y ) = \cos x \cdot \cos y - \sin x \cdot \sin y \\\cos ( x - y ) = \cos x \cdot \cos y + \sin x \cdot \sin y\end{array}
To express tan(x+23π)\tan ( x + 23 \pi ) in terms of tan(x)\tan ( x ) .

A) tan(x)23π\frac { \tan ( x ) } { 23 \pi }
B) tan(x)+23π\tan ( x ) + 23 \pi
C) 23πtan(x)23 \pi \tan ( x )
D) tan(x)\tan ( x )
E) tan(x)23π\tan ( x ) - 23 \pi
سؤال
Use the formula for sin(x+y)\sin ( x + y ) to simplify the expression sin(t+17π2)\sin \left( t + \frac { 17 \pi } { 2 } \right) .

A) cost17π\cos t - 17 \pi
B) cost+17π\cos t + 17 \pi
C) cost17π\frac { \cos t } { 17 \pi }
D) 17πcost17 \pi \cos t
E) cost\cos t
سؤال
Use the addition formulas: sin(x+y)=sinxcosy+cosxsinysin(xy)=sinxcosycosxsinycos(x+y)=cosxcosysinxsinycos(xy)=cosxcosy+sinxsiny\begin{array} { l } \sin ( x + y ) = \sin x \cdot \cos y + \cos x \cdot \sin y \\\sin ( x - y ) = \sin x \cdot \cos y - \cos x \cdot \sin y \\\cos ( x + y ) = \cos x \cdot \cos y - \sin x \cdot \sin y \\\cos ( x - y ) = \cos x \cdot \cos y + \sin x \cdot \sin y\end{array}
To calculate cos(π3)\cos \left( \frac { \pi } { 3 } \right) , given that sin(π6)=12\sin \left( \frac { \pi } { 6 } \right) = \frac { 1 } { 2 } and cos(π6)=32\cos \left( \frac { \pi } { 6 } \right) = \frac { \sqrt { 3 } } { 2 } .

A) cos(π3)=0\cos \left( \frac { \pi } { 3 } \right) = 0
B) cos(π3)=32\cos \left( \frac { \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 }
C) cos(π3)=12\cos \left( \frac { \pi } { 3 } \right) = \frac { 1 } { 2 }
D) cos(π3)=32\cos \left( \frac { \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 2 }
E) cos(π3)=12\cos \left( \frac { \pi } { 3 } \right) = - \frac { 1 } { 2 }
سؤال
Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression g(x)=25cos[2π(3x1)]+9g ( x ) = 25 \cos [ 2 \pi ( 3 x - 1 ) ] + 9
By a sine function.

A) g(x)=25sin(6πx+5π2)9+π2g ( x ) = 25 \sin \left( 6 \pi x + \frac { 5 \pi } { 2 } \right) - 9 + \frac { \pi } { 2 }
B) g(x)=25sin(6πx5π2)+9g ( x ) = 25 \sin \left( 6 \pi x - \frac { 5 \pi } { 2 } \right) + 9
C) g(x)=25sin(6πx5π2)+9g ( x ) = 25 \sin \left( - 6 \pi x - \frac { 5 \pi } { 2 } \right) + 9
D) g(x)=25sin(6πx+5π2)+9g ( x ) = 25 \sin \left( - 6 \pi x + \frac { 5 \pi } { 2 } \right) + 9
E) g(x)=25sin(12πx+3π2)+9g ( x ) = 25 \sin \left( 12 \pi x + \frac { 3 \pi } { 2 } \right) + 9
سؤال
Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression g(t)=45cos(t5)g ( t ) = 45 - \cos ( t - 5 )
By a sine function.

A) g(t)=45sin(π2t+5)g ( t ) = 45 - \sin \left( \frac { \pi } { 2 } - t + 5 \right)
B) g(t)=45sin(π2t5)g ( t ) = 45 - \sin \left( \frac { \pi } { 2 } - t - 5 \right)
C) g(t)=45sin(πt+5)g ( t ) = 45 - \sin ( \pi - t + 5 )
D) g(t)=45sin(π2+t+5)g ( t ) = 45 - \sin \left( \frac { \pi } { 2 } + t + 5 \right)
E) g(t)=π245sin(t+5)g ( t ) = \frac { \pi } { 2 } - 45 - \sin ( t + 5 )
سؤال
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.    Note that the period of the curve is  P = 14  , its range is  [ 0,120 ]  the graph of the cosine function is shifted upward 60 units and shifted to the right 7 units. </strong> A)  f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7  B)  f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) - 7  C)  f ( x ) = 60 \cos \left( \frac { \pi ( x + 7 ) } { 7 } \right) + 60  D)  f ( x ) = 7 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7  E)  f ( x ) = 60 \cos \left( \frac { \pi ( x - 7 ) } { 7 } \right) + 60  <div style=padding-top: 35px>
Note that the period of the curve is P=14P = 14 , its range is [0,120][ 0,120 ] the graph of the cosine function is shifted upward 60 units and shifted to the right 7 units.

A) f(x)=120cos(π(x60)60)+7f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7
B) f(x)=120cos(π(x60)60)7f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) - 7
C) f(x)=60cos(π(x+7)7)+60f ( x ) = 60 \cos \left( \frac { \pi ( x + 7 ) } { 7 } \right) + 60
D) f(x)=7cos(π(x60)60)+7f ( x ) = 7 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7
E) f(x)=60cos(π(x7)7)+60f ( x ) = 60 \cos \left( \frac { \pi ( x - 7 ) } { 7 } \right) + 60
سؤال
Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression f(t)=5.2cos(6πt)+10f ( t ) = 5.2 \cos ( 6 \pi t ) + 10
By a sine function.

A) f(t)=5.2sin(π26πt)+10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 10
B) f(t)=5.2sin(π6πt2)+10f ( t ) = 5.2 \sin \left( \frac { \pi - 6 \pi t } { 2 } \right) + 10
C) f(t)=5.2sin(π26t)+10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 t \right) + 10
D) f(t)=6sin(π25.2πt)+10f ( t ) = 6 \sin \left( \frac { \pi } { 2 } - 5.2 \pi t \right) + 10
E) f(t)=10sin(π26πt)+5.2f ( t ) = 10 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 5.2
سؤال
Model the curve with a sine function.  <strong>Model the curve with a sine function.    Note that the period of the curve is  P = 32  and its range is  [ - 40,0 ]  , the graph of the sine function is shifted to the right 7 units. </strong> A)  f ( x ) = 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20  B)  f ( x ) = - 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20  C)  f ( x ) = 40 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 40  D)  f ( x ) = 40 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) - 40  E)  f ( x ) = 20 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 20  <div style=padding-top: 35px>
Note that the period of the curve is P=32P = 32 and its range is [40,0][ - 40,0 ] , the graph of the sine function is shifted to the right 7 units.

A) f(x)=20sin(π(x+7)16)+20f ( x ) = 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20
B) f(x)=20sin(π(x+7)16)+20f ( x ) = - 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20
C) f(x)=40sin(π(x7)16)40f ( x ) = 40 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 40
D) f(x)=40sin(π(x+7)16)40f ( x ) = 40 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) - 40
E) f(x)=20sin(π(x7)16)20f ( x ) = 20 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 20
سؤال
Model the curve with a sine function.
 <strong>Model the curve with a sine function.   Note that the period of the curve is  P = \frac { 1 } { 5 }  and its range is  [ - 2.2,2.2 ]  and the graph of the sine function is shifted to the left 0.55 units. </strong> A)  f ( x ) = 2.2 \sin ( 10 \pi ( x + 0.55 ) )  B)  f ( x ) = 2.2 \sin ( 10 \pi ( x - 0.55 ) )  C)  f ( x ) = 2.2 \sin ( 10 \pi x + 0.55 )  D)  f ( x ) = 2.2 \sin ( 10 \pi ( 2 x + 0.55 ) )  E)  f ( x ) = 4.4 \sin ( 5 \pi ( x + 0.55 ) )  <div style=padding-top: 35px>
Note that the period of the curve is P=15P = \frac { 1 } { 5 } and its range is [2.2,2.2][ - 2.2,2.2 ] and the graph of the sine function is shifted to the left 0.55 units.

