Deck 11: Techniques of Differentiation

ملء الشاشة (f)
exit full mode
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. 9x+10y=79 x + 10 y = 7 ?

A) 910- \frac { 9 } { 10 }
B) 9- 9
C) 00
D) 109- \frac { 10 } { 9 }
E) 10- 10
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. x26y=7x ^ { 2 } - 6 y = 7 ?

A) 77
B) 16- \frac { 1 } { 6 }
C) x6\frac { x } { 6 }
D) 3- 3
E) x3\frac { x } { 3 }
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. exy=4e ^ { x } y = 4 ?

A) yexy e ^ { x }
B) 1y1 - y
C) xex4\frac { x e ^ { x } } { 4 }
D) y- y
E) 1y- \frac { 1 } { y }
سؤال
Use logarithmic differentiation to find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . y=(x3+x)x3+6y = \left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } ?

A) (3x2+1x3+x+3x22x3+12)\left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { 3 x ^ { 2 } } { 2 x ^ { 3 } + 12 } \right)
B) (x3+x)x3+6(1x3+x+12(x3+6))\left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } \left( \frac { 1 } { x ^ { 3 } + x } + \frac { 1 } { 2 \left( x ^ { 3 } + 6 \right) } \right)
C) (x3+x)x3+6(3x2+1x3+x+3x22(x3+6))\left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { 3 x ^ { 2 } } { 2 \left( x ^ { 3 } + 6 \right) } \right)
D) (3x2+1)(3x2+1x+3x22x3+12)\left( 3 x ^ { 2 } + 1 \right) \left( \frac { 3 x ^ { 2 } + 1 } { x } + \frac { 3 x ^ { 2 } } { 2 x ^ { 3 } + 12 } \right)
E) 3x2x3+12(3x2+1x3+x+x22x3+6)3 x ^ { 2 } \sqrt { x ^ { 3 } + 12 } \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { x ^ { 2 } } { 2 x ^ { 3 } + 6 } \right)
سؤال
Use logarithmic differentiation to find Use logarithmic differentiation to find   . ​  <div style=padding-top: 35px> .
Use logarithmic differentiation to find   . ​  <div style=padding-top: 35px>
سؤال
Find ds dt\frac { \mathrm { d } s } { \mathrm {~d} t } using implicit differentiation. est=s9e ^ { s t } = s ^ { 9 }

A) 9est9 - e ^ { s t }
B) est9est\frac { e ^ { s t } } { 9 - e ^ { s t } }
C) sest9s8test\frac { s e ^ { s t } } { 9 s ^ { 8 } - t e ^ { s t } }
D) s89s8test\frac { s ^ { 8 } } { 9 s ^ { 8 } - t e ^ { s t } }
E) sest9stest\frac { s e ^ { s t } } { 9 s - t e ^ { s t } }
سؤال
The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by
The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by ​   ​ where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute   at a production level of 23,000 CDs per day and   . Round your answer to two decimal places.<div style=padding-top: 35px>
where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by ​   ​ where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute   at a production level of 23,000 CDs per day and   . Round your answer to two decimal places.<div style=padding-top: 35px> at a production level of 23,000 CDs per day and The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by ​   ​ where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute   at a production level of 23,000 CDs per day and   . Round your answer to two decimal places.<div style=padding-top: 35px> . Round your answer to two decimal places.
سؤال
Find the equation of the tangent line for (xy)2+(xy)x=10( x y ) ^ { 2 } + ( x y ) - x = 10 at the point (10,0)( - 10,0 ) .

A) y=10x1y = - 10 x - 1
B) y=110x+1y = - \frac { 1 } { 10 } x + 1
C) y=110x1y = - \frac { 1 } { 10 } x - 1
D) y=10x2y = - 10 x - 2
E) y=110x2y = - \frac { 1 } { 10 } x - 2
سؤال
The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by P=x0.2y0.8P = x ^ { 0.2 } y ^ { 0.8 }
Where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } at a production level of 24,000 CDs per day and x=105x = 105 . Round your answer to two decimal places.

A)-250.64
B) -234.31
C) -222.19
D) -255.85
E) 234.31
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. exy2=16+ey\frac { e ^ { x } } { y ^ { 2 } } = 16 + e ^ { y }

A) yex16ex+3y2ey\frac { y e ^ { x } } { 16 e ^ { x } + 3 y ^ { 2 } e ^ { y } }
B) 2yexex+yey\frac { 2 y e ^ { x } } { e ^ { x } + y e ^ { y } }
C) 2ex+y3eyyex\frac { 2 e ^ { x } + y ^ { 3 } e ^ { y } } { y e ^ { x } }
D) yex2ex+y3ey\frac { y e ^ { x } } { 2 e ^ { x } + y ^ { 3 } e ^ { y } }
E) y2+y3\frac { y } { 2 + y ^ { 3 } }
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. xeyyex=12x e ^ { y } - y e ^ { x } = 12

A) yexeyxeyex\frac { y e ^ { x } - e ^ { y } } { x e ^ { y } - e ^ { x } }
B) y1x1\frac { y - 1 } { x - 1 }
C) yey+exxeyex\frac { y e ^ { y } + e ^ { x } } { x e ^ { y } - e ^ { x } }
D) xey+eyyey+ex\frac { x e ^ { y } + e ^ { y } } { y e ^ { y } + e ^ { x } }
E) xeyexyexey\frac { x e ^ { y } - e ^ { x } } { y e ^ { x } - e ^ { y } }
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. ln(15+exy)=y\ln \left( 15 + e ^ { x y } \right) = y

A) x+yx + y
B) yexy15+exy\frac { y e ^ { x y } } { 15 + e ^ { x y } }
C) y1x\frac { y } { 1 - x }
D) yexy15+exy(1x)\frac { y e ^ { x y } } { 15 + e ^ { x y } ( 1 - x ) }
E) 115+exy(1x)\frac { 1 } { 15 + e ^ { x y } ( 1 - x ) }
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. x2+y2=4x ^ { 2 } + y ^ { 2 } = 4

A) xy- \frac { x } { y }
B) 2y2 y
C) 2x2 x
D) yx- \frac { y } { x }
E) 2x+2y2 x + 2 y
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. ylnx+y=2y \ln x + y = 2

A) x(lnx+1)- \frac { } { x ( \ln x + 1 ) }
B) xy(lny+1)- \frac { x } { y ( \ln y + 1 ) }
C) x(lnx+1)x ( \ln x + 1 )
D) 1x(lnx+1)- \frac { 1 } { x ( \ln x + 1 ) }
E) xlnx\overline { x \ln x }
سؤال
An employment research company estimates that the value of a recent MBA graduate to an accounting company is V=5e2+3g3V = 5 e ^ { 2 } + 3 g ^ { 3 }
Where V is the value of the graduate, ?e is a number of years of prior business experience, and g is the graduate school grade point average. If
V=240V = 240 , find dee dg\frac { \mathrm { de } e } { \mathrm {~d} g } when g=1g = 1 .

All the answers were rounded to the nearest hundredth.

A)0.13
B) -1.58
C) -2.79
D) -0.13
E) -0.25
سؤال
Use logarithmic differentiation to find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . Do not simplify the result. y=(5x+1)(7x1)y = ( 5 x + 1 ) ( 7 x - 1 )

A) dydx=(5x+1)(7x1)(55x+1+77x1)\frac { d y } { d x } = ( 5 x + 1 ) ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
B) dy dx=(55x+1+77x1)\frac { \mathrm { d } y } { \mathrm {~d} x } = \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
C) dy dx=(5x+1)(7x1)(55x+1+77x1)2\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 5 x + 1 ) ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right) ^ { 2 }
D) dy dx=(7x1)(55x+1+77x1)\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
E) dy dx=(5x+1)(55x+1+77x1)\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 5 x + 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
سؤال
Find the derivative of the following function. f(x)=ln(9x17)f ( x ) = \ln ( 9 x - 17 )

A) 99x17\frac { 9 } { 9 x - 17 }
B) 19x17\frac { 1 } { 9 x - 17 }
C) 179x17\frac { 17 } { 9 x - 17 }
D) 1539x17\frac { 153 } { 9 x - 17 }
E) none of these
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. xy2y2=9\frac { x y } { 2 } - y ^ { 2 } = 9

A) y4yx\frac { y } { 4 y - x }
B) 14xy\frac { 1 } { \sqrt { 4 x y } }
C) 4y2x4 y - 2 x
D) 12yx\frac { 1 } { 2 y - x }
E) y4xy\frac { y } { 4 x - y }
سؤال
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. 10x+11y=xy10 x + 11 y = x y ?

A) 10yx11\frac { 10 - y } { x - 11 }
B) 10xy11\frac { 10 - x } { y - 11 }
C) 11y11 - y
D) x1110y\frac { x - 11 } { 10 - y }
E) x10x - 10
سؤال
Find dx dy\frac { \mathrm { d } x } { \mathrm {~d} y } using implicit differentiation. (xy)2+y2=5( x y ) ^ { 2 } + y ^ { 2 } = 5

A) xyx2+1\frac { x y } { x ^ { 2 } + 1 }
B) xy- \frac { x } { y }
C) xyx2+1- \frac { x y } { x ^ { 2 } + 1 }
D) 2y+2x2 y + 2 x
E) x2+1xy- \frac { x ^ { 2 } + 1 } { x y }
سؤال
Find the derivative of the following function.
Find the derivative of the following function. ​  <div style=padding-top: 35px>
سؤال
Find the derivative of the following function.
f(x)=log58xf ( x ) = \log _ { 5 } 8 x

A) 1xln5\frac { 1 } { x \ln 5 }
B) 5xln8\frac { 5 } { x \ln 8 }
C) 8xln5\frac { 8 } { x \ln 5 }
D) 18xln5\frac { 1 } { 8 x \ln 5 }
E) none of these
سؤال
If $17,000 is invested in a savings account yielding 3% per year, compounded semiannually, how fast is the balance growing after 3 years Round your answer to the nearest cent.

A)$691.89 per year
B) $387.46 per year
C) $774.92 per year
D) $996.33 per year
E) $553.52 per year
سؤال
Calculate the derivative of the function. (4x2+2x+2)4\left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 4 }

A) g(x)=(16x2+8x+8)5g ^ { \prime } ( x ) = \left( - 16 x ^ { 2 } + 8 x + 8 \right) ^ { - 5 }
B) g(x)=4(8x+2)(4x2+2x+2)5g ^ { \prime } ( x ) = - 4 ( 8 x + 2 ) \left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 5 }
C) g(x)=32(4x2+2x+2)5g ^ { \prime } ( x ) = - 32 \left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 5 }
D) g(x)=4(8x+2)(4x2+2x+2)g ^ { \prime } ( x ) = - 4 ( 8 x + 2 ) \left( 4 x ^ { 2 } + 2 x + 2 \right)
E) g(x)=4(4x2+2x+2)5g ^ { \prime } ( x ) = - 4 \left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 5 }
سؤال
Find the equation of the straight line, tangent to y=e7xlog5xy = e ^ { 7 x } \log _ { 5 } x at the point (1,0)( 1,0 ) .

A) y(x)=e7ln5x+e7ln5y ( x ) = \frac { e ^ { 7 } } { \ln 5 } x + \frac { e ^ { 7 } } { \ln 5 }
B) y(x)=e5ln7xe5ln7y ( x ) = \frac { e ^ { 5 } } { \ln 7 } x - \frac { e ^ { 5 } } { \ln 7 }
C) y(x)=e5ln7x+e5ln7y ( x ) = \frac { e ^ { 5 } } { \ln 7 } x + \frac { e ^ { 5 } } { \ln 7 }
D) y(x)=e7ln5xe7ln5y ( x ) = \frac { e ^ { 7 } } { \ln 5 } x - \frac { e ^ { 7 } } { \ln 5 }
E) none of these
سؤال
Find the derivative of the function. h(x)=ln[(2x+8)(3x+6)]h ( x ) = \ln [ ( 2 x + 8 ) ( 3 x + 6 ) ]

A) 3(2x+8)2(3x+6)\frac { 3 } { ( 2 x + 8 ) } - \frac { 2 } { ( 3 x + 6 ) }
B) 3(2x+8)+2(3x+6)\frac { 3 } { ( 2 x + 8 ) } + \frac { 2 } { ( 3 x + 6 ) }
C) 1(2x+8)+1(3x+6)\frac { 1 } { ( 2 x + 8 ) } + \frac { 1 } { ( 3 x + 6 ) }
D) 1(2x+8)1(3x+6)\frac { 1 } { ( 2 x + 8 ) } - \frac { 1 } { ( 3 x + 6 ) }
E) 2(2x+8)+3(3x+6)\frac { 2 } { ( 2 x + 8 ) } + \frac { 3 } { ( 3 x + 6 ) }
سؤال
The population of Upper Anchora was 1,000,000 at the start of 1996 and was doubling every 9 years. How fast was it growing per year at the start of 1996 ?
Round your answer to the nearest thousand.

A)154,000 people per year
B) 78,000 people per year
C) 77,000 people per year
D) 76,000 people per year
E) 67,000 people per year
سؤال
Find the derivative of the function. g(x)=ln8x9g ( x ) = \ln | 8 x - 9 |

A) 88x9\frac { 8 } { | 8 x - 9 | }
B) 18x9\frac { 1 } { 8 x - 9 }
C) 18x+9\frac { 1 } { - 8 x + 9 }
D) 88x9\frac { 8 } { 8 x - 9 }
E) none of these
سؤال
Find the indicated derivative. The independent variable is a function of t. y=x0.7(1+x);dy dt=y = x ^ { 0.7 } ( 1 + x ) ; \frac { \mathrm { d } y } { \mathrm {~d} t } =

A) dy dt=(0.7x0.3)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { - 0.3 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
B) dy dt=(0.7x0.3+2.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { - 0.3 } + 2.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
C) dy dt=(0.7x0.3+1.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { - 0.3 } + 1.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
D) dy dt=(1.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 1.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
E) dy dt=(0.7x0.7+2.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { 0.7 } + 2.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
سؤال
Find the derivative of the function. r(x)=(e6x6)8r ( x ) = \left( e ^ { - 6 x ^ { 6 } } \right) ^ { 8 }

A) 288(e6x6)7x5- 288 \left( e ^ { - 6 x ^ { 6 } } \right) ^ { 7 } x ^ { 5 }
B) 48e8x6- 48 e ^ { 8 } x ^ { 6 }
C) 48e7x648 e ^ { 7 } x ^ { 6 }
D) 288(e6x6)8x5- 288 \left( e ^ { - 6 x ^ { 6 } } \right) ^ { 8 } x ^ { 5 }
E) none of these
سؤال
Find the derivative of the function.

Find the derivative of the function. ​ ​  <div style=padding-top: 35px>
سؤال
Find the derivative of the function.
r(x)=[ln(x8)]3r ( x ) = \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 3 }

A) 24[ln(x7)]2x8\frac { 24 \left[ \ln \left( x ^ { 7 } \right) \right] ^ { 2 } } { x ^ { 8 } }
B) 24[ln(x8)]2x8\frac { 24 \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 2 } } { x ^ { 8 } }

C) 24[ln(x8)]2x\frac { 24 \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 2 } } { x }
D) 24[ln(x8)]3x8\frac { 24 \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 3 } } { x ^ { 8 } }
E) none of these
سؤال
If $24,000 is invested in a savings account yielding 6% per year, compounded semiannually, how fast is the balance growing after 2 years

Please enter your answer as a number (in $ per year) without the units. Round your answer to two decimal places.
سؤال
Calculate the derivative of the function. s(x)=(8x+52x6)6s ( x ) = \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 6 }

A) s(x)=6(8x+52x6)558x(2x6)2s ^ { \prime } ( x ) = - 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 58 x } { ( 2 x - 6 ) ^ { 2 } }
B) s(x)=6(8x+52x6)548(2x6)2s ^ { \prime } ( x ) = - 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 48 } { ( 2 x - 6 ) ^ { 2 } }
C) s(x)=(8x+52x6)558(2x6)2s ^ { \prime } ( x ) = \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 58 } { ( 2 x - 6 ) ^ { 2 } }
D) s(x)=6(8x+52x6)558(2x6)2s ^ { \prime } ( x ) = - 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 58 } { ( 2 x - 6 ) ^ { 2 } }
E) s(x)=6(8x+52x6)5s ^ { \prime } ( x ) = 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 }
سؤال
Find the derivative of the function.
f(x)=ln(3x+5)2(7x+5)2(2x+8)f ( x ) = \ln \mid \frac { ( 3 x + 5 ) ^ { 2 } } { ( 7 x + 5 ) ^ { 2 } ( 2 x + 8 ) }

A) 3(3x+5)27(7x+5)222x+8\frac { 3 } { ( 3 x + 5 ) ^ { 2 } } - \frac { 7 } { ( 7 x + 5 ) ^ { 2 } } - \frac { 2 } { 2 x + 8 }
B) 63x+5+147x+5+22x+8\frac { 6 } { 3 x + 5 } + \frac { 14 } { 7 x + 5 } + \frac { 2 } { 2 x + 8 }
C) 3(3x+5)2+7(7x+5)2+22x+8\frac { 3 } { ( 3 x + 5 ) ^ { 2 } } + \frac { 7 } { ( 7 x + 5 ) ^ { 2 } } + \frac { 2 } { 2 x + 8 }
D) 63x+5147x+522x+8\frac { 6 } { 3 x + 5 } - \frac { 14 } { 7 x + 5 } - \frac { 2 } { 2 x + 8 }
E) none of these
سؤال
Find the derivative of the function.
h(x)=e9x24x+1xh ( x ) = e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }

A) 9x38x21xe9x24x+1x\frac { 9 x ^ { 3 } - 8 x ^ { 2 } - 1 } { x } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
B) 18x34x21x2e9x24x+1x\frac { 18 x ^ { 3 } - 4 x ^ { 2 } - 1 } { x ^ { 2 } } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
C) 9x38x21x2e9x24x+1x\frac { 9 x ^ { 3 } - 8 x ^ { 2 } - 1 } { x ^ { 2 } } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
D) 18x34x21xe9x24x+1x\frac { 18 x ^ { 3 } - 4 x ^ { 2 } - 1 } { x } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
E) none of these
سؤال
Find the derivative of the function. e5x5xe5x\frac { e ^ { - 5 x } } { 5 x e ^ { 5 x } }

A) 10x15x2e10x- \frac { 10 x - 1 } { 5 x ^ { 2 } e ^ { 10 x } }
B) 10x+15x2e10x\frac { 10 x + 1 } { 5 x ^ { 2 } e ^ { 10 x } }
C) 10x+1x2e10x- \frac { 10 x + 1 } { x ^ { 2 } e ^ { 10 x } }
D) 10x+15x2e10x- \frac { 10 x + 1 } { 5 x ^ { 2 } e ^ { 10 x } }
E) none of these
سؤال
Find the derivative of the function.
f(x)=e4x6ln(8x)f ( x ) = e ^ { 4 x ^ { 6 } } \ln ( 8 x )

A) 24e4x6x5ln(8x)+e4x6x24 e ^ { 4 x ^ { 6 } } x ^ { 5 } \ln ( 8 x ) + \frac { e ^ { 4 x ^ { 6 } } } { x }
B) 24e4x5x5ln(8x)+e4x6x24 e ^ { 4 x ^ { 5 } } x ^ { 5 } \ln ( 8 x ) + \frac { e ^ { 4 x ^ { 6 } } } { x }
C) 24e4x6x5ln(8x)+e4x6824 e ^ { 4 x ^ { 6 } } x ^ { 5 } \ln ( 8 x ) + \frac { e ^ { 4 x ^ { 6 } } } { 8 }
D) 24e4x6x6ln(8x)+8e4x6x24 e ^ { 4 x ^ { 6 } } x ^ { 6 } \ln ( 8 x ) + \frac { 8 e ^ { 4 x ^ { 6 } } } { x }
E) 6e4x6x5ln(8x)+8e4x6x6 e ^ { 4 x ^ { 6 } } x ^ { 5 } \ln ( 8 x ) + \frac { 8 e ^ { 4 x ^ { 6 } } } { x }
سؤال
Find the derivative of the function. r(x)=ln4x+e4xr ( x ) = \ln \mid 4 x + e ^ { 4 x }

A) 4+4e4x4x+4e4x\frac { 4 + 4 e ^ { 4 x } } { 4 x + 4 e ^ { 4 x } }
B) 4+4e4x4x+e4x\frac { 4 + 4 e ^ { 4 x } } { 4 x + e ^ { 4 x } }
C) 4+e4x4x+e4x\frac { 4 + e ^ { 4 x } } { 4 x + e ^ { 4 x } }
D) 4+e4x4x+4e4x\frac { 4 + e ^ { 4 x } } { 4 x + 4 e ^ { 4 x } }
E) none of these
سؤال
Find the derivative of the function.
f(x)=(x3+5)lnxf ( x ) = \left( x ^ { 3 } + 5 \right) \ln x

A) x3(1+lnx)+5x\frac { x ^ { 3 } ( 1 + \ln x ) + 5 } { x }
B) x3(1+3lnx)+5x\frac { x ^ { 3 } ( 1 + 3 \ln x ) + 5 } { x }
C) x3(3+3lnx)+5x\frac { x ^ { 3 } ( 3 + 3 \ln x ) + 5 } { x }
D) x2(1+3lnx)+5x\frac { x ^ { 2 } ( 1 + 3 \ln x ) + 5 } { x }
E) none of these
سؤال
Find the derivative of the function. f(x)=4x3f ( x ) = \frac { 4 } { x ^ { 3 } }

A) 12x2- \frac { 12 } { x ^ { 2 } }
B) 12x212 x ^ { 2 }
C) 4
D) 12x4- \frac { 12 } { x ^ { 4 } }
E) 12x2- 12 x ^ { 2 }
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=2x+24x5y = \frac { 2 x + 2 } { 4 x - 5 }

A) 2(4x5)+4(2x+2)4x5\frac { 2 ( 4 x - 5 ) + 4 ( 2 x + 2 ) } { 4 x - 5 }
B) 2(4x5)4(2x+2)(4x5)2\frac { 2 ( 4 x - 5 ) - 4 ( 2 x + 2 ) } { ( 4 x - 5 ) ^ { 2 } }
C) 2(4x5)+4(2x+2)(4x5)2\frac { 2 ( 4 x - 5 ) + 4 ( 2 x + 2 ) } { ( 4 x - 5 ) ^ { 2 } }
D) 2(4x5)4(2x+2)2 ( 4 x - 5 ) - 4 ( 2 x + 2 )
E) 0.5
سؤال
Find the derivative of the function. h(x)=x(4+4x)h ( x ) = x ( 4 + 4 x )

A) 4x4 x
B) 8+x8 + x
C) 4
D) 4+8x4 + 8 x
E) 8x8 x
سؤال
The demand for the Cyberpunk II arcade video game is modeled by the logistic curve q(t)=13,0001+0.6e0.5tq ( t ) = \frac { 13,000 } { 1 + 0.6 e ^ { - 0.5 t } }
Where q(t)q ( t ) is the total number of units sold t months after the game's introduction.

Use technology to estimate q(9)q ^ { \prime } ( 9 ) .

Assume that the manufacturers of Cyberpunk II sell each unit for $900. What is the company's marginal revenue, dR dq\frac { \mathrm { d } R } { \mathrm {~d} q }

Use the chain rule to estimate the rate at which revenue is growing 9 months after the introduction of the video game.