A) f(x)=2.2sin(10π(x+0.55))f ( x ) = 2.2 \sin ( 10 \pi ( x + 0.55 ) )
B) f(x)=2.2sin(10π(x0.55))f ( x ) = 2.2 \sin ( 10 \pi ( x - 0.55 ) )
C) f(x)=2.2sin(10πx+0.55)f ( x ) = 2.2 \sin ( 10 \pi x + 0.55 )
D) f(x)=2.2sin(10π(2x+0.55))f ( x ) = 2.2 \sin ( 10 \pi ( 2 x + 0.55 ) )
E) f(x)=4.4sin(5π(x+0.55))f ( x ) = 4.4 \sin ( 5 \pi ( x + 0.55 ) )
سؤال
Calculate the derivative.
Calculate the derivative. ​  <div style=padding-top: 35px>
سؤال
The depth of water d(t)d ( t ) at my favorite surfing spot varies from 8 to 20 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model the depth of water as a function of time t in hours since midnight on Sunday morning.

A) d(t)=10sin(2π(t1.625)13.5)+4d ( t ) = 10 \sin \left( \frac { 2 \pi ( t - 1.625 ) } { 13.5 } \right) + 4
B) d(t)=6sin(2π(t+1.625)11.5)14d ( t ) = 6 \sin \left( \frac { 2 \pi ( t + 1.625 ) } { 11.5 } \right) - 14
C) d(t)=6sin(2π(t+1.625)13.5)+14d ( t ) = - 6 \sin \left( \frac { - 2 \pi ( t + 1.625 ) } { 13.5 } \right) + 14
D) d(t)=6sin(2π(t1.625)13.5)+14d ( t ) = 6 \sin \left( \frac { 2 \pi ( t - 1.625 ) } { 13.5 } \right) + 14
E) d(t)=14sin(2π(t1.625)13.5)+6d ( t ) = 14 \sin \left( \frac { 2 \pi ( t - 1.625 ) } { 13.5 } \right) + 6
سؤال
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.     Note that the period of the curve is  P = \frac { 1 } { 5 }  , its range is  [ - 3.3,3.3 ]  and the graph of the cosine function is shifted to the right 0.35 units. </strong> A)  f ( x ) = 6.6 \cos ( 20 \pi ( 2 x - 0.35 ) )  B)  f ( x ) = 3.3 \cos ( 10 ( x - 0.35 ) )  C)  f ( x ) = 6.6 \cos ( 20 \pi ( 2 x + 0.35 ) )  D)  f ( x ) = 3.3 \cos ( 10 \pi ( x - 0.35 ) )  E)  f ( x ) = 3.3 \cos ( 10 \pi ( x + 0.35 ) )  <div style=padding-top: 35px>
Note that the period of the curve is P=15P = \frac { 1 } { 5 } , its range is [3.3,3.3][ - 3.3,3.3 ] and the graph of the cosine function is shifted to the right 0.35 units.

A) f(x)=6.6cos(20π(2x0.35))f ( x ) = 6.6 \cos ( 20 \pi ( 2 x - 0.35 ) )
B) f(x)=3.3cos(10(x0.35))f ( x ) = 3.3 \cos ( 10 ( x - 0.35 ) )
C) f(x)=6.6cos(20π(2x+0.35))f ( x ) = 6.6 \cos ( 20 \pi ( 2 x + 0.35 ) )
D) f(x)=3.3cos(10π(x0.35))f ( x ) = 3.3 \cos ( 10 \pi ( x - 0.35 ) )
E) f(x)=3.3cos(10π(x+0.35))f ( x ) = 3.3 \cos ( 10 \pi ( x + 0.35 ) )
سؤال
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.    Note that the period of the curve is  P = \frac { 1 } { 3 }  and its range is  [ - 1,1 ]  . </strong> A)  f ( x ) = \cos ( 6 x )  B)  f ( x ) = \cos ( 6 \pi x )  C)  f ( x ) = \cos \left( \frac { x } { 6 } \right)  D)  f ( x ) = \cos \left( \frac { \pi x } { 6 } \right)  E)  f ( x ) = 6 \cos ( \pi x )  <div style=padding-top: 35px>
Note that the period of the curve is P=13P = \frac { 1 } { 3 } and its range is [1,1][ - 1,1 ] .

A) f(x)=cos(6x)f ( x ) = \cos ( 6 x )
B) f(x)=cos(6πx)f ( x ) = \cos ( 6 \pi x )
C) f(x)=cos(x6)f ( x ) = \cos \left( \frac { x } { 6 } \right)
D) f(x)=cos(πx6)f ( x ) = \cos \left( \frac { \pi x } { 6 } \right)
E) f(x)=6cos(πx)f ( x ) = 6 \cos ( \pi x )
سؤال
Starting with the identity Starting with the identity   and then dividing both sides of the equation by a suitable trigonometric function, derive the trigonometric identity. ​  <div style=padding-top: 35px> and then dividing both sides of the equation by a suitable trigonometric function, derive the trigonometric identity.
Starting with the identity   and then dividing both sides of the equation by a suitable trigonometric function, derive the trigonometric identity. ​  <div style=padding-top: 35px>
سؤال
The uninflated cost of Dugout brand snow shovels currently varies from a high of $30 on January 1 (t=0)( t = 0 ) to a low of $6 on July 1 (t=0.5)( t = 0.5 ) . Assuming this trend were to continue indefinitely, calculate the uninflated cost u(t)u ( t ) of Dugout snow shovels as a function of time t in years. (Use a sine function.)

A) u(t)=15sin(2π(t0.75))+3u ( t ) = 15 \sin ( 2 \pi ( t - 0.75 ) ) + 3
B) u(t)=12sin(2π(t0.75))+18u ( t ) = 12 \sin ( 2 \pi ( t - 0.75 ) ) + 18
C) u(t)=18sin(2π(t0.75))+12u ( t ) = 18 \sin ( 2 \pi ( t - 0.75 ) ) + 12
D) u(t)=12sin(2π(t0.75))18u ( t ) = - 12 \sin ( 2 \pi ( t - 0.75 ) ) - 18
E) u(t)=12sin(2π(t+0.75))18u ( t ) = 12 \sin ( 2 \pi ( t + 0.75 ) ) - 18
سؤال
The depth of water The depth of water   at my favorite surfing spot varies from 5 to 15 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model to the depth of water as a function of time t in hours since midnight in Sunday morning.<div style=padding-top: 35px> at my favorite surfing spot varies from 5 to 15 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model to the depth of water as a function of time t in hours since midnight in Sunday morning.
سؤال
Model the curve with a sine function.
Model the curve with a sine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π.<div style=padding-top: 35px>
Note that the period of the curve is Model the curve with a sine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π.<div style=padding-top: 35px> , its range is Model the curve with a sine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π.<div style=padding-top: 35px> and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π.
سؤال
Model the curve with a cosine function.
Model the curve with a cosine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.<div style=padding-top: 35px>
Note that the period of the curve is Model the curve with a cosine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.<div style=padding-top: 35px> , its range is Model the curve with a cosine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.<div style=padding-top: 35px> and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.
سؤال
Model the curve with a sine function.

Model the curve with a sine function. ​ ​   ​ Note that the period of the curve is   and its range is   . Write the model function as a function of x and π.<div style=padding-top: 35px>
Note that the period of the curve is Model the curve with a sine function. ​ ​   ​ Note that the period of the curve is   and its range is   . Write the model function as a function of x and π.<div style=padding-top: 35px> and its range is Model the curve with a sine function. ​ ​   ​ Note that the period of the curve is   and its range is   . Write the model function as a function of x and π.<div style=padding-top: 35px> . Write the model function as a function of x and π.
سؤال
Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function
Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function ​   ​ where ​t is time in quarters (   represents the end of the first quarter of 1995) and   is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales. ​ Maximum sales __________ billions of dollars ​ Minimum sales __________ billions of dollars<div style=padding-top: 35px>
where ​t is time in quarters ( Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function ​   ​ where ​t is time in quarters (   represents the end of the first quarter of 1995) and   is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales. ​ Maximum sales __________ billions of dollars ​ Minimum sales __________ billions of dollars<div style=padding-top: 35px> represents the end of the first quarter of 1995) and Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function ​   ​ where ​t is time in quarters (   represents the end of the first quarter of 1995) and   is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales. ​ Maximum sales __________ billions of dollars ​ Minimum sales __________ billions of dollars<div style=padding-top: 35px> is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales.