Please round each answer to the nearest whole number.

A) dq dt=43,dR dq=900,dR dt=38,734\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,734
B) dq dt=43,dR dq=900,dR dt=38,478\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,478
C) dq dt=71,dR dq=700,dR dt=64,130\frac { \mathrm { d } q } { \mathrm {~d} t } = 71 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 700 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 64,130
D) dq dt=86,dR dq=800,dR dt=76,956\frac { \mathrm { d } q } { \mathrm {~d} t } = 86 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 800 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 76,956
E) dq dt=143,dR dq=900,dR dt=128,260\frac { \mathrm { d } q } { \mathrm {~d} t } = 143 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 128,260
سؤال
The Pentagon is planning to build a new satellite that will be spherical. As is typical in these cases, the specifications keep changing, so that the size of the satellite keeps growing. In fact, the radius of the planned satellite is growing 0.9 foot/week. Its cost will be $1,400 per cubic foot. At the point when the plans call for a satellite 8 feet in radius, how fast is the cost growing (The volume of a solid sphere of radius r is V=43πr3V = \frac { 4 } { 3 } \pi r ^ { 3 } .)

A) dP dt=$3,584,000π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 3,584,000 \pi } { \text { week } }
B) dP dt=$40,320π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 40,320 \pi } { \text { week } }
C) dP dt=$230π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 230 \pi } { \text { week } }
D) dP dt=$161,280π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 161,280 \pi } { \text { week } }
E) dP dt=$322,560π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 322,560 \pi } { \text { week } }
سؤال
Compute the indicated derivative using the chain rule. y=7x+10;dx dyy = 7 x + 10 ; \frac { \mathrm { d } x } { \mathrm {~d} y }

A) 110\frac { 1 } { 10 }
B) 710- \frac { 7 } { 10 }
C) 17\frac { 1 } { 7 }
D) 7
E) -10
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . y=x2(3x+2)(5x+2)y = x ^ { 2 } ( 3 x + 2 ) ( 5 x + 2 )

A) 65x2+(3x+48)(5x+2)65 x ^ { 2 } + ( 3 x + 48 ) ( 5 x + 2 )
B) 60x3+48x2+8x60 x ^ { 3 } + 48 x ^ { 2 } + 8 x
C) 35x2+(3x+2)(5x+2)35 x ^ { 2 } + ( 3 x + 2 ) ( 5 x + 2 )
D) 3x3+48x2+8x3 x ^ { 3 } + 48 x ^ { 2 } + 8 x
E) 3x2+48x+83 x ^ { 2 } + 48 x + 8
سؤال
Compute the indicated derivative using the chain rule. y=7x6y = 7 x - 6 ; dx dy\frac { \mathrm { d } x } { \mathrm {~d} y }

A) 76\frac { 7 } { 6 }
B) 6
C) 7
D) 16\frac { 1 } { 6 }
E) 17\frac { 1 } { 7 }
سؤال
Compute the indicated derivative using the chain rule. y=10x27x;dx dyx=2y = 10 x ^ { 2 } - 7 x ; \left. \frac { \mathrm { d } x } { \mathrm {~d} y } \right| _ { x = 2 }

A) 133\frac { 1 } { 33 }
B) 710\frac { 7 } { 10 }
C) 113\frac { 1 } { 13 }
D) 2
E) 107\frac { 10 } { 7 }
سؤال
Calculate the derivative of the function.
Calculate the derivative of the function. ​  <div style=padding-top: 35px>
سؤال
Find the indicated derivative. y=19x3+13xy = 19 x ^ { 3 } + \frac { 13 } { x } , x=14x = 14 when t=1t = 1 , dx dtz=1=20\left. \frac { \mathrm { d } x } { \mathrm {~d} t } \right| _ { z = 1 } = 20 ; dy dtt=1=\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } =
Please round the answer to the nearest hundredth.

A) dy dtt=1=159586.73\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 159586.73
B) dy dtt=1=74461.43\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 74461.43
C) dy dtt=1=11171.93\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 11171.93
D) dy dtı=1=223438.67\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { \imath = 1 } = 223438.67
E) dy dtt=1=15958.67\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 15958.67
سؤال
Calculate the derivative of the function.
Calculate the derivative of the function. ​   ​ Please enter your answer as an expression.<div style=padding-top: 35px>
Please enter your answer as an expression.
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=(x+2)(x+2x2)y = ( \sqrt { x } + 2 ) \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right)

A) 12x(x+2x2)+(12x4x3)(x+2)\frac { 1 } { 2 \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { 2 \sqrt { x } } - \frac { 4 } { x ^ { 3 } } \right) ( \sqrt { x } + 2 )
B) x2(x+2x2)+(x24x3)(x+2)\frac { \sqrt { x } } { 2 } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { \sqrt { x } } { 2 } - \frac { 4 } { x ^ { 3 } } \right) ( \sqrt { x } + 2 )
C) 12x(x+2x2)+(12x4x)(x+2)\frac { 1 } { 2 \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { 2 \sqrt { x } } - 4 x \right) ( \sqrt { x } + 2 )
D) 1x(x+2x2)+(1x4x)(x+2)\frac { 1 } { \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { \sqrt { x } } - \frac { 4 } { x } \right) ( \sqrt { x } + 2 )
E) 12x(x+2x2)+(12x+4x3)(x+2)\frac { 1 } { 2 \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { 2 \sqrt { x } } + \frac { 4 } { x ^ { 3 } } \right) ( \sqrt { x } + 2 )
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=(x1.2+1.2x)(x2+7)y = \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right) \left( x ^ { 2 } + 7 \right)

A) 2x(11.21.2x2)2 x \left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right)
B) (11.21.2x2)(x2+7)2x(x1.2+1.2x)\left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right) \left( x ^ { 2 } + 7 \right) - 2 x \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right)
C) 2x(11.21.2x2)+(x1.2+1.2x)(x2+7)2 x \left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right) + \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right) \left( x ^ { 2 } + 7 \right)
D) 2x2 x
E) (11.21.2x2)(x2+7)+2x(x1.2+1.2x)\left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right) \left( x ^ { 2 } + 7 \right) + 2 x \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right)
سؤال
Find the indicated derivative. ? y=5x+9xy = 5 \sqrt { x } + \frac { 9 } { \sqrt { x } } , x=4x = 4 when t=1t = 1 , dx dtt=1=5\left. \frac { \mathrm { d } x } { \mathrm {~d} t } \right| _ { t = 1 } = 5 ; dy dtt=1=\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } =
Please round the answer to the nearest hundredth.

A) dy dtt=1=3.44\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 3.44
B) dy dtt=1=34.38\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 34.38
C) dy dtt=1=11.88\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 11.88
D) dy dtt=1=0.69\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 0.69
E) dy dtt=1=6.88\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 6.88
سؤال
Find the derivative of the function. f(x)=5xf ( x ) = 5 x

A) χ\chi
B) 5
C) 4
D) 4x4 x
E) x2x ^ { 2 }
سؤال
A mold culture in a dorm refrigerator is circular and growing. The radius is increasing at a rate of 0.1 cm/day. How fast is the area growing when the culture is 6 centimeters in radius (The area of a disc of radius r is A=πr2A = \pi r ^ { 2 } .)

A) dA dt=18πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 18 \pi \frac { \mathrm { cm } } { \mathrm { day } }
B) dA dt=0.6πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 0.6 \pi \frac { \mathrm { cm } } { \mathrm { day } }
C) dA dt=2.4πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 2.4 \pi \frac { \mathrm { cm } } { \mathrm { day } }
D) dA dt=1.2πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 1.2 \pi \frac { \mathrm { cm } } { \mathrm { day } }
E) dA dt=0.2πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 0.2 \pi \frac { \mathrm { cm } } { \mathrm { day } }
سؤال
An offshore oil well is leaking oil and creating a circular oil slick. If the radius of the slick is growing at a rate of 7 miles per hour, find the rate at which the area is increasing when the radius is 3 miles. (The area of a disc of radius r is A=πr2A = \pi r ^ { 2 } .)

A) dA dt=9πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 9 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
B) dA dt=14πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 14 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
C) dA dt=42πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 42 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
D) dA dt=7πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 7 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
E) dA dt=21πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 21 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
سؤال
The soap bubble I am blowing has a radius that is growing at a rate of 3 cm/s. How fast is the surface area growing when the radius is 10 cm (The surface area of a sphere of radius r is S=4πr2S = 4 \pi r ^ { 2 } .)

A) dS dt=85πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 85 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
B) dS dt=240πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = \frac { 240 } { \pi } \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
C) dS dt=240πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 240 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
D) dS dt=243πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 243 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
E) dS dt=24πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 24 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. ? y=(9x2+x)(xx2)y = \left( 9 x ^ { 2 } + x \right) \left( x - x ^ { 2 } \right)

A) (18x+1)(1x)+(xx2)(9x2+x)( 18 x + 1 ) ( 1 - x ) + \left( x - x ^ { 2 } \right) \left( 9 x ^ { 2 } + x \right)
B) (18x+1)(xx2)+(12x)(9x2x)( 18 x + 1 ) \left( x - x ^ { 2 } \right) + ( 1 - 2 x ) \left( 9 x ^ { 2 } - x \right)
C) (18x+1)(xx2)+(12x)(9x2+x)( 18 x + 1 ) \left( x - x ^ { 2 } \right) + ( 1 - 2 x ) \left( 9 x ^ { 2 } + x \right)
D) 36x2+20x+1- 36 x ^ { 2 } + 20 x + 1
E) (18x+1)(1x)+(x2x2)(9x2+x)( 18 x + 1 ) ( 1 - x ) + \left( x - 2 x ^ { 2 } \right) \left( 9 x ^ { 2 } + x \right)
سؤال
The monthly sales of Sunny Electronics' new stereo system is given by The monthly sales of Sunny Electronics' new stereo system is given by   hundred units per month, x months after its introduction. The price Sunny charges is   dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be   . Find the rate of change of revenue 10 months after introduction. ​ Please enter your answer in dollars/month without the units.<div style=padding-top: 35px> hundred units per month, x months after its introduction. The price Sunny charges is The monthly sales of Sunny Electronics' new stereo system is given by   hundred units per month, x months after its introduction. The price Sunny charges is   dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be   . Find the rate of change of revenue 10 months after introduction. ​ Please enter your answer in dollars/month without the units.<div style=padding-top: 35px> dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be The monthly sales of Sunny Electronics' new stereo system is given by   hundred units per month, x months after its introduction. The price Sunny charges is   dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be   . Find the rate of change of revenue 10 months after introduction. ​ Please enter your answer in dollars/month without the units.<div style=padding-top: 35px> . Find the rate of change of revenue 10 months after introduction.

Please enter your answer in dollars/month without the units.
سؤال
The monthly sales of Sunny Electronics' new stereo system is given by S(x)=30xx2S ( x ) = 30 x - x ^ { 2 } hundred units per month, x months after its introduction. The price Sunny charges is p(x)=1,000x2p ( x ) = 1,000 - x ^ { 2 } dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be R(x)=100p(x)S(x)R ( x ) = 100 p ( x ) S ( x ) . Find the rate of change of revenue 6 months after introduction. Round your answer to the nearest dollar.

A)$437,700 per month
B) $43,770 per month
C) $1,562,400 per month
D) -$391,800 per month
E) -$322,700 per month
سؤال
The "Verhulst model" for population growth specifies the reproductive rate of an organism as a function of the total population according to the following formula: ? R(p)=r1+kpR ( p ) = \frac { r } { 1 + k p }
Where p is the total population in thousands of organisms, r and k are constants that depend on the particular circumstances and organism being studied, and R(p) is the reproduction rate in thousands of organisms per hour. If k=0.075k = 0.075 and r=35r = 35 , find R(p)R ^ { \prime } ( p ) .