Maximum sales __________ billions of dollars

Minimum sales __________ billions of dollars
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/67
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 16: Trigonometric Models
1
Evaluate the integral. (10x+25)sin(x2+5x)dx\int ( 10 x + 25 ) \sin \left( x ^ { 2 } + 5 x \right) \mathrm { d } x

A) 5xsin(x2+5x)+C- 5 x \sin \left( x ^ { 2 } + 5 x \right) + C
B) 5cos(x2+5x)+C5 \cos \left( x ^ { 2 } + 5 x \right) + C
C) 5xcos(x2+5x)+C5 x \cos \left( x ^ { 2 } + 5 x \right) + C
D) 5cos(x2+5x)+C- 5 \cos \left( x ^ { 2 } + 5 x \right) + C
E) 5sin(x2+5x)+C5 \sin \left( x ^ { 2 } + 5 x \right) + C
5cos(x2+5x)+C- 5 \cos \left( x ^ { 2 } + 5 x \right) + C
2
Recall that the average of a function f(x)f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x)dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x
Find the average of the given function.
f(x)=sin(5x)f ( x ) = \sin ( 5 x ) over [0,5π][ 0,5 \pi ]

A)Average = 225π\frac { 2 } { 25 \pi }
B) Average = 25π2\frac { 25 \pi } { 2 }
C) Average = π5\frac { \pi } { 5 }
D) Average = 25π4\frac { 25 \pi } { 4 }
E) Average = 5π\frac { 5 } { \pi }
Average = 225π\frac { 2 } { 25 \pi }
3
Use geometry to compute the given integral. π6π62sinxdx\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x

A) π6π62sinxdx=6\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 6
B) π6π62sinx dx=4\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x \mathrm {~d} x = - 4
C) π6π62sinxdx=0\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 0
D) π6π62sinxdx=8\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 8
E) none of these
π6π62sinxdx=0\int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 6 } } 2 \sin x d x = 0
4
Evaluate the integral. π3π4sinx dx\int _ { - \frac { \pi } { 3 } } ^ { \frac { \pi } { 4 } } \sin x \mathrm {~d} x

A) cosπ4cosπ\cos \frac { \pi } { 4 } - \cos \pi
B) sinπ3+sinπ4\sin \frac { \pi } { 3 } + \sin \frac { \pi } { 4 }
C) sinπ3cosπ5\sin \frac { \pi } { 3 } - \cos \frac { \pi } { 5 }
D) cosπ3cosπ4\cos \frac { \pi } { 3 } - \cos \frac { \pi } { 4 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
5
Evaluate the integral. ? (8cosx4.1sinx9.3)dx\int ( 8 \cos x - 4.1 \sin x - 9.3 ) \mathrm { d } x ?

A) 8sinx+4.1cosx9.3x+C8 \sin x + 4.1 \cos x - 9.3 x + C
B) 8sinx+4.1cosx+C- 8 \sin x + 4.1 \cos x + C
C) 8sinx4.1cosx9.3x+C8 \sin x - 4.1 \cos x - 9.3 x + C
D) 8sinx4.1cosx+C- 8 \sin x - 4.1 \cos x + C
E) 8sinx4.1cosx+9.3x+C8 \sin x - 4.1 \cos x + 9.3 x + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
6
Recall that the total income received from time t=at = a to time t=bt = b from a continuous income stream of R(t)R ( t ) dollars per year is
Total value = TV = abR(t)dt\int _ { a } ^ { b } R ( t ) \mathrm { d } t
Find the total value of the given income stream and also find its future value (at the end of the given interval) using the given interest rate.
R(t)=800,000sin(2πt)R ( t ) = 800,000 \sin ( 2 \pi t ) , 0t50 \leq t \leq 5 , at 9%

A)TV = $0, FV = $72,344.91
B) TV = $0, FV = $327,074.77
C) TV = $1,600,000, FV = $834,722.23
D) TV = $0, FV = $256,372.45
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
7
Evaluate the integral. (3.4sec2x+cosx1.43.6ex)dx\int \left( 3.4 \sec ^ { 2 } x + \frac { \cos x } { 1.4 } - 3.6 e ^ { x } \right) \mathrm { d } x

A) 3.4tanx+sinx1.43.6ex+C3.4 \tan x + \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
B) 3.4tanx+sinx1.43.6ex+C\frac { 3.4 } { \tan x } + \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
C) 3.4tanxsinx1.43.6ex+C3.4 \tan x - \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
D) 3.4tanxsinx1.43.6ex+C- \frac { 3.4 } { \tan x } - \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
E) 3.4tanx+sinx1.43.6ex+C- \frac { 3.4 } { \tan x } + \frac { \sin x } { 1.4 } - 3.6 e ^ { x } + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
8
Evaluate the integral. (x3+x4)sec2(5x4+4x5)dx\int \left( x ^ { 3 } + x ^ { 4 } \right) \sec ^ { 2 } \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) \mathrm { d } x

A) 15tan(5x4+4x5)+C\frac { 1 } { 5 } \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
B) 120tan(5x4+4x5)+C\frac { 1 } { 20 } \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
C) 14tan(5x4+4x5)+C\frac { 1 } { 4 } \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
D) tan(5x4+4x5)+C\tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
E) 20tan(5x4+4x5)+C20 \tan \left( 5 x ^ { 4 } + 4 x ^ { 5 } \right) + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
9
Evaluate the integral.
Evaluate the integral. ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
10
Decide whether the integral converges. If the integral converges, compute its value. 0+e3xcos(3x)dx\int _ { 0 } ^ { + \infty } e ^ { - 3 x } \cos ( 3 x ) \mathrm { d } x

A) 15\frac { 1 } { 5 }
B) 12\frac { 1 } { 2 }
C) 16\frac { 1 } { 6 }
D) 13\frac { 1 } { 3 }
E) diverges
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
11
Evaluate the integral. π4π4tanx dx\int _ { - \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \tan x \mathrm {~d} x

A) lnsec(π4)lnsec(π4)\ln \left| \sec \left( \frac { \pi } { 4 } \right) \right| - \ln \left| \sec \left( - \frac { \pi } { 4 } \right) \right|
B) lnsin(π4)lnsin(π4)\ln \left| \sin \left( \frac { \pi } { 4 } \right) \right| - \ln \left| \sin \left( \frac { \pi } { 4 } \right) \right|
C) sin(π4)sin(π4)\sin \left( - \frac { \pi } { 4 } \right) - \sin \left( \frac { \pi } { 4 } \right)
D) cos(π4)cos(π4)\cos \left( \frac { \pi } { 4 } \right) - \cos \left( - \frac { \pi } { 4 } \right)
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
12
Recall that the average of a function f(x)f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x)dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x
Calculate the 9-unit moving average of the function.
f(x)=cos(πx18)f ( x ) = \cos \left( \frac { \pi x } { 18 } \right)

A) fˉ(x)=2π(sin(πx18)cos(πx18))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 18 } \right) \right)
B) fˉ(x)=2π(sin(πx18)cos(πx3))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 3 } \right) \right)
C) fˉ(x)=2π(sin(πx18)+cos(πx2))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 2 } \right) \right)
D) fˉ(x)=2π(cos(πx18)sin(πx18))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \cos \left( \frac { \pi x } { 18 } \right) - \sin \left( \frac { \pi x } { 18 } \right) \right)
E) fˉ(x)=2π(sin(πx18)+cos(πx18))\bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 18 } \right) \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
13
Evaluate the integral. sin(4x7)dx\int - \sin ( - 4 x - 7 ) \mathrm { d } x

A) cos(4x+7)4+C\frac { \cos ( 4 x + 7 ) } { 4 } + C
B) 4cos(4x7)+C4 \cos ( 4 x - 7 ) + C
C) cos(4x+7)4+C- \frac { \cos ( 4 x + 7 ) } { 4 } + C
D) 4cos(4x+7)+C- 4 \cos ( 4 x + 7 ) + C
E) cos(4x7)4+C- \frac { \cos ( 4 x - 7 ) } { 4 } + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
14
Evaluate the integral.
Evaluate the integral. ​   ​ Use the symbol C to write the constant.
Use the symbol C to write the constant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
15
Evaluate the integral.
Evaluate the integral. ​   ​ Use the symbol C to write the constant.
Use the symbol C to write the constant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
16
Evaluate the integral 1π3π9sin(1x)x2 dx\int _ { \frac { 1 } { \pi } } ^ { \frac { 3 } { \pi } } 9 \frac { \sin \left( \frac { 1 } { x } \right) } { x ^ { 2 } } \mathrm {~d} x

A)9.5
B) 9
C) 31.5
D) 22.5
E) 13.5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
17
Evaluate the integral. 6sec(3x7)dx\int 6 \sec ( 3 x - 7 ) \mathrm { d } x

A) 2lntan(3x7)+C2 \ln | \tan ( 3 x - 7 ) | + C
B) 2lnsec(3x7)+tan(3x7)+C2 \ln | \sec ( 3 x - 7 ) + \tan ( 3 x - 7 ) | + C
C) 6lnsec(3x7)+tan(3x7)+C6 \ln | \sec ( 3 x - 7 ) + \tan ( 3 x - 7 ) | + C
D) lnsec(3x7)+tan(3x7)+C\ln | \sec ( 3 x - 7 ) + \tan ( 3 x - 7 ) | + C
E) 2lnsec(3x7)+C2 \ln | \sec ( 3 x - 7 ) | + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
18
Evaluate the integral. 10.8cos(6x1)dx\int 10.8 \cos ( 6 x - 1 ) \mathrm { d } x

A) 10.8sin(6x1)+C10.8 \sin ( 6 x - 1 ) + C
B) 1.8cos(6x1)+C1.8 \cos ( 6 x - 1 ) + C
C) 1.8sin(6x1)+C1.8 \sin ( 6 x - 1 ) + C
D) 1.8sin(6x1)+C- 1.8 \sin ( 6 x - 1 ) + C
E) 1.8sin(6x2x)+C1.8 \sin \left( 6 x ^ { 2 } - x \right) + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
19
Evaluate the integral. 1π2+14xcos(x21)dx\int _ { 1 } ^ { \sqrt { \frac { \pi } { 2 } + 1 } } 4 x \cos \left( x ^ { 2 } - 1 \right) \mathrm { d } x

A)2
B) 10
C) 1
D) 6
E) 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
20
Use geometry to compute the given integral. 05π6cosxdx\int _ { 0 } ^ { 5 \pi } 6 \cos x d x

A) 05π6cosxdx=5\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 5
B) 05π6cosxdx=12\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 12
C) 05π6cosxdx=1\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 1
D) 05π6cosxdx=0\int _ { 0 } ^ { 5 \pi } 6 \cos x d x = 0
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
21
Calculate the derivative. ddx([lnx][cot(6x+5)])\frac { d } { d x } ( [ \ln | x | ] [ \cot ( 6 x + 5 ) ] )

A) cot(6x5)x6lnxcsc2(6x5)\frac { \cot ( 6 x - 5 ) } { x } - 6 \ln | x | \csc ^ { 2 } ( 6 x - 5 )
B) cot(6x+5)x6lnxcsc2(6x+5)\frac { \cot ( 6 x + 5 ) } { x } - 6 \ln | x | \csc ^ { 2 } ( 6 x + 5 )
C) 6lnxcsc2(6x+5)- 6 \ln | x | \csc ^ { 2 } ( 6 x + 5 )
D) cot(6x+5)x\frac { \cot ( 6 x + 5 ) } { x }
E) tan(6x+5)x6lnxcsc2(6x5)\frac { \tan ( 6 x + 5 ) } { x } - 6 \ln | x | \csc ^ { 2 } ( 6 x - 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the derivative of the function. w(x)=2sec(x)tan(x22)w ( x ) = 2 \sec ( x ) \cdot \tan \left( x ^ { 2 } - 2 \right)

A) w(x)=2sec2xsinxtan(x22)+4xsecxsec2(x22)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } \left( x ^ { 2 } - 2 \right)
B) w(x)=2sec2xsinxtan(x22)+4xsecxsec2(2x2)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } ( 2 x - 2 )
C) w(x)=2sec2xsinxtan(x2+2)+4xsecxsec2(2x2)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } + 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } ( 2 x - 2 )
D) w(x)=2sec2xsinxtan(x22)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right)
E) w(x)=2sec2xsinxtan(x22)+4xsecxsec2(x24)w ^ { \prime } ( x ) = 2 \sec ^ { 2 } x \cdot \sin x \cdot \tan \left( x ^ { 2 } - 2 \right) + 4 x \cdot \sec x \cdot \sec ^ { 2 } \left( x ^ { 2 } - 4 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
23
Calculate the derivative. ddx[sec(6x3x21)]\frac { d } { d x } \left[ \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \right]

A) 6x418x2(x21)2csc(6x3x21)tan(6x3x21)\frac { 6 x ^ { 4 } - 18 x ^ { 2 } } { \left( x ^ { 2 } - 1 \right) ^ { 2 } } \csc \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
B) 6x3x21csc(6x3x21)tan(6x3x21)\frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \csc \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
C) 6x418x2(x21)2sec(6x3x21)tan(6x3x21)\frac { 6 x ^ { 4 } - 18 x ^ { 2 } } { \left( x ^ { 2 } - 1 \right) ^ { 2 } } \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
D) 6x318x2x21sec(6x3x21)tan(6x3x21)\frac { 6 x ^ { 3 } - 18 x ^ { 2 } } { x ^ { 2 } - 1 } \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right)
E) 6x418x2(x2+1)2sec(6x3x21)tan(6x3x2+1)\frac { 6 x ^ { 4 } - 18 x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 2 } } \sec \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } - 1 } \right) \tan \left( \frac { 6 x ^ { 3 } } { x ^ { 2 } + 1 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the derivative of the function. t(x)=cotx4+8secxt ( x ) = \frac { \cot x } { 4 + 8 \sec x }

A) t(x)=(48secx)csc2x+8secx(48secx)2t ^ { \prime } ( x ) = - \frac { ( 4 - 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 - 8 \sec x ) ^ { 2 } }
B) t(x)=(4+8secx)csc2x+8secx(4+8secx)2t ^ { \prime } ( x ) = - \frac { ( 4 + 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 + 8 \sec x ) ^ { 2 } }
C) t(x)=(4+8secx)csc2x+8secx(4+8secx)2t ^ { \prime } ( x ) = \frac { ( 4 + 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 + 8 \sec x ) ^ { 2 } }
D) t(x)=(4+8secx)csc2x+8secx(48secx)2t ^ { \prime } ( x ) = - \frac { ( 4 + 8 \sec x ) \csc ^ { 2 } x + 8 \sec x } { ( 4 - 8 \sec x ) ^ { 2 } }
E) t(x)=(48secx)csc2x8secx(48secx)2t ^ { \prime } ( x ) = - \frac { ( 4 - 8 \sec x ) \csc ^ { 2 } x - 8 \sec x } { ( 4 - 8 \sec x ) ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
25
Calculate the derivative. ddx[sin(7x)]0.5\frac { d } { d x } [ \sin ( 7 x ) ] ^ { 0.5 }

A) 3.5sin(7x)cos(7x)3.5 \sin ( 7 x ) \cdot \cos ( 7 x )
B) 3.5(sin(7x))0.5cos(7x)3.5 ( \sin ( 7 x ) ) ^ { - 0.5 } \cdot \cos ( 7 x )
C) (sin(7x))0.5cos(7x)( \sin ( 7 x ) ) ^ { - 0.5 } \cdot \cos ( 7 x )
D) 7(sin(7x))0.5cos(7x)7 ( \sin ( 7 x ) ) ^ { - 0.5 } \cdot \cos ( 7 x )
E) 7(sin(7x))0.5cos(7x)7 ( \sin ( 7 x ) ) ^ { 0.5 } \cdot \cos ( 7 x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the derivative of the function. g(x)=9sin(x)tanxg ( x ) = 9 \sin ( x ) \cdot \tan x

A) g(x)=9cos(x)tanx+9sin(x)csc2xg' ( x ) = 9 \cos ( x ) \cdot \tan x + 9 \sin ( x ) \cdot \csc ^ { 2 } x
B) g(x)=9cos(x)tanx+9sin(x)sec2xg '( x ) = 9 \cos ( x ) \cdot \tan x + 9 \sin ( x ) \cdot \sec ^ { 2 } x
C) g(x)=9cos(x)tanx9sin(x)cotxg '( x ) = 9 \cos ( x ) \cdot \tan x - 9 \sin ( x ) \cdot \cot x
D) g(x)=9cos(x)tanx+9cos(x)cotxg' ( x ) = 9 \cos ( x ) \cdot \tan x + 9 \cos ( x ) \cdot \cot x
E) g(x)=9cos(x)tanx9sin(x)sec2xg '( x ) = 9 \cos ( x ) \cdot \tan x - 9 \sin ( x ) \cdot \sec ^ { 2 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
27
Calculate the derivative. ddx[e3xsin(3πx)]\frac { d } { d x } \left[ e ^ { - 3 x } \sin ( 3 \pi x ) \right]