A) 2.6251+0.075p2\frac { 2.625 } { 1 + 0.075 p ^ { 2 } }
B) 351+0.075p2\frac { 35 } { 1 + 0.075 p ^ { 2 } }
C) 2.625(1+0.075p)2\frac { 2.625 } { ( 1 + 0.075 p ) ^ { 2 } }
D) 2.6251+0.075p\frac { 2.625 } { 1 + 0.075 p }
E) 2.625(1+0.075p)2- \frac { 2.625 } { ( 1 + 0.075 p ) ^ { 2 } }
سؤال
For the cost function C(x), find the marginal cost at the given production level x. Round your answer to two decimal places.
C(x)=25,000+20xx21,000,x=200C ( x ) = 25,000 + 20 x - \frac { x ^ { 2 } } { 1,000 } , x = 200

A)$19.62 per item
B) $21.28 per item
C) $9.61 per item
D) $19.60 per item
E) $15.00 per item
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=(x+2)(x+1)2x4y = \frac { ( x + 2 ) ( x + 1 ) } { 2 x - 4 }

A) 2x+3(2x+4)2\frac { 2 x + 3 } { ( 2 x + 4 ) ^ { 2 } }
B) (2x+2)(2x4)+2(x2+3x+2)(2x4)2\frac { ( 2 x + 2 ) ( 2 x - 4 ) + 2 \left( x ^ { 2 } + 3 x + 2 \right) } { ( 2 x - 4 ) ^ { 2 } }
C) 2x+32\frac { 2 x + 3 } { 2 }
D) (2x+3)(2x4)2(x2+3x+2)(2x4)2\frac { ( 2 x + 3 ) ( 2 x - 4 ) - 2 \left( x ^ { 2 } + 3 x + 2 \right) } { ( 2 x - 4 ) ^ { 2 } }
E) (2x+2)(2x4)+2(x2+3x+2)(2x4)\frac { ( 2 x + 2 ) ( 2 x - 4 ) + 2 \left( x ^ { 2 } + 3 x + 2 \right) } { ( 2 x - 4 ) }
سؤال
Your monthly profit (in dollars) from selling magazines is given by P(x)=5x+2xP ( x ) = 5 x + 2 \sqrt { x } where x is the number of magazines you sell in a month. If you are currently selling x=50x = 50 magazines per month, find your profit and your marginal profit.

A) P(50)=$132.07,P(50)=$2.57P ( 50 ) = \$ 132.07 , P ^ { \prime } ( 50 ) = \$ 2.57
B) P(50)=$260.00,P(50)=$0.49P ( 50 ) = \$ 260.00 , P ^ { \prime } ( 50 ) = \$ 0.49
C) P(50)=$528.28,P(50)=$5.64P ( 50 ) = \$ 528.28 , P ^ { \prime } ( 50 ) = \$ 5.64
D) P(50)=$260.00,P(50)=$5.14P ( 50 ) = \$ 260.00 , P ^ { \prime } ( 50 ) = \$ 5.14
E) P(50)=$264.14,P(50)=$5.14P ( 50 ) = \$ 264.14 , P ^ { \prime } ( 50 ) = \$ 5.14
سؤال
Find the equation of the tangent line to the graph of the given function at the point with x=4x = 4 . f(x)=x+4x+1f ( x ) = \frac { x + 4 } { x + 1 }

A) y=0.12xy = - 0.12 x
B) y=0.12x+1.12y = 0.12 x + 1.12
C) y=1.6y = - 1.6
D) y=0.12x+2.08y = - 0.12 x + 2.08
E) y=1.6y = 1.6
سؤال
The Thoroughbred Bus Company finds that its monthly costs for one particular year were given by C(t)=100+t2C ( t ) = 100 + t ^ { 2 } dollars after t months. After t months, the company had P(t)=1,000+t2P ( t ) = 1,000 + t ^ { 2 } passengers per month. How fast was its cost per passenger changing after 6 months

Enter your answer in dollars/month rounded to the nearest cent and without the units.
سؤال
For the cost function, find the marginal cost at the given production level x. Round your answer to two decimal places.
C(x)=30,000+10xx210,000,x=2,000C ( x ) = 30,000 + 10 x - \frac { x ^ { 2 } } { 10,000 } , x = 2,000

A)$9.60 per item
B) $9.58 per item
C) $10.00 per item
D) $9.61 per item
E) $10.40 per item
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=4.2x0.80.6x0.50.4+x0.1y = \frac { 4.2 x ^ { - 0.8 } - 0.6 x ^ { - 0.5 } } { 0.4 + x ^ { 0.1 } }

A) (3.36x1.8+0.3x1.5)(0.4+x0.1)+0.1x0.9(4.2x0.80.6x0.5)(0.4+x0.1)2\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) + 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { 0.8 } - 0.6 x ^ { 0.5 } \right) } { \left( 0.4 + x ^ { 0.1 } \right) ^ { 2 } }
B) 3.36x1.8+0.3x1.50.4+x0.1\frac { - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } } { 0.4 + x ^ { 0.1 } }
C) (3.36x1.8+0.3x1.5)(0.4+x0.1)0.1x0.9(4.2x0.80.6x0.5)(0.1x0.9)2\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) - 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { - 0.8 } - 0.6 x ^ { - 0.5 } \right) } { \left( 0.1 x ^ { - 0.9 } \right) ^ { 2 } }
D) (3.36x1.8+0.3x1.5)(0.4+x0.1)0.1x0.9(4.2x0.80.6x0.5)(0.4+x0.1)2\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) - 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { - 0.8 } - 0.6 x ^ { - 0.5 } \right) } { \left( 0.4 + x ^ { 0.1 } \right) ^ { 2 } }
E) (3.36x1.8+0.3x1.5)(0.4+x0.1)0.1x0.9(4.2x0.80.6x0.5)0.4+x0.1\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) - 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { 0.8 } - 0.6 x ^ { 0.5 } \right) } { 0.4 + x ^ { 0.1 } }
سؤال
The Thoroughbred Bus Company finds that its monthly costs for one particular year were given by C(t)=100+t2C ( t ) = 100 + t ^ { 2 } dollars after t months. After t months, the company had P(t)=1,000+t2P ( t ) = 1,000 + t ^ { 2 } passengers per month. How fast was its cost per passenger changing after 4 months Round your answer to the nearest cent.

A)$0.29 per month
B) $0.01 per month
C) -$0.21 per month
D) $0.46 per month
E) $0.07 per month
سؤال
Find the equation of the line tangent to the graph of the given function at the point Find the equation of the line tangent to the graph of the given function at the point   . ​  <div style=padding-top: 35px> .
Find the equation of the line tangent to the graph of the given function at the point   . ​  <div style=padding-top: 35px>
سؤال
Compute the derivative. ? ddt[(t2t0.5)(t0.5+t0.5)]t=1\frac { \mathrm { d } } { \mathrm { d } t } \left[ \left( t ^ { 2 } - t ^ { 0.5 } \right) \left( t ^ { 0.5 } + t ^ { - 0.5 } \right) \right] _ { t } = 1

A)3
B) 0
C) 1
D) 7
E) -1
سؤال
Your Porche's gas mileage (in miles per gallon) is given as a function M(x) of speed x in miles per hour. M(x)=15x+3,735x1M ( x ) = \frac { 15 } { x + 3,735 x ^ { - 1 } }
Calculate M(x)M ^ { \prime } ( x ) .

A) 15(13,735x2)(x+3,735x)2\frac { 15 \left( 1 - \frac { 3,735 } { x ^ { 2 } } \right) } { \left( x + \frac { 3,735 } { x } \right) ^ { 2 } }
B) 1513,735x2\frac { 15 } { 1 - \frac { 3,735 } { x ^ { 2 } } }
C) 15(x23,735)(x2+3,735)2- \frac { 15 \left( x ^ { 2 } - 3,735 \right) } { \left( x ^ { 2 } + 3,735 \right) ^ { 2 } }
D) 15(x+3,735x)2\frac { 15 } { \left( x + \frac { 3,735 } { x } \right) ^ { 2 } } ?
E) 15xx+3,735\frac { 15 x } { x + 3,735 }
سؤال
Find the equation of the line tangent to the graph of the given function at the point x=1x = 1 . f(x)=(x3+3)(x2+x)f ( x ) = \left( x ^ { 3 } + 3 \right) \left( x ^ { 2 } + x \right)

A) y=8y = 8
B) y=18x10y = 18 x - 10
C) y=8xy = 8 x
D) y=18y = 18
E) y=18xy = 18 x
سؤال
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=3x6(x3)(x1)(x3)y = \frac { 3 x - 6 } { ( x - 3 ) ( x - 1 ) ( x - 3 ) }

A) 3(x3)(x1)(x3)(3x214x+15)(3x6)((x3)(x1)(x3))2\frac { 3 ( x - 3 ) ( x - 1 ) ( x - 3 ) - \left( 3 x ^ { 2 } - 14 x + 15 \right) ( 3 x - 6 ) } { ( ( x - 3 ) ( x - 1 ) ( x - 3 ) ) ^ { 2 } }
B) 3(x3)(x1)(x3)(3x214x+15)(3x6)(x3)(x1)(x3)\frac { 3 ( x - 3 ) ( x - 1 ) ( x - 3 ) - \left( 3 x ^ { 2 } - 14 x + 15 \right) ( 3 x - 6 ) } { ( x - 3 ) ( x - 1 ) ( x - 3 ) }
C) 3(x3)(x1)(x3)+(3x214x+7)(3x6)((x3)(x1)(x3))2\frac { 3 ( x - 3 ) ( x - 1 ) ( x - 3 ) + \left( 3 x ^ { 2 } - 14 x + 7 \right) ( 3 x - 6 ) } { ( ( x - 3 ) ( x - 1 ) ( x - 3 ) ) ^ { 2 } }
D) 3(x3)(x3)(3x214x+15)((x3)(x3))2\frac { 3 ( x - 3 ) ( x - 3 ) - \left( 3 x ^ { 2 } - 14 x + 15 \right) } { ( ( x - 3 ) ( x - 3 ) ) ^ { 2 } }
E) 33x214x+7\frac { 3 } { 3 x ^ { 2 } - 14 x + 7 }
سؤال
The cost, in thousands of dollars, of airing x television commercials during a Super Bowl game is given by the formula
C(x)=250+1,200x0.005x2C ( x ) = 250 + 1,200 x - 0.005 x ^ { 2 } .

Estimate how fast (in dollars per television commercial) the cost is going up when x=8x = 8 .

A)$1,200,080
B) $1,199,920
C) $1,199.92
D) $1,199,960
E) $1,200
سؤال
Compute the derivative. ddx[(x3+2x)(x2x)]x=2\frac { \mathrm { d } } { \mathrm { d } x } \left[ \left( x ^ { 3 } + 2 x \right) \left( x ^ { 2 } - x \right) \right] _ { x = - 2 }

A)-108
B) 132
C) 100
D) 131
E) 144
سؤال
The cost of producing x teddy bears per day at the Cuddly Companion Company is calculated by their marketing staff to be given by the formula
C(x)=200+60x0.001x2C ( x ) = 200 + 60 x - 0.001 x ^ { 2 } .

Evaluate the average cost Cˉ(200)\bar { C } ( 200 ) .

A)$12,199.80
B) $59.80
C) $12,160.00
D) $59.20
E) $60.80
سؤال
Find the value of x for which the marginal profit is zero.
C(x)=2x,R(x)=6xx21,000C ( x ) = 2 x , R ( x ) = 6 x - \frac { x ^ { 2 } } { 1,000 }

A) x=3,000x = 3,000
B) x=4,000x = 4,000
C) x=2,000x = 2,000
D) x=2,000x = - 2,000
E) x=1,000x = 1,000
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/104
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 11: Techniques of Differentiation
1
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. 9x+10y=79 x + 10 y = 7 ?

A) 910- \frac { 9 } { 10 }
B) 9- 9
C) 00
D) 109- \frac { 10 } { 9 }
E) 10- 10
910- \frac { 9 } { 10 }
2
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. x26y=7x ^ { 2 } - 6 y = 7 ?

A) 77
B) 16- \frac { 1 } { 6 }
C) x6\frac { x } { 6 }
D) 3- 3
E) x3\frac { x } { 3 }
x3\frac { x } { 3 }
3
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. exy=4e ^ { x } y = 4 ?

A) yexy e ^ { x }
B) 1y1 - y
C) xex4\frac { x e ^ { x } } { 4 }
D) y- y
E) 1y- \frac { 1 } { y }
y- y
4
Use logarithmic differentiation to find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . y=(x3+x)x3+6y = \left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } ?

A) (3x2+1x3+x+3x22x3+12)\left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { 3 x ^ { 2 } } { 2 x ^ { 3 } + 12 } \right)
B) (x3+x)x3+6(1x3+x+12(x3+6))\left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } \left( \frac { 1 } { x ^ { 3 } + x } + \frac { 1 } { 2 \left( x ^ { 3 } + 6 \right) } \right)
C) (x3+x)x3+6(3x2+1x3+x+3x22(x3+6))\left( x ^ { 3 } + x \right) \sqrt { x ^ { 3 } + 6 } \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { 3 x ^ { 2 } } { 2 \left( x ^ { 3 } + 6 \right) } \right)
D) (3x2+1)(3x2+1x+3x22x3+12)\left( 3 x ^ { 2 } + 1 \right) \left( \frac { 3 x ^ { 2 } + 1 } { x } + \frac { 3 x ^ { 2 } } { 2 x ^ { 3 } + 12 } \right)
E) 3x2x3+12(3x2+1x3+x+x22x3+6)3 x ^ { 2 } \sqrt { x ^ { 3 } + 12 } \left( \frac { 3 x ^ { 2 } + 1 } { x ^ { 3 } + x } + \frac { x ^ { 2 } } { 2 x ^ { 3 } + 6 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
5
Use logarithmic differentiation to find Use logarithmic differentiation to find   . ​  .
Use logarithmic differentiation to find   . ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find ds dt\frac { \mathrm { d } s } { \mathrm {~d} t } using implicit differentiation. est=s9e ^ { s t } = s ^ { 9 }

A) 9est9 - e ^ { s t }
B) est9est\frac { e ^ { s t } } { 9 - e ^ { s t } }
C) sest9s8test\frac { s e ^ { s t } } { 9 s ^ { 8 } - t e ^ { s t } }
D) s89s8test\frac { s ^ { 8 } } { 9 s ^ { 8 } - t e ^ { s t } }
E) sest9stest\frac { s e ^ { s t } } { 9 s - t e ^ { s t } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
7
The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by
The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by ​   ​ where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute   at a production level of 23,000 CDs per day and   . Round your answer to two decimal places.
where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by ​   ​ where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute   at a production level of 23,000 CDs per day and   . Round your answer to two decimal places. at a production level of 23,000 CDs per day and The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by ​   ​ where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute   at a production level of 23,000 CDs per day and   . Round your answer to two decimal places. . Round your answer to two decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find the equation of the tangent line for (xy)2+(xy)x=10( x y ) ^ { 2 } + ( x y ) - x = 10 at the point (10,0)( - 10,0 ) .

A) y=10x1y = - 10 x - 1
B) y=110x+1y = - \frac { 1 } { 10 } x + 1
C) y=110x1y = - \frac { 1 } { 10 } x - 1
D) y=10x2y = - 10 x - 2
E) y=110x2y = - \frac { 1 } { 10 } x - 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
9
The number P of CDs the Snappy Hardware Co. can manufacture at its plant in one day is given by P=x0.2y0.8P = x ^ { 0.2 } y ^ { 0.8 }
Where x is the number of workers at the plant and y is the annual expenditure at the plant (in dollars). Compute dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } at a production level of 24,000 CDs per day and x=105x = 105 . Round your answer to two decimal places.

A)-250.64
B) -234.31
C) -222.19
D) -255.85
E) 234.31
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. exy2=16+ey\frac { e ^ { x } } { y ^ { 2 } } = 16 + e ^ { y }

A) yex16ex+3y2ey\frac { y e ^ { x } } { 16 e ^ { x } + 3 y ^ { 2 } e ^ { y } }
B) 2yexex+yey\frac { 2 y e ^ { x } } { e ^ { x } + y e ^ { y } }
C) 2ex+y3eyyex\frac { 2 e ^ { x } + y ^ { 3 } e ^ { y } } { y e ^ { x } }
D) yex2ex+y3ey\frac { y e ^ { x } } { 2 e ^ { x } + y ^ { 3 } e ^ { y } }
E) y2+y3\frac { y } { 2 + y ^ { 3 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. xeyyex=12x e ^ { y } - y e ^ { x } = 12

A) yexeyxeyex\frac { y e ^ { x } - e ^ { y } } { x e ^ { y } - e ^ { x } }
B) y1x1\frac { y - 1 } { x - 1 }
C) yey+exxeyex\frac { y e ^ { y } + e ^ { x } } { x e ^ { y } - e ^ { x } }
D) xey+eyyey+ex\frac { x e ^ { y } + e ^ { y } } { y e ^ { y } + e ^ { x } }
E) xeyexyexey\frac { x e ^ { y } - e ^ { x } } { y e ^ { x } - e ^ { y } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. ln(15+exy)=y\ln \left( 15 + e ^ { x y } \right) = y

A) x+yx + y
B) yexy15+exy\frac { y e ^ { x y } } { 15 + e ^ { x y } }
C) y1x\frac { y } { 1 - x }
D) yexy15+exy(1x)\frac { y e ^ { x y } } { 15 + e ^ { x y } ( 1 - x ) }
E) 115+exy(1x)\frac { 1 } { 15 + e ^ { x y } ( 1 - x ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. x2+y2=4x ^ { 2 } + y ^ { 2 } = 4

A) xy- \frac { x } { y }
B) 2y2 y
C) 2x2 x
D) yx- \frac { y } { x }
E) 2x+2y2 x + 2 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. ylnx+y=2y \ln x + y = 2

A) x(lnx+1)- \frac { } { x ( \ln x + 1 ) }
B) xy(lny+1)- \frac { x } { y ( \ln y + 1 ) }
C) x(lnx+1)x ( \ln x + 1 )
D) 1x(lnx+1)- \frac { 1 } { x ( \ln x + 1 ) }
E) xlnx\overline { x \ln x }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
15
An employment research company estimates that the value of a recent MBA graduate to an accounting company is V=5e2+3g3V = 5 e ^ { 2 } + 3 g ^ { 3 }
Where V is the value of the graduate, ?e is a number of years of prior business experience, and g is the graduate school grade point average. If
V=240V = 240 , find dee dg\frac { \mathrm { de } e } { \mathrm {~d} g } when g=1g = 1 .

All the answers were rounded to the nearest hundredth.

A)0.13
B) -1.58
C) -2.79
D) -0.13
E) -0.25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
16
Use logarithmic differentiation to find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . Do not simplify the result. y=(5x+1)(7x1)y = ( 5 x + 1 ) ( 7 x - 1 )

A) dydx=(5x+1)(7x1)(55x+1+77x1)\frac { d y } { d x } = ( 5 x + 1 ) ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
B) dy dx=(55x+1+77x1)\frac { \mathrm { d } y } { \mathrm {~d} x } = \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
C) dy dx=(5x+1)(7x1)(55x+1+77x1)2\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 5 x + 1 ) ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right) ^ { 2 }
D) dy dx=(7x1)(55x+1+77x1)\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 7 x - 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
E) dy dx=(5x+1)(55x+1+77x1)\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 5 x + 1 ) \left( \frac { 5 } { 5 x + 1 } + \frac { 7 } { 7 x - 1 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the derivative of the following function. f(x)=ln(9x17)f ( x ) = \ln ( 9 x - 17 )

A) 99x17\frac { 9 } { 9 x - 17 }
B) 19x17\frac { 1 } { 9 x - 17 }
C) 179x17\frac { 17 } { 9 x - 17 }
D) 1539x17\frac { 153 } { 9 x - 17 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. xy2y2=9\frac { x y } { 2 } - y ^ { 2 } = 9

A) y4yx\frac { y } { 4 y - x }
B) 14xy\frac { 1 } { \sqrt { 4 x y } }
C) 4y2x4 y - 2 x
D) 12yx\frac { 1 } { 2 y - x }
E) y4xy\frac { y } { 4 x - y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } using implicit differentiation. 10x+11y=xy10 x + 11 y = x y ?

A) 10yx11\frac { 10 - y } { x - 11 }
B) 10xy11\frac { 10 - x } { y - 11 }
C) 11y11 - y
D) x1110y\frac { x - 11 } { 10 - y }
E) x10x - 10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find dx dy\frac { \mathrm { d } x } { \mathrm {~d} y } using implicit differentiation. (xy)2+y2=5( x y ) ^ { 2 } + y ^ { 2 } = 5

A) xyx2+1\frac { x y } { x ^ { 2 } + 1 }
B) xy- \frac { x } { y }
C) xyx2+1- \frac { x y } { x ^ { 2 } + 1 }
D) 2y+2x2 y + 2 x
E) x2+1xy- \frac { x ^ { 2 } + 1 } { x y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
21
Find the derivative of the following function.
Find the derivative of the following function. ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the derivative of the following function.
f(x)=log58xf ( x ) = \log _ { 5 } 8 x

A) 1xln5\frac { 1 } { x \ln 5 }
B) 5xln8\frac { 5 } { x \ln 8 }
C) 8xln5\frac { 8 } { x \ln 5 }
D) 18xln5\frac { 1 } { 8 x \ln 5 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
23
If $17,000 is invested in a savings account yielding 3% per year, compounded semiannually, how fast is the balance growing after 3 years Round your answer to the nearest cent.

A)$691.89 per year
B) $387.46 per year
C) $774.92 per year
D) $996.33 per year
E) $553.52 per year
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
24
Calculate the derivative of the function. (4x2+2x+2)4\left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 4 }

A) g(x)=(16x2+8x+8)5g ^ { \prime } ( x ) = \left( - 16 x ^ { 2 } + 8 x + 8 \right) ^ { - 5 }
B) g(x)=4(8x+2)(4x2+2x+2)5g ^ { \prime } ( x ) = - 4 ( 8 x + 2 ) \left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 5 }
C) g(x)=32(4x2+2x+2)5g ^ { \prime } ( x ) = - 32 \left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 5 }
D) g(x)=4(8x+2)(4x2+2x+2)g ^ { \prime } ( x ) = - 4 ( 8 x + 2 ) \left( 4 x ^ { 2 } + 2 x + 2 \right)
E) g(x)=4(4x2+2x+2)5g ^ { \prime } ( x ) = - 4 \left( 4 x ^ { 2 } + 2 x + 2 \right) ^ { - 5 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
25
Find the equation of the straight line, tangent to y=e7xlog5xy = e ^ { 7 x } \log _ { 5 } x at the point (1,0)( 1,0 ) .