A) e3x(3sin(3πx)3πcos(3πx))e ^ { 3 x } ( - 3 \sin ( 3 \pi x ) - 3 \pi \cos ( 3 \pi x ) )
B) e3x(3sin(3πx)+3πcos(3πx))e ^ { - 3 x } ( - 3 \sin ( 3 \pi x ) + 3 \pi \cos ( 3 \pi x ) )
C) e3x(3sin(3πx)3πcos(3πx))e ^ { - 3 x } ( - 3 \sin ( 3 \pi x ) - 3 \pi \cos ( 3 \pi x ) )
D) e3x(sin(3πx)+cos(3πx))e ^ { - 3 x } ( \sin ( 3 \pi x ) + \cos ( 3 \pi x ) )
E) e3x(sin(3πx)3πcos(3πx))e ^ { - 3 x } ( \sin ( 3 \pi x ) - 3 \pi \cos ( 3 \pi x ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the derivative of the function. u(x)=sec(x5.2+2.8x9)u ( x ) = \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right)

A) u(x)=(5.2x4.2+2.8)sec(x5.22.8x9)tan(x5.22.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } + 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } - 2.8 x - 9 \right)
B) u(x)=(5.2x4.22.8)sec(x5.2+2.8x9)tan(x5.2+2.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
C) u(x)=(5.2x4.22.8)sec(x5.22.8x9)tan(x5.2+2.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
D) u(x)=(5.2x4.2+2.8)sec(x5.2+2.8x9)tan(x5.2+2.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } + 2.8 \right) \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
E) u(x)=(5.2x4.22.8)sec(x5.22.8x9)tan(x5.22.8x9)u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } - 2.8 x - 9 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the derivative of the function. s(x)=2cos2xs ( x ) = 2 \cos ^ { 2 } x

A) s(x)=4cos(x)cosxs '( x ) = - 4 \cos ( x ) \cdot \cos x
B) s(x)=4cos(x)sinxs '( x ) = - 4 \cos ( x ) \cdot \sin x
C) s(x)=2cos2(x)sinxs ^ { \prime } ( x ) = - 2 \cos ^ { 2 } ( x ) \cdot \sin x
D) s(x)=2cos(x)sinxs' ( x ) = - 2 \cos ( x ) \cdot \sin x
E) s(x)=4cscxs' ( x ) = - 4 \csc x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the derivative of the function. y(x)=7cos(ex)+9excosxy ( x ) = 7 \cos \left( e ^ { x } \right) + 9 e ^ { x } \cos x

A) y(x)=ex(7sin(ex)+9cosx9sinx)y' ( x ) = e ^ { x } \left( - 7 \sin \left( e ^ { x } \right) + 9 \cos x - 9 \sin x \right)
B) y(x)=7sin(ex)+9sinx9cosxy' ( x ) = - 7 \sin \left( e ^ { x } \right) + 9 \sin x - 9 \cos x
C) y(x)=7sin(ex)+9cosx9sinxy' ( x ) = - 7 \sin \left( e ^ { x } \right) + 9 \cos x - 9 \sin x
D) y(x)=ex(7sin(ex)9cosx+9sinx)y '( x ) = e ^ { x } \left( - 7 \sin \left( e ^ { x } \right) - 9 \cos x + 9 \sin x \right)
E) y(x)=ex2(7sin(ex)9cosx+9sinx)y ^ { \prime } ( x ) = e ^ { x ^ { 2 } } \left( - 7 \sin \left( e ^ { x } \right) - 9 \cos x + 9 \sin x \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the derivative of the function. z(x)=3ln4(secx+tanx)z ( x ) = 3 \ln \mid 4 ( \sec x + \tan x )

A) z(x)=9secxz ( x ) = 9 \sec x
B) z(x)=3secx4z ^ { \prime } ( x ) = \frac { 3 \sec x } { 4 }
C) z(x)=3(1+tan2x)z ^ { \prime } ( x ) = 3 \left( 1 + \tan ^ { 2 } x \right)
D) z(x)=secxz ^ { \prime } ( x ) = \sec x
E) z(x)=3secxz ( x ) = 3 \sec x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the derivative of the function. r(x)=4xcosx+9x2+8r ( x ) = 4 x \cos x + 9 x ^ { 2 } + 8

A) r(x)=4xcosx+4cosx+18xr'( x ) = - 4 x \cos x + 4 \cos x + 18 x
B) r(x)=4xsinx+4cosx+18xr' ( x ) = - 4 x \sin x + 4 \cos x + 18 x
C) r(x)=4xsinx+4cosx18xr '( x ) = - 4 x \sin x + 4 \cos x - 18 x
D) r(x)=4xsinx+4sinx+18xr '( x ) = - 4 x \sin x + 4 \sin x + 18 x
E) r(x)=4xsinx4cosx+18xr '( x ) = 4 x \sin x - 4 \cos x + 18 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the derivative of the function. f(x)=9sinx8cosxf ( x ) = 9 \sin x - 8 \cos x

A) f(x)=9cosx+8sinxf ^ { \prime } ( x ) = 9 \cos x + 8 \sin x
B) f(x)=8cosx9sinxf ^ { \prime } ( x ) = 8 \cos x - 9 \sin x
C) f(x)=9cosx8sinxf ^ { \prime } ( x ) = 9 \cos x - 8 \sin x
D) f(x)=9cosx8sinxf ^ { \prime } ( x ) = - 9 \cos x - 8 \sin x
E) f(x)=8cosx+9sinxf ^ { \prime } ( x ) = 8 \cos x + 9 \sin x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
34
Decide whether each integral converges. If the integral converges, compute its value.
Choose the correct letter for each question.


-converges to 14\frac { 1 } { 4 }

A) 0+sin(2x)dx\int _ { 0 } ^ { + \infty } \sin ( 2 x ) \mathrm { d } x
B) 0+e2xsin(2x)dx\int _ { 0 } ^ { + \infty } e ^ { - 2 x } \sin ( 2 x ) \mathrm { d } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
35
Decide whether each integral converges. If the integral converges, compute its value.
Choose the correct letter for each question.


-diverges

A) 0+sin(2x)dx\int _ { 0 } ^ { + \infty } \sin ( 2 x ) \mathrm { d } x
B) 0+e2xsin(2x)dx\int _ { 0 } ^ { + \infty } e ^ { - 2 x } \sin ( 2 x ) \mathrm { d } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
36
Find the derivative of the function. u(x)=cos(x22x)u ( x ) = \cos \left( x ^ { 2 } - 2 x \right)

A) u(x)=(2x2)cos(x22x)u ^ { \prime } ( x ) = ( 2 x - 2 ) \cos \left( x ^ { 2 } - 2 x \right)
B) u(x)=(2x+2)sin(x22x)u ^ { \prime } ( x ) = - ( 2 x + 2 ) \sin \left( x ^ { 2 } - 2 x \right)
C) u(x)=(2x2)cos(x22x)u ^ { \prime } ( x ) = - ( 2 x - 2 ) \cos \left( x ^ { 2 } - 2 x \right)
D) u(x)=(2x2)sin(x22x)u ^ { \prime } ( x ) = - ( 2 x - 2 ) \sin \left( x ^ { 2 } - 2 x \right)
E) u(x)=(2x+2)sin(x22x)u ^ { \prime } ( x ) = ( 2 x + 2 ) \sin \left( x ^ { 2 } - 2 x \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the derivative of the function. j(x)=7sec2xj ( x ) = 7 \sec ^ { 2 } x

A) j(x)=14sec2xtanxj '( x ) = 14 \sec ^ { 2 } x \cdot \tan x
B) j(x)=7sec2xtanxj '( x ) = 7 \sec ^ { 2 } x \cdot \tan x
C) j(x)=14sec2xtan2xj '( x ) = 14 \sec ^ { 2 } x \cdot \tan ^ { 2 } x
D) j(x)=14sec2xtanxj ^ { \prime } ( x ) = - 14 \sec ^ { 2 } x \cdot \tan x
E) j(x)=14secxtanxj '( x ) = 14 \sec x \cdot \tan x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the derivative of the function. s(x)=(4x22x+2)tanxs ( x ) = \left( 4 x ^ { 2 } - 2 x + 2 \right) \tan x

A) s(x)=(8x2)tanx+(4x22x2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x - 2 \right) \sec ^ { 2 } x
B) s(x)=(8x2)tanx+(4x22x+2)secxs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec x
C) s(x)=(8x2)tanx+(4x2+2x+2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } + 2 x + 2 \right) \sec ^ { 2 } x
D) s(x)=(8x2)tanx+(4x22x+2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x + \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec ^ { 2 } x
E) s(x)=(8x2)tanx(4x22x+2)sec2xs ^ { \prime } ( x ) = ( 8 x - 2 ) \tan x - \left( 4 x ^ { 2 } - 2 x + 2 \right) \sec ^ { 2 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the derivative of the function. p(x)=3+2sin(π2(x1))p ( x ) = 3 + 2 \sin \left( \frac { \pi } { 2 } ( x - 1 ) \right)

A) p(x)=πcos(π2(x1))p ^ { \prime } ( x ) = \pi \cos \left( \frac { \pi } { 2 } ( x - 1 ) \right)
B) p(x)=2cos(π2(x1))p ^ { \prime } ( x ) = 2 \cos \left( \frac { \pi } { 2 } ( x - 1 ) \right)
C) p(x)=πcos(π2(x+1))p ^ { \prime } ( x ) = \pi \cos \left( \frac { \pi } { 2 } ( x + 1 ) \right)
D) p(x)=πsin(π2(x1))p ^ { \prime } ( x ) = \pi \sin \left( \frac { \pi } { 2 } ( x - 1 ) \right)
E) p(x)=3+πcos(π2(x1))p ^ { \prime } ( x ) = 3 + \pi \cos \left( \frac { \pi } { 2 } ( x - 1 ) \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the derivative of the function. y(x)=sec(e4x)y ( x ) = \sec \left( e ^ { 4 x } \right)

A) y(x)=4e4xcsc(e4x)tan2(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \csc \left( e ^ { 4 x } \right) \tan ^ { 2 } \left( e ^ { 4 x } \right)
B) y(x)=16e4xsec(e4x)tan(e4x)y ^ { \prime } ( x ) = 16 e ^ { 4 x } \sec \left( e ^ { 4 x } \right) \tan \left( e ^ { 4 x } \right)
C) y(x)=4e4xsec(e4x)tan(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \sec \left( e ^ { 4 x } \right) \tan \left( e ^ { 4 x } \right)
D) y(x)=4e4xcsc2(e4x)tan2(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \csc ^ { 2 } \left( e ^ { 4 x } \right) \tan ^ { 2 } \left( e ^ { 4 x } \right)
E) y(x)=4e4xcsc(e4x)tan(e4x)y ^ { \prime } ( x ) = 4 e ^ { 4 x } \csc \left( e ^ { 4 x } \right) \tan \left( e ^ { 4 x } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
41
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.    Note that the period of the curve is  P = \frac { 1 } { 6 }  and its range is  [ - 1,1 ]  . </strong> A)  f ( x ) = \cos ( 12 x )  B)  f ( x ) = \cos \left( \frac { \pi x } { 12 } \right)  C)  f ( x ) = \cos ( 12 \pi x )  D)  f ( x ) = 12 \cos ( \pi x )  E)  f ( x ) = \cos \left( \frac { x } { 12 } \right)
Note that the period of the curve is P=16P = \frac { 1 } { 6 } and its range is [1,1][ - 1,1 ] .

A) f(x)=cos(12x)f ( x ) = \cos ( 12 x )
B) f(x)=cos(πx12)f ( x ) = \cos \left( \frac { \pi x } { 12 } \right)
C) f(x)=cos(12πx)f ( x ) = \cos ( 12 \pi x )
D) f(x)=12cos(πx)f ( x ) = 12 \cos ( \pi x )
E) f(x)=cos(x12)f ( x ) = \cos \left( \frac { x } { 12 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
42
The cost of Dig-It brand snow shovels is given by c(t)=3sin(2π(t0.75))c ( t ) = 3 \sin ( 2 \pi ( t - 0.75 ) )
Where t is time in years since January 1, 1997. How fast, in dollars per year, is the cost increasing on October 30, 1997

A)$21.85 per year
B) $18.85 per year
C) $9.42 per year
D) $20.85 per year
E) $6.00 per year
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
43
Starting with the identity sin2x+cos2x=1\sin ^ { 2 } x + \cos ^ { 2 } x = 1 , choose the right trigonometric identity.

A) sec2x=1+tan2x\sec ^ { 2 } x = 1 + \tan ^ { 2 } x
B) sec2x=1tan2x\sec ^ { 2 } x = 1 - \tan ^ { 2 } x
C) cot2x=1tan2x\cot ^ { 2 } x = 1 - \tan ^ { 2 } x
D) sin2x=1+tan2x\sin ^ { 2 } x = 1 + \tan ^ { 2 } x
E) sec2x=1+csc2x\sec ^ { 2 } x = 1 + \csc ^ { 2 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
44
Sketch the curves without any technological help. f(t)=2costf ( t ) = 2 \cos t ; g(t)=3.3cos(2t)g ( t ) = 3.3 \cos ( 2 t )

A)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)
B)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)
C)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)
D)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)
E)  <strong>Sketch the curves without any technological help.  f ( t ) = 2 \cos t  ;  g ( t ) = 3.3 \cos ( 2 t )   </strong> A)   B)     C)    D)     E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
45
Sketch the curves without any technological help. f(t)=costf ( t ) = \cos t ; g(t)=cos(t+π)g ( t ) = \cos ( t + \pi )

A)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)
B)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)
C)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)
D)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)
E)  <strong>Sketch the curves without any technological help.    f ( t ) = \cos t  ;  g ( t ) = \cos ( t + \pi )   </strong> A)    B)     C)     D)     E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
46
Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function s(t)=0.468sin(1.25t+1.73)+0.79(1t6)s ( t ) = 0.468 \sin ( 1.25 t + 1.73 ) + 0.79 ( 1 \leq t \leq 6 )
Where t is time in quarters ( t=1t = 1 represents the end of the first quarter of 1995) and s(t)s ( t ) is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales.

A) smax=1.526s _ { \max } = 1.526 , smin=0.074s _ { \min } = 0.074
B) smax=0.79s _ { \max } = 0.79 , smin=0.468s _ { \min } = 0.468
C) smax=2.048s _ { \max } = 2.048 , smin=1.112s _ { \min } = 1.112
D) smax=2.194s _ { \max } = 2.194 , smin=0.146s _ { \min } = 0.146
E) smax=1.258s _ { \max } = 1.258 , smin=0.322s _ { \min } = 0.322
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
47
Model the curve with a sine function.  <strong>Model the curve with a sine function.    Note that the period of the curve is  P = 0.4  and its range is  [ - 3 , - 1 ]  . </strong> A)  f ( x ) = 2 - \sin x  B)  f ( x ) = - 2 + 5 \sin x  C)   f ( x ) = - 2 + \sin ( 5 \pi x )  D)  f ( x ) = 2 - \sin ( 5 \pi x )  E)  f ( x ) = - 2 + \sin ( \pi x )
Note that the period of the curve is P=0.4P = 0.4 and its range is [3,1][ - 3 , - 1 ] .

A) f(x)=2sinxf ( x ) = 2 - \sin x
B) f(x)=2+5sinxf ( x ) = - 2 + 5 \sin x
C) f(x)=2+sin(5πx)f ( x ) = - 2 + \sin ( 5 \pi x )
D) f(x)=2sin(5πx)f ( x ) = 2 - \sin ( 5 \pi x )
E) f(x)=2+sin(πx)f ( x ) = - 2 + \sin ( \pi x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
48
Use the addition formulas: sin(x+y)=sinxcosy+cosxsinysin(xy)=sinxcosycosxsinycos(x+y)=cosxcosysinxsinycos(xy)=cosxcosy+sinxsiny\begin{array} { l } \sin ( x + y ) = \sin x \cdot \cos y + \cos x \cdot \sin y \\\sin ( x - y ) = \sin x \cdot \cos y - \cos x \cdot \sin y \\\cos ( x + y ) = \cos x \cdot \cos y - \sin x \cdot \sin y \\\cos ( x - y ) = \cos x \cdot \cos y + \sin x \cdot \sin y\end{array}
To express tan(x+23π)\tan ( x + 23 \pi ) in terms of tan(x)\tan ( x ) .