A) y(x)=e7ln5x+e7ln5y ( x ) = \frac { e ^ { 7 } } { \ln 5 } x + \frac { e ^ { 7 } } { \ln 5 }
B) y(x)=e5ln7xe5ln7y ( x ) = \frac { e ^ { 5 } } { \ln 7 } x - \frac { e ^ { 5 } } { \ln 7 }
C) y(x)=e5ln7x+e5ln7y ( x ) = \frac { e ^ { 5 } } { \ln 7 } x + \frac { e ^ { 5 } } { \ln 7 }
D) y(x)=e7ln5xe7ln5y ( x ) = \frac { e ^ { 7 } } { \ln 5 } x - \frac { e ^ { 7 } } { \ln 5 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the derivative of the function. h(x)=ln[(2x+8)(3x+6)]h ( x ) = \ln [ ( 2 x + 8 ) ( 3 x + 6 ) ]

A) 3(2x+8)2(3x+6)\frac { 3 } { ( 2 x + 8 ) } - \frac { 2 } { ( 3 x + 6 ) }
B) 3(2x+8)+2(3x+6)\frac { 3 } { ( 2 x + 8 ) } + \frac { 2 } { ( 3 x + 6 ) }
C) 1(2x+8)+1(3x+6)\frac { 1 } { ( 2 x + 8 ) } + \frac { 1 } { ( 3 x + 6 ) }
D) 1(2x+8)1(3x+6)\frac { 1 } { ( 2 x + 8 ) } - \frac { 1 } { ( 3 x + 6 ) }
E) 2(2x+8)+3(3x+6)\frac { 2 } { ( 2 x + 8 ) } + \frac { 3 } { ( 3 x + 6 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
27
The population of Upper Anchora was 1,000,000 at the start of 1996 and was doubling every 9 years. How fast was it growing per year at the start of 1996 ?
Round your answer to the nearest thousand.

A)154,000 people per year
B) 78,000 people per year
C) 77,000 people per year
D) 76,000 people per year
E) 67,000 people per year
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the derivative of the function. g(x)=ln8x9g ( x ) = \ln | 8 x - 9 |

A) 88x9\frac { 8 } { | 8 x - 9 | }
B) 18x9\frac { 1 } { 8 x - 9 }
C) 18x+9\frac { 1 } { - 8 x + 9 }
D) 88x9\frac { 8 } { 8 x - 9 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the indicated derivative. The independent variable is a function of t. y=x0.7(1+x);dy dt=y = x ^ { 0.7 } ( 1 + x ) ; \frac { \mathrm { d } y } { \mathrm {~d} t } =

A) dy dt=(0.7x0.3)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { - 0.3 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
B) dy dt=(0.7x0.3+2.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { - 0.3 } + 2.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
C) dy dt=(0.7x0.3+1.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { - 0.3 } + 1.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
D) dy dt=(1.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 1.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
E) dy dt=(0.7x0.7+2.7x0.7)dx dt\frac { \mathrm { d } y } { \mathrm {~d} t } = \left( 0.7 x ^ { 0.7 } + 2.7 x ^ { 0.7 } \right) \frac { \mathrm { d } x } { \mathrm {~d} t }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the derivative of the function. r(x)=(e6x6)8r ( x ) = \left( e ^ { - 6 x ^ { 6 } } \right) ^ { 8 }

A) 288(e6x6)7x5- 288 \left( e ^ { - 6 x ^ { 6 } } \right) ^ { 7 } x ^ { 5 }
B) 48e8x6- 48 e ^ { 8 } x ^ { 6 }
C) 48e7x648 e ^ { 7 } x ^ { 6 }
D) 288(e6x6)8x5- 288 \left( e ^ { - 6 x ^ { 6 } } \right) ^ { 8 } x ^ { 5 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the derivative of the function.

Find the derivative of the function. ​ ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the derivative of the function.
r(x)=[ln(x8)]3r ( x ) = \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 3 }

A) 24[ln(x7)]2x8\frac { 24 \left[ \ln \left( x ^ { 7 } \right) \right] ^ { 2 } } { x ^ { 8 } }
B) 24[ln(x8)]2x8\frac { 24 \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 2 } } { x ^ { 8 } }

C) 24[ln(x8)]2x\frac { 24 \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 2 } } { x }
D) 24[ln(x8)]3x8\frac { 24 \left[ \ln \left( x ^ { 8 } \right) \right] ^ { 3 } } { x ^ { 8 } }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
33
If $24,000 is invested in a savings account yielding 6% per year, compounded semiannually, how fast is the balance growing after 2 years

Please enter your answer as a number (in $ per year) without the units. Round your answer to two decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
34
Calculate the derivative of the function. s(x)=(8x+52x6)6s ( x ) = \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 6 }

A) s(x)=6(8x+52x6)558x(2x6)2s ^ { \prime } ( x ) = - 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 58 x } { ( 2 x - 6 ) ^ { 2 } }
B) s(x)=6(8x+52x6)548(2x6)2s ^ { \prime } ( x ) = - 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 48 } { ( 2 x - 6 ) ^ { 2 } }
C) s(x)=(8x+52x6)558(2x6)2s ^ { \prime } ( x ) = \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 58 } { ( 2 x - 6 ) ^ { 2 } }
D) s(x)=6(8x+52x6)558(2x6)2s ^ { \prime } ( x ) = - 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 } \frac { 58 } { ( 2 x - 6 ) ^ { 2 } }
E) s(x)=6(8x+52x6)5s ^ { \prime } ( x ) = 6 \left( \frac { 8 x + 5 } { 2 x - 6 } \right) ^ { 5 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the derivative of the function.
f(x)=ln(3x+5)2(7x+5)2(2x+8)f ( x ) = \ln \mid \frac { ( 3 x + 5 ) ^ { 2 } } { ( 7 x + 5 ) ^ { 2 } ( 2 x + 8 ) }

A) 3(3x+5)27(7x+5)222x+8\frac { 3 } { ( 3 x + 5 ) ^ { 2 } } - \frac { 7 } { ( 7 x + 5 ) ^ { 2 } } - \frac { 2 } { 2 x + 8 }
B) 63x+5+147x+5+22x+8\frac { 6 } { 3 x + 5 } + \frac { 14 } { 7 x + 5 } + \frac { 2 } { 2 x + 8 }
C) 3(3x+5)2+7(7x+5)2+22x+8\frac { 3 } { ( 3 x + 5 ) ^ { 2 } } + \frac { 7 } { ( 7 x + 5 ) ^ { 2 } } + \frac { 2 } { 2 x + 8 }
D) 63x+5147x+522x+8\frac { 6 } { 3 x + 5 } - \frac { 14 } { 7 x + 5 } - \frac { 2 } { 2 x + 8 }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
36
Find the derivative of the function.
h(x)=e9x24x+1xh ( x ) = e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }

A) 9x38x21xe9x24x+1x\frac { 9 x ^ { 3 } - 8 x ^ { 2 } - 1 } { x } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
B) 18x34x21x2e9x24x+1x\frac { 18 x ^ { 3 } - 4 x ^ { 2 } - 1 } { x ^ { 2 } } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
C) 9x38x21x2e9x24x+1x\frac { 9 x ^ { 3 } - 8 x ^ { 2 } - 1 } { x ^ { 2 } } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
D) 18x34x21xe9x24x+1x\frac { 18 x ^ { 3 } - 4 x ^ { 2 } - 1 } { x } e ^ { 9 x ^ { 2 } - 4 x + \frac { 1 } { x } }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the derivative of the function. e5x5xe5x\frac { e ^ { - 5 x } } { 5 x e ^ { 5 x } }

A) 10x15x2e10x- \frac { 10 x - 1 } { 5 x ^ { 2 } e ^ { 10 x } }
B) 10x+15x2e10x\frac { 10 x + 1 } { 5 x ^ { 2 } e ^ { 10 x } }
C) 10x+1x2e10x- \frac { 10 x + 1 } { x ^ { 2 } e ^ { 10 x } }
D) 10x+15x2e10x- \frac { 10 x + 1 } { 5 x ^ { 2 } e ^ { 10 x } }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the derivative of the function.
f(x)=e4x6ln(8x)f ( x ) = e ^ { 4 x ^ { 6 } } \ln ( 8 x )

A) 24e4x6x5ln(8x)+e4x6x24 e ^ { 4 x ^ { 6 } } x ^ { 5 } \ln ( 8 x ) + \frac { e ^ { 4 x ^ { 6 } } } { x }
B) 24e4x5x5ln(8x)+e4x6x24 e ^ { 4 x ^ { 5 } } x ^ { 5 } \ln ( 8 x ) + \frac { e ^ { 4 x ^ { 6 } } } { x }
C) 24e4x6x5ln(8x)+e4x6824 e ^ { 4 x ^ { 6 } } x ^ { 5 } \ln ( 8 x ) + \frac { e ^ { 4 x ^ { 6 } } } { 8 }
D) 24e4x6x6ln(8x)+8e4x6x24 e ^ { 4 x ^ { 6 } } x ^ { 6 } \ln ( 8 x ) + \frac { 8 e ^ { 4 x ^ { 6 } } } { x }
E) 6e4x6x5ln(8x)+8e4x6x6 e ^ { 4 x ^ { 6 } } x ^ { 5 } \ln ( 8 x ) + \frac { 8 e ^ { 4 x ^ { 6 } } } { x }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the derivative of the function. r(x)=ln4x+e4xr ( x ) = \ln \mid 4 x + e ^ { 4 x }

A) 4+4e4x4x+4e4x\frac { 4 + 4 e ^ { 4 x } } { 4 x + 4 e ^ { 4 x } }
B) 4+4e4x4x+e4x\frac { 4 + 4 e ^ { 4 x } } { 4 x + e ^ { 4 x } }
C) 4+e4x4x+e4x\frac { 4 + e ^ { 4 x } } { 4 x + e ^ { 4 x } }
D) 4+e4x4x+4e4x\frac { 4 + e ^ { 4 x } } { 4 x + 4 e ^ { 4 x } }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the derivative of the function.
f(x)=(x3+5)lnxf ( x ) = \left( x ^ { 3 } + 5 \right) \ln x

A) x3(1+lnx)+5x\frac { x ^ { 3 } ( 1 + \ln x ) + 5 } { x }
B) x3(1+3lnx)+5x\frac { x ^ { 3 } ( 1 + 3 \ln x ) + 5 } { x }
C) x3(3+3lnx)+5x\frac { x ^ { 3 } ( 3 + 3 \ln x ) + 5 } { x }
D) x2(1+3lnx)+5x\frac { x ^ { 2 } ( 1 + 3 \ln x ) + 5 } { x }
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the derivative of the function. f(x)=4x3f ( x ) = \frac { 4 } { x ^ { 3 } }

A) 12x2- \frac { 12 } { x ^ { 2 } }
B) 12x212 x ^ { 2 }
C) 4
D) 12x4- \frac { 12 } { x ^ { 4 } }
E) 12x2- 12 x ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
42
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=2x+24x5y = \frac { 2 x + 2 } { 4 x - 5 }

A) 2(4x5)+4(2x+2)4x5\frac { 2 ( 4 x - 5 ) + 4 ( 2 x + 2 ) } { 4 x - 5 }
B) 2(4x5)4(2x+2)(4x5)2\frac { 2 ( 4 x - 5 ) - 4 ( 2 x + 2 ) } { ( 4 x - 5 ) ^ { 2 } }
C) 2(4x5)+4(2x+2)(4x5)2\frac { 2 ( 4 x - 5 ) + 4 ( 2 x + 2 ) } { ( 4 x - 5 ) ^ { 2 } }
D) 2(4x5)4(2x+2)2 ( 4 x - 5 ) - 4 ( 2 x + 2 )
E) 0.5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find the derivative of the function. h(x)=x(4+4x)h ( x ) = x ( 4 + 4 x )

A) 4x4 x
B) 8+x8 + x
C) 4
D) 4+8x4 + 8 x
E) 8x8 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
44
The demand for the Cyberpunk II arcade video game is modeled by the logistic curve q(t)=13,0001+0.6e0.5tq ( t ) = \frac { 13,000 } { 1 + 0.6 e ^ { - 0.5 t } }
Where q(t)q ( t ) is the total number of units sold t months after the game's introduction.

Use technology to estimate q(9)q ^ { \prime } ( 9 ) .

Assume that the manufacturers of Cyberpunk II sell each unit for $900. What is the company's marginal revenue, dR dq\frac { \mathrm { d } R } { \mathrm {~d} q }

Use the chain rule to estimate the rate at which revenue is growing 9 months after the introduction of the video game.