A) tan(x)23π\frac { \tan ( x ) } { 23 \pi }
B) tan(x)+23π\tan ( x ) + 23 \pi
C) 23πtan(x)23 \pi \tan ( x )
D) tan(x)\tan ( x )
E) tan(x)23π\tan ( x ) - 23 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
49
Use the formula for sin(x+y)\sin ( x + y ) to simplify the expression sin(t+17π2)\sin \left( t + \frac { 17 \pi } { 2 } \right) .

A) cost17π\cos t - 17 \pi
B) cost+17π\cos t + 17 \pi
C) cost17π\frac { \cos t } { 17 \pi }
D) 17πcost17 \pi \cos t
E) cost\cos t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
50
Use the addition formulas: sin(x+y)=sinxcosy+cosxsinysin(xy)=sinxcosycosxsinycos(x+y)=cosxcosysinxsinycos(xy)=cosxcosy+sinxsiny\begin{array} { l } \sin ( x + y ) = \sin x \cdot \cos y + \cos x \cdot \sin y \\\sin ( x - y ) = \sin x \cdot \cos y - \cos x \cdot \sin y \\\cos ( x + y ) = \cos x \cdot \cos y - \sin x \cdot \sin y \\\cos ( x - y ) = \cos x \cdot \cos y + \sin x \cdot \sin y\end{array}
To calculate cos(π3)\cos \left( \frac { \pi } { 3 } \right) , given that sin(π6)=12\sin \left( \frac { \pi } { 6 } \right) = \frac { 1 } { 2 } and cos(π6)=32\cos \left( \frac { \pi } { 6 } \right) = \frac { \sqrt { 3 } } { 2 } .

A) cos(π3)=0\cos \left( \frac { \pi } { 3 } \right) = 0
B) cos(π3)=32\cos \left( \frac { \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 }
C) cos(π3)=12\cos \left( \frac { \pi } { 3 } \right) = \frac { 1 } { 2 }
D) cos(π3)=32\cos \left( \frac { \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 2 }
E) cos(π3)=12\cos \left( \frac { \pi } { 3 } \right) = - \frac { 1 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
51
Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression g(x)=25cos[2π(3x1)]+9g ( x ) = 25 \cos [ 2 \pi ( 3 x - 1 ) ] + 9
By a sine function.

A) g(x)=25sin(6πx+5π2)9+π2g ( x ) = 25 \sin \left( 6 \pi x + \frac { 5 \pi } { 2 } \right) - 9 + \frac { \pi } { 2 }
B) g(x)=25sin(6πx5π2)+9g ( x ) = 25 \sin \left( 6 \pi x - \frac { 5 \pi } { 2 } \right) + 9
C) g(x)=25sin(6πx5π2)+9g ( x ) = 25 \sin \left( - 6 \pi x - \frac { 5 \pi } { 2 } \right) + 9
D) g(x)=25sin(6πx+5π2)+9g ( x ) = 25 \sin \left( - 6 \pi x + \frac { 5 \pi } { 2 } \right) + 9
E) g(x)=25sin(12πx+3π2)+9g ( x ) = 25 \sin \left( 12 \pi x + \frac { 3 \pi } { 2 } \right) + 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression g(t)=45cos(t5)g ( t ) = 45 - \cos ( t - 5 )
By a sine function.

A) g(t)=45sin(π2t+5)g ( t ) = 45 - \sin \left( \frac { \pi } { 2 } - t + 5 \right)
B) g(t)=45sin(π2t5)g ( t ) = 45 - \sin \left( \frac { \pi } { 2 } - t - 5 \right)
C) g(t)=45sin(πt+5)g ( t ) = 45 - \sin ( \pi - t + 5 )
D) g(t)=45sin(π2+t+5)g ( t ) = 45 - \sin \left( \frac { \pi } { 2 } + t + 5 \right)
E) g(t)=π245sin(t+5)g ( t ) = \frac { \pi } { 2 } - 45 - \sin ( t + 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
53
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.    Note that the period of the curve is  P = 14  , its range is  [ 0,120 ]  the graph of the cosine function is shifted upward 60 units and shifted to the right 7 units. </strong> A)  f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7  B)  f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) - 7  C)  f ( x ) = 60 \cos \left( \frac { \pi ( x + 7 ) } { 7 } \right) + 60  D)  f ( x ) = 7 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7  E)  f ( x ) = 60 \cos \left( \frac { \pi ( x - 7 ) } { 7 } \right) + 60
Note that the period of the curve is P=14P = 14 , its range is [0,120][ 0,120 ] the graph of the cosine function is shifted upward 60 units and shifted to the right 7 units.

A) f(x)=120cos(π(x60)60)+7f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7
B) f(x)=120cos(π(x60)60)7f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) - 7
C) f(x)=60cos(π(x+7)7)+60f ( x ) = 60 \cos \left( \frac { \pi ( x + 7 ) } { 7 } \right) + 60
D) f(x)=7cos(π(x60)60)+7f ( x ) = 7 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7
E) f(x)=60cos(π(x7)7)+60f ( x ) = 60 \cos \left( \frac { \pi ( x - 7 ) } { 7 } \right) + 60
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
54
Use the conversion formula cosx=sin(π2x)\cos x = \sin \left( \frac { \pi } { 2 } - x \right) to replace the expression f(t)=5.2cos(6πt)+10f ( t ) = 5.2 \cos ( 6 \pi t ) + 10
By a sine function.

A) f(t)=5.2sin(π26πt)+10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 10
B) f(t)=5.2sin(π6πt2)+10f ( t ) = 5.2 \sin \left( \frac { \pi - 6 \pi t } { 2 } \right) + 10
C) f(t)=5.2sin(π26t)+10f ( t ) = 5.2 \sin \left( \frac { \pi } { 2 } - 6 t \right) + 10
D) f(t)=6sin(π25.2πt)+10f ( t ) = 6 \sin \left( \frac { \pi } { 2 } - 5.2 \pi t \right) + 10
E) f(t)=10sin(π26πt)+5.2f ( t ) = 10 \sin \left( \frac { \pi } { 2 } - 6 \pi t \right) + 5.2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
55
Model the curve with a sine function.  <strong>Model the curve with a sine function.    Note that the period of the curve is  P = 32  and its range is  [ - 40,0 ]  , the graph of the sine function is shifted to the right 7 units. </strong> A)  f ( x ) = 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20  B)  f ( x ) = - 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20  C)  f ( x ) = 40 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 40  D)  f ( x ) = 40 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) - 40  E)  f ( x ) = 20 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 20
Note that the period of the curve is P=32P = 32 and its range is [40,0][ - 40,0 ] , the graph of the sine function is shifted to the right 7 units.

A) f(x)=20sin(π(x+7)16)+20f ( x ) = 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20
B) f(x)=20sin(π(x+7)16)+20f ( x ) = - 20 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) + 20
C) f(x)=40sin(π(x7)16)40f ( x ) = 40 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 40
D) f(x)=40sin(π(x+7)16)40f ( x ) = 40 \sin \left( \frac { \pi ( x + 7 ) } { 16 } \right) - 40
E) f(x)=20sin(π(x7)16)20f ( x ) = 20 \sin \left( \frac { \pi ( x - 7 ) } { 16 } \right) - 20
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
56
Model the curve with a sine function.
 <strong>Model the curve with a sine function.   Note that the period of the curve is  P = \frac { 1 } { 5 }  and its range is  [ - 2.2,2.2 ]  and the graph of the sine function is shifted to the left 0.55 units. </strong> A)  f ( x ) = 2.2 \sin ( 10 \pi ( x + 0.55 ) )  B)  f ( x ) = 2.2 \sin ( 10 \pi ( x - 0.55 ) )  C)  f ( x ) = 2.2 \sin ( 10 \pi x + 0.55 )  D)  f ( x ) = 2.2 \sin ( 10 \pi ( 2 x + 0.55 ) )  E)  f ( x ) = 4.4 \sin ( 5 \pi ( x + 0.55 ) )
Note that the period of the curve is P=15P = \frac { 1 } { 5 } and its range is [2.2,2.2][ - 2.2,2.2 ] and the graph of the sine function is shifted to the left 0.55 units.

A) f(x)=2.2sin(10π(x+0.55))f ( x ) = 2.2 \sin ( 10 \pi ( x + 0.55 ) )
B) f(x)=2.2sin(10π(x0.55))f ( x ) = 2.2 \sin ( 10 \pi ( x - 0.55 ) )
C) f(x)=2.2sin(10πx+0.55)f ( x ) = 2.2 \sin ( 10 \pi x + 0.55 )
D) f(x)=2.2sin(10π(2x+0.55))f ( x ) = 2.2 \sin ( 10 \pi ( 2 x + 0.55 ) )
E) f(x)=4.4sin(5π(x+0.55))f ( x ) = 4.4 \sin ( 5 \pi ( x + 0.55 ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
57
Calculate the derivative.
Calculate the derivative. ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
58
The depth of water d(t)d ( t ) at my favorite surfing spot varies from 8 to 20 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model the depth of water as a function of time t in hours since midnight on Sunday morning.

A) d(t)=10sin(2π(t1.625)13.5)+4d ( t ) = 10 \sin \left( \frac { 2 \pi ( t - 1.625 ) } { 13.5 } \right) + 4
B) d(t)=6sin(2π(t+1.625)11.5)14d ( t ) = 6 \sin \left( \frac { 2 \pi ( t + 1.625 ) } { 11.5 } \right) - 14
C) d(t)=6sin(2π(t+1.625)13.5)+14d ( t ) = - 6 \sin \left( \frac { - 2 \pi ( t + 1.625 ) } { 13.5 } \right) + 14
D) d(t)=6sin(2π(t1.625)13.5)+14d ( t ) = 6 \sin \left( \frac { 2 \pi ( t - 1.625 ) } { 13.5 } \right) + 14
E) d(t)=14sin(2π(t1.625)13.5)+6d ( t ) = 14 \sin \left( \frac { 2 \pi ( t - 1.625 ) } { 13.5 } \right) + 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
59
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.     Note that the period of the curve is  P = \frac { 1 } { 5 }  , its range is  [ - 3.3,3.3 ]  and the graph of the cosine function is shifted to the right 0.35 units. </strong> A)  f ( x ) = 6.6 \cos ( 20 \pi ( 2 x - 0.35 ) )  B)  f ( x ) = 3.3 \cos ( 10 ( x - 0.35 ) )  C)  f ( x ) = 6.6 \cos ( 20 \pi ( 2 x + 0.35 ) )  D)  f ( x ) = 3.3 \cos ( 10 \pi ( x - 0.35 ) )  E)  f ( x ) = 3.3 \cos ( 10 \pi ( x + 0.35 ) )
Note that the period of the curve is P=15P = \frac { 1 } { 5 } , its range is [3.3,3.3][ - 3.3,3.3 ] and the graph of the cosine function is shifted to the right 0.35 units.

A) f(x)=6.6cos(20π(2x0.35))f ( x ) = 6.6 \cos ( 20 \pi ( 2 x - 0.35 ) )
B) f(x)=3.3cos(10(x0.35))f ( x ) = 3.3 \cos ( 10 ( x - 0.35 ) )
C) f(x)=6.6cos(20π(2x+0.35))f ( x ) = 6.6 \cos ( 20 \pi ( 2 x + 0.35 ) )
D) f(x)=3.3cos(10π(x0.35))f ( x ) = 3.3 \cos ( 10 \pi ( x - 0.35 ) )
E) f(x)=3.3cos(10π(x+0.35))f ( x ) = 3.3 \cos ( 10 \pi ( x + 0.35 ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
60
Model the curve with a cosine function.  <strong>Model the curve with a cosine function.    Note that the period of the curve is  P = \frac { 1 } { 3 }  and its range is  [ - 1,1 ]  . </strong> A)  f ( x ) = \cos ( 6 x )  B)  f ( x ) = \cos ( 6 \pi x )  C)  f ( x ) = \cos \left( \frac { x } { 6 } \right)  D)  f ( x ) = \cos \left( \frac { \pi x } { 6 } \right)  E)  f ( x ) = 6 \cos ( \pi x )
Note that the period of the curve is P=13P = \frac { 1 } { 3 } and its range is [1,1][ - 1,1 ] .

A) f(x)=cos(6x)f ( x ) = \cos ( 6 x )
B) f(x)=cos(6πx)f ( x ) = \cos ( 6 \pi x )
C) f(x)=cos(x6)f ( x ) = \cos \left( \frac { x } { 6 } \right)
D) f(x)=cos(πx6)f ( x ) = \cos \left( \frac { \pi x } { 6 } \right)
E) f(x)=6cos(πx)f ( x ) = 6 \cos ( \pi x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
61
Starting with the identity Starting with the identity   and then dividing both sides of the equation by a suitable trigonometric function, derive the trigonometric identity. ​  and then dividing both sides of the equation by a suitable trigonometric function, derive the trigonometric identity.
Starting with the identity   and then dividing both sides of the equation by a suitable trigonometric function, derive the trigonometric identity. ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
62
The uninflated cost of Dugout brand snow shovels currently varies from a high of $30 on January 1 (t=0)( t = 0 ) to a low of $6 on July 1 (t=0.5)( t = 0.5 ) . Assuming this trend were to continue indefinitely, calculate the uninflated cost u(t)u ( t ) of Dugout snow shovels as a function of time t in years. (Use a sine function.)

A) u(t)=15sin(2π(t0.75))+3u ( t ) = 15 \sin ( 2 \pi ( t - 0.75 ) ) + 3
B) u(t)=12sin(2π(t0.75))+18u ( t ) = 12 \sin ( 2 \pi ( t - 0.75 ) ) + 18
C) u(t)=18sin(2π(t0.75))+12u ( t ) = 18 \sin ( 2 \pi ( t - 0.75 ) ) + 12
D) u(t)=12sin(2π(t0.75))18u ( t ) = - 12 \sin ( 2 \pi ( t - 0.75 ) ) - 18
E) u(t)=12sin(2π(t+0.75))18u ( t ) = 12 \sin ( 2 \pi ( t + 0.75 ) ) - 18
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
63
The depth of water The depth of water   at my favorite surfing spot varies from 5 to 15 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model to the depth of water as a function of time t in hours since midnight in Sunday morning. at my favorite surfing spot varies from 5 to 15 feet, depending on the time. Last Sunday high tide occurred at 5:00 A.M. and the next high tide occurred at 6:30 P.M. Use a sine function to model to the depth of water as a function of time t in hours since midnight in Sunday morning.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
64
Model the curve with a sine function.
Model the curve with a sine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π.
Note that the period of the curve is Model the curve with a sine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π. , its range is Model the curve with a sine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π. and the graph of the sine function is shifted to the left 0.9 units. Write the model function as a function of x and π.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
65
Model the curve with a cosine function.
Model the curve with a cosine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.
Note that the period of the curve is Model the curve with a cosine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π. , its range is Model the curve with a cosine function. ​   ​ Note that the period of the curve is   , its range is   and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π. and the graph of the cosine function is shifted upward 55 units and shifted to the right 14 units. Write the model function as a function of x and π.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
66
Model the curve with a sine function.

Model the curve with a sine function. ​ ​   ​ Note that the period of the curve is   and its range is   . Write the model function as a function of x and π.
Note that the period of the curve is Model the curve with a sine function. ​ ​   ​ Note that the period of the curve is   and its range is   . Write the model function as a function of x and π. and its range is Model the curve with a sine function. ​ ​   ​ Note that the period of the curve is   and its range is   . Write the model function as a function of x and π. . Write the model function as a function of x and π.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
67
Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function
Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function ​   ​ where ​t is time in quarters (   represents the end of the first quarter of 1995) and   is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales. ​ Maximum sales __________ billions of dollars ​ Minimum sales __________ billions of dollars
where ​t is time in quarters ( Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function ​   ​ where ​t is time in quarters (   represents the end of the first quarter of 1995) and   is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales. ​ Maximum sales __________ billions of dollars ​ Minimum sales __________ billions of dollars represents the end of the first quarter of 1995) and Sales of computers are subject to seasonal fluctuations. Computer City's sales of computers in 1995 and 1996 can be approximated by the function ​   ​ where ​t is time in quarters (   represents the end of the first quarter of 1995) and   is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales. ​ Maximum sales __________ billions of dollars ​ Minimum sales __________ billions of dollars is computer sales (quarterly revenue) in billions of dollars. Estimate Computer City's maximum and minimum quarterly revenue from computer sales.

Maximum sales __________ billions of dollars

Minimum sales __________ billions of dollars
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 67 في هذه المجموعة.