Please round each answer to the nearest whole number.

A) dq dt=43,dR dq=900,dR dt=38,734\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,734
B) dq dt=43,dR dq=900,dR dt=38,478\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,478
C) dq dt=71,dR dq=700,dR dt=64,130\frac { \mathrm { d } q } { \mathrm {~d} t } = 71 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 700 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 64,130
D) dq dt=86,dR dq=800,dR dt=76,956\frac { \mathrm { d } q } { \mathrm {~d} t } = 86 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 800 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 76,956
E) dq dt=143,dR dq=900,dR dt=128,260\frac { \mathrm { d } q } { \mathrm {~d} t } = 143 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 128,260
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
45
The Pentagon is planning to build a new satellite that will be spherical. As is typical in these cases, the specifications keep changing, so that the size of the satellite keeps growing. In fact, the radius of the planned satellite is growing 0.9 foot/week. Its cost will be $1,400 per cubic foot. At the point when the plans call for a satellite 8 feet in radius, how fast is the cost growing (The volume of a solid sphere of radius r is V=43πr3V = \frac { 4 } { 3 } \pi r ^ { 3 } .)

A) dP dt=$3,584,000π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 3,584,000 \pi } { \text { week } }
B) dP dt=$40,320π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 40,320 \pi } { \text { week } }
C) dP dt=$230π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 230 \pi } { \text { week } }
D) dP dt=$161,280π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 161,280 \pi } { \text { week } }
E) dP dt=$322,560π week \frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { \$ 322,560 \pi } { \text { week } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
46
Compute the indicated derivative using the chain rule. y=7x+10;dx dyy = 7 x + 10 ; \frac { \mathrm { d } x } { \mathrm {~d} y }

A) 110\frac { 1 } { 10 }
B) 710- \frac { 7 } { 10 }
C) 17\frac { 1 } { 7 }
D) 7
E) -10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
47
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . y=x2(3x+2)(5x+2)y = x ^ { 2 } ( 3 x + 2 ) ( 5 x + 2 )

A) 65x2+(3x+48)(5x+2)65 x ^ { 2 } + ( 3 x + 48 ) ( 5 x + 2 )
B) 60x3+48x2+8x60 x ^ { 3 } + 48 x ^ { 2 } + 8 x
C) 35x2+(3x+2)(5x+2)35 x ^ { 2 } + ( 3 x + 2 ) ( 5 x + 2 )
D) 3x3+48x2+8x3 x ^ { 3 } + 48 x ^ { 2 } + 8 x
E) 3x2+48x+83 x ^ { 2 } + 48 x + 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
48
Compute the indicated derivative using the chain rule. y=7x6y = 7 x - 6 ; dx dy\frac { \mathrm { d } x } { \mathrm {~d} y }

A) 76\frac { 7 } { 6 }
B) 6
C) 7
D) 16\frac { 1 } { 6 }
E) 17\frac { 1 } { 7 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
49
Compute the indicated derivative using the chain rule. y=10x27x;dx dyx=2y = 10 x ^ { 2 } - 7 x ; \left. \frac { \mathrm { d } x } { \mathrm {~d} y } \right| _ { x = 2 }

A) 133\frac { 1 } { 33 }
B) 710\frac { 7 } { 10 }
C) 113\frac { 1 } { 13 }
D) 2
E) 107\frac { 10 } { 7 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
50
Calculate the derivative of the function.
Calculate the derivative of the function. ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the indicated derivative. y=19x3+13xy = 19 x ^ { 3 } + \frac { 13 } { x } , x=14x = 14 when t=1t = 1 , dx dtz=1=20\left. \frac { \mathrm { d } x } { \mathrm {~d} t } \right| _ { z = 1 } = 20 ; dy dtt=1=\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } =
Please round the answer to the nearest hundredth.

A) dy dtt=1=159586.73\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 159586.73
B) dy dtt=1=74461.43\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 74461.43
C) dy dtt=1=11171.93\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 11171.93
D) dy dtı=1=223438.67\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { \imath = 1 } = 223438.67
E) dy dtt=1=15958.67\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 15958.67
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
52
Calculate the derivative of the function.
Calculate the derivative of the function. ​   ​ Please enter your answer as an expression.
Please enter your answer as an expression.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
53
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=(x+2)(x+2x2)y = ( \sqrt { x } + 2 ) \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right)

A) 12x(x+2x2)+(12x4x3)(x+2)\frac { 1 } { 2 \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { 2 \sqrt { x } } - \frac { 4 } { x ^ { 3 } } \right) ( \sqrt { x } + 2 )
B) x2(x+2x2)+(x24x3)(x+2)\frac { \sqrt { x } } { 2 } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { \sqrt { x } } { 2 } - \frac { 4 } { x ^ { 3 } } \right) ( \sqrt { x } + 2 )
C) 12x(x+2x2)+(12x4x)(x+2)\frac { 1 } { 2 \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { 2 \sqrt { x } } - 4 x \right) ( \sqrt { x } + 2 )
D) 1x(x+2x2)+(1x4x)(x+2)\frac { 1 } { \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { \sqrt { x } } - \frac { 4 } { x } \right) ( \sqrt { x } + 2 )
E) 12x(x+2x2)+(12x+4x3)(x+2)\frac { 1 } { 2 \sqrt { x } } \left( \sqrt { x } + \frac { 2 } { x ^ { 2 } } \right) + \left( \frac { 1 } { 2 \sqrt { x } } + \frac { 4 } { x ^ { 3 } } \right) ( \sqrt { x } + 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
54
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=(x1.2+1.2x)(x2+7)y = \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right) \left( x ^ { 2 } + 7 \right)

A) 2x(11.21.2x2)2 x \left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right)
B) (11.21.2x2)(x2+7)2x(x1.2+1.2x)\left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right) \left( x ^ { 2 } + 7 \right) - 2 x \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right)
C) 2x(11.21.2x2)+(x1.2+1.2x)(x2+7)2 x \left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right) + \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right) \left( x ^ { 2 } + 7 \right)
D) 2x2 x
E) (11.21.2x2)(x2+7)+2x(x1.2+1.2x)\left( \frac { 1 } { 1.2 } - \frac { 1.2 } { x ^ { 2 } } \right) \left( x ^ { 2 } + 7 \right) + 2 x \left( \frac { x } { 1.2 } + \frac { 1.2 } { x } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
55
Find the indicated derivative. ? y=5x+9xy = 5 \sqrt { x } + \frac { 9 } { \sqrt { x } } , x=4x = 4 when t=1t = 1 , dx dtt=1=5\left. \frac { \mathrm { d } x } { \mathrm {~d} t } \right| _ { t = 1 } = 5 ; dy dtt=1=\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } =
Please round the answer to the nearest hundredth.

A) dy dtt=1=3.44\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 3.44
B) dy dtt=1=34.38\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 34.38
C) dy dtt=1=11.88\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 11.88
D) dy dtt=1=0.69\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 0.69
E) dy dtt=1=6.88\left. \frac { \mathrm { d } y } { \mathrm {~d} t } \right| _ { t = 1 } = 6.88
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the derivative of the function. f(x)=5xf ( x ) = 5 x

A) χ\chi
B) 5
C) 4
D) 4x4 x
E) x2x ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
57
A mold culture in a dorm refrigerator is circular and growing. The radius is increasing at a rate of 0.1 cm/day. How fast is the area growing when the culture is 6 centimeters in radius (The area of a disc of radius r is A=πr2A = \pi r ^ { 2 } .)

A) dA dt=18πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 18 \pi \frac { \mathrm { cm } } { \mathrm { day } }
B) dA dt=0.6πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 0.6 \pi \frac { \mathrm { cm } } { \mathrm { day } }
C) dA dt=2.4πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 2.4 \pi \frac { \mathrm { cm } } { \mathrm { day } }
D) dA dt=1.2πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 1.2 \pi \frac { \mathrm { cm } } { \mathrm { day } }
E) dA dt=0.2πcmday\frac { \mathrm { d } A } { \mathrm {~d} t } = 0.2 \pi \frac { \mathrm { cm } } { \mathrm { day } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
58
An offshore oil well is leaking oil and creating a circular oil slick. If the radius of the slick is growing at a rate of 7 miles per hour, find the rate at which the area is increasing when the radius is 3 miles. (The area of a disc of radius r is A=πr2A = \pi r ^ { 2 } .)

A) dA dt=9πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 9 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
B) dA dt=14πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 14 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
C) dA dt=42πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 42 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
D) dA dt=7πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 7 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
E) dA dt=21πmi2hr\frac { \mathrm { d } A } { \mathrm {~d} t } = 21 \pi \frac { \mathrm { mi } ^ { 2 } } { \mathrm { hr } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
59
The soap bubble I am blowing has a radius that is growing at a rate of 3 cm/s. How fast is the surface area growing when the radius is 10 cm (The surface area of a sphere of radius r is S=4πr2S = 4 \pi r ^ { 2 } .)

A) dS dt=85πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 85 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
B) dS dt=240πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = \frac { 240 } { \pi } \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
C) dS dt=240πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 240 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
D) dS dt=243πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 243 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
E) dS dt=24πcm2 s\frac { \mathrm { d } S } { \mathrm {~d} t } = 24 \pi \frac { \mathrm { cm } ^ { 2 } } { \mathrm {~s} }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
60
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. ? y=(9x2+x)(xx2)y = \left( 9 x ^ { 2 } + x \right) \left( x - x ^ { 2 } \right)

A) (18x+1)(1x)+(xx2)(9x2+x)( 18 x + 1 ) ( 1 - x ) + \left( x - x ^ { 2 } \right) \left( 9 x ^ { 2 } + x \right)
B) (18x+1)(xx2)+(12x)(9x2x)( 18 x + 1 ) \left( x - x ^ { 2 } \right) + ( 1 - 2 x ) \left( 9 x ^ { 2 } - x \right)
C) (18x+1)(xx2)+(12x)(9x2+x)( 18 x + 1 ) \left( x - x ^ { 2 } \right) + ( 1 - 2 x ) \left( 9 x ^ { 2 } + x \right)
D) 36x2+20x+1- 36 x ^ { 2 } + 20 x + 1
E) (18x+1)(1x)+(x2x2)(9x2+x)( 18 x + 1 ) ( 1 - x ) + \left( x - 2 x ^ { 2 } \right) \left( 9 x ^ { 2 } + x \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
61
The monthly sales of Sunny Electronics' new stereo system is given by The monthly sales of Sunny Electronics' new stereo system is given by   hundred units per month, x months after its introduction. The price Sunny charges is   dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be   . Find the rate of change of revenue 10 months after introduction. ​ Please enter your answer in dollars/month without the units. hundred units per month, x months after its introduction. The price Sunny charges is The monthly sales of Sunny Electronics' new stereo system is given by   hundred units per month, x months after its introduction. The price Sunny charges is   dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be   . Find the rate of change of revenue 10 months after introduction. ​ Please enter your answer in dollars/month without the units. dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be The monthly sales of Sunny Electronics' new stereo system is given by   hundred units per month, x months after its introduction. The price Sunny charges is   dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be   . Find the rate of change of revenue 10 months after introduction. ​ Please enter your answer in dollars/month without the units. . Find the rate of change of revenue 10 months after introduction.

Please enter your answer in dollars/month without the units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
62
The monthly sales of Sunny Electronics' new stereo system is given by S(x)=30xx2S ( x ) = 30 x - x ^ { 2 } hundred units per month, x months after its introduction. The price Sunny charges is p(x)=1,000x2p ( x ) = 1,000 - x ^ { 2 } dollars per stereo system, x months after its introduction. The revenue Sunny earns then must be R(x)=100p(x)S(x)R ( x ) = 100 p ( x ) S ( x ) . Find the rate of change of revenue 6 months after introduction. Round your answer to the nearest dollar.

A)$437,700 per month
B) $43,770 per month
C) $1,562,400 per month
D) -$391,800 per month
E) -$322,700 per month
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
63
The "Verhulst model" for population growth specifies the reproductive rate of an organism as a function of the total population according to the following formula: ? R(p)=r1+kpR ( p ) = \frac { r } { 1 + k p }
Where p is the total population in thousands of organisms, r and k are constants that depend on the particular circumstances and organism being studied, and R(p) is the reproduction rate in thousands of organisms per hour. If k=0.075k = 0.075 and r=35r = 35 , find R(p)R ^ { \prime } ( p ) .

A) 2.6251+0.075p2\frac { 2.625 } { 1 + 0.075 p ^ { 2 } }
B) 351+0.075p2\frac { 35 } { 1 + 0.075 p ^ { 2 } }
C) 2.625(1+0.075p)2\frac { 2.625 } { ( 1 + 0.075 p ) ^ { 2 } }
D) 2.6251+0.075p\frac { 2.625 } { 1 + 0.075 p }
E) 2.625(1+0.075p)2- \frac { 2.625 } { ( 1 + 0.075 p ) ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
64
For the cost function C(x), find the marginal cost at the given production level x. Round your answer to two decimal places.
C(x)=25,000+20xx21,000,x=200C ( x ) = 25,000 + 20 x - \frac { x ^ { 2 } } { 1,000 } , x = 200

A)$19.62 per item
B) $21.28 per item
C) $9.61 per item
D) $19.60 per item
E) $15.00 per item
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
65
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=(x+2)(x+1)2x4y = \frac { ( x + 2 ) ( x + 1 ) } { 2 x - 4 }

A) 2x+3(2x+4)2\frac { 2 x + 3 } { ( 2 x + 4 ) ^ { 2 } }
B) (2x+2)(2x4)+2(x2+3x+2)(2x4)2\frac { ( 2 x + 2 ) ( 2 x - 4 ) + 2 \left( x ^ { 2 } + 3 x + 2 \right) } { ( 2 x - 4 ) ^ { 2 } }
C) 2x+32\frac { 2 x + 3 } { 2 }
D) (2x+3)(2x4)2(x2+3x+2)(2x4)2\frac { ( 2 x + 3 ) ( 2 x - 4 ) - 2 \left( x ^ { 2 } + 3 x + 2 \right) } { ( 2 x - 4 ) ^ { 2 } }
E) (2x+2)(2x4)+2(x2+3x+2)(2x4)\frac { ( 2 x + 2 ) ( 2 x - 4 ) + 2 \left( x ^ { 2 } + 3 x + 2 \right) } { ( 2 x - 4 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
66
Your monthly profit (in dollars) from selling magazines is given by P(x)=5x+2xP ( x ) = 5 x + 2 \sqrt { x } where x is the number of magazines you sell in a month. If you are currently selling x=50x = 50 magazines per month, find your profit and your marginal profit.

A) P(50)=$132.07,P(50)=$2.57P ( 50 ) = \$ 132.07 , P ^ { \prime } ( 50 ) = \$ 2.57
B) P(50)=$260.00,P(50)=$0.49P ( 50 ) = \$ 260.00 , P ^ { \prime } ( 50 ) = \$ 0.49
C) P(50)=$528.28,P(50)=$5.64P ( 50 ) = \$ 528.28 , P ^ { \prime } ( 50 ) = \$ 5.64
D) P(50)=$260.00,P(50)=$5.14P ( 50 ) = \$ 260.00 , P ^ { \prime } ( 50 ) = \$ 5.14
E) P(50)=$264.14,P(50)=$5.14P ( 50 ) = \$ 264.14 , P ^ { \prime } ( 50 ) = \$ 5.14
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find the equation of the tangent line to the graph of the given function at the point with x=4x = 4 . f(x)=x+4x+1f ( x ) = \frac { x + 4 } { x + 1 }

A) y=0.12xy = - 0.12 x
B) y=0.12x+1.12y = 0.12 x + 1.12
C) y=1.6y = - 1.6
D) y=0.12x+2.08y = - 0.12 x + 2.08
E) y=1.6y = 1.6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
68
The Thoroughbred Bus Company finds that its monthly costs for one particular year were given by C(t)=100+t2C ( t ) = 100 + t ^ { 2 } dollars after t months. After t months, the company had P(t)=1,000+t2P ( t ) = 1,000 + t ^ { 2 } passengers per month. How fast was its cost per passenger changing after 6 months

Enter your answer in dollars/month rounded to the nearest cent and without the units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
69
For the cost function, find the marginal cost at the given production level x. Round your answer to two decimal places.
C(x)=30,000+10xx210,000,x=2,000C ( x ) = 30,000 + 10 x - \frac { x ^ { 2 } } { 10,000 } , x = 2,000

A)$9.60 per item
B) $9.58 per item
C) $10.00 per item
D) $9.61 per item
E) $10.40 per item
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
70
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=4.2x0.80.6x0.50.4+x0.1y = \frac { 4.2 x ^ { - 0.8 } - 0.6 x ^ { - 0.5 } } { 0.4 + x ^ { 0.1 } }

A) (3.36x1.8+0.3x1.5)(0.4+x0.1)+0.1x0.9(4.2x0.80.6x0.5)(0.4+x0.1)2\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) + 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { 0.8 } - 0.6 x ^ { 0.5 } \right) } { \left( 0.4 + x ^ { 0.1 } \right) ^ { 2 } }
B) 3.36x1.8+0.3x1.50.4+x0.1\frac { - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } } { 0.4 + x ^ { 0.1 } }
C) (3.36x1.8+0.3x1.5)(0.4+x0.1)0.1x0.9(4.2x0.80.6x0.5)(0.1x0.9)2\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) - 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { - 0.8 } - 0.6 x ^ { - 0.5 } \right) } { \left( 0.1 x ^ { - 0.9 } \right) ^ { 2 } }
D) (3.36x1.8+0.3x1.5)(0.4+x0.1)0.1x0.9(4.2x0.80.6x0.5)(0.4+x0.1)2\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) - 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { - 0.8 } - 0.6 x ^ { - 0.5 } \right) } { \left( 0.4 + x ^ { 0.1 } \right) ^ { 2 } }
E) (3.36x1.8+0.3x1.5)(0.4+x0.1)0.1x0.9(4.2x0.80.6x0.5)0.4+x0.1\frac { \left( - 3.36 x ^ { - 1.8 } + 0.3 x ^ { - 1.5 } \right) \left( 0.4 + x ^ { 0.1 } \right) - 0.1 x ^ { - 0.9 } \left( 4.2 x ^ { 0.8 } - 0.6 x ^ { 0.5 } \right) } { 0.4 + x ^ { 0.1 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
71
The Thoroughbred Bus Company finds that its monthly costs for one particular year were given by C(t)=100+t2C ( t ) = 100 + t ^ { 2 } dollars after t months. After t months, the company had P(t)=1,000+t2P ( t ) = 1,000 + t ^ { 2 } passengers per month. How fast was its cost per passenger changing after 4 months Round your answer to the nearest cent.

A)$0.29 per month
B) $0.01 per month
C) -$0.21 per month
D) $0.46 per month
E) $0.07 per month
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the equation of the line tangent to the graph of the given function at the point Find the equation of the line tangent to the graph of the given function at the point   . ​  .
Find the equation of the line tangent to the graph of the given function at the point   . ​
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
73
Compute the derivative. ? ddt[(t2t0.5)(t0.5+t0.5)]t=1\frac { \mathrm { d } } { \mathrm { d } t } \left[ \left( t ^ { 2 } - t ^ { 0.5 } \right) \left( t ^ { 0.5 } + t ^ { - 0.5 } \right) \right] _ { t } = 1

A)3
B) 0
C) 1
D) 7
E) -1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
74
Your Porche's gas mileage (in miles per gallon) is given as a function M(x) of speed x in miles per hour. M(x)=15x+3,735x1M ( x ) = \frac { 15 } { x + 3,735 x ^ { - 1 } }
Calculate M(x)M ^ { \prime } ( x ) .

A) 15(13,735x2)(x+3,735x)2\frac { 15 \left( 1 - \frac { 3,735 } { x ^ { 2 } } \right) } { \left( x + \frac { 3,735 } { x } \right) ^ { 2 } }
B) 1513,735x2\frac { 15 } { 1 - \frac { 3,735 } { x ^ { 2 } } }
C) 15(x23,735)(x2+3,735)2- \frac { 15 \left( x ^ { 2 } - 3,735 \right) } { \left( x ^ { 2 } + 3,735 \right) ^ { 2 } }
D) 15(x+3,735x)2\frac { 15 } { \left( x + \frac { 3,735 } { x } \right) ^ { 2 } } ?
E) 15xx+3,735\frac { 15 x } { x + 3,735 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find the equation of the line tangent to the graph of the given function at the point x=1x = 1 . f(x)=(x3+3)(x2+x)f ( x ) = \left( x ^ { 3 } + 3 \right) \left( x ^ { 2 } + x \right)

A) y=8y = 8
B) y=18x10y = 18 x - 10
C) y=8xy = 8 x
D) y=18y = 18
E) y=18xy = 18 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
76
Calculate dy dx\frac { \mathrm { d } y } { \mathrm {~d} x } . You need not expand your answer. y=3x6(x3)(x1)(x3)y = \frac { 3 x - 6 } { ( x - 3 ) ( x - 1 ) ( x - 3 ) }

A) 3(x3)(x1)(x3)(3x214x+15)(3x6)((x3)(x1)(x3))2\frac { 3 ( x - 3 ) ( x - 1 ) ( x - 3 ) - \left( 3 x ^ { 2 } - 14 x + 15 \right) ( 3 x - 6 ) } { ( ( x - 3 ) ( x - 1 ) ( x - 3 ) ) ^ { 2 } }
B) 3(x3)(x1)(x3)(3x214x+15)(3x6)(x3)(x1)(x3)\frac { 3 ( x - 3 ) ( x - 1 ) ( x - 3 ) - \left( 3 x ^ { 2 } - 14 x + 15 \right) ( 3 x - 6 ) } { ( x - 3 ) ( x - 1 ) ( x - 3 ) }
C) 3(x3)(x1)(x3)+(3x214x+7)(3x6)((x3)(x1)(x3))2\frac { 3 ( x - 3 ) ( x - 1 ) ( x - 3 ) + \left( 3 x ^ { 2 } - 14 x + 7 \right) ( 3 x - 6 ) } { ( ( x - 3 ) ( x - 1 ) ( x - 3 ) ) ^ { 2 } }
D) 3(x3)(x3)(3x214x+15)((x3)(x3))2\frac { 3 ( x - 3 ) ( x - 3 ) - \left( 3 x ^ { 2 } - 14 x + 15 \right) } { ( ( x - 3 ) ( x - 3 ) ) ^ { 2 } }
E) 33x214x+7\frac { 3 } { 3 x ^ { 2 } - 14 x + 7 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
77
The cost, in thousands of dollars, of airing x television commercials during a Super Bowl game is given by the formula
C(x)=250+1,200x0.005x2C ( x ) = 250 + 1,200 x - 0.005 x ^ { 2 } .

Estimate how fast (in dollars per television commercial) the cost is going up when x=8x = 8 .

A)$1,200,080
B) $1,199,920
C) $1,199.92
D) $1,199,960
E) $1,200
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
78
Compute the derivative. ddx[(x3+2x)(x2x)]x=2\frac { \mathrm { d } } { \mathrm { d } x } \left[ \left( x ^ { 3 } + 2 x \right) \left( x ^ { 2 } - x \right) \right] _ { x = - 2 }

A)-108
B) 132
C) 100
D) 131
E) 144
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
79
The cost of producing x teddy bears per day at the Cuddly Companion Company is calculated by their marketing staff to be given by the formula
C(x)=200+60x0.001x2C ( x ) = 200 + 60 x - 0.001 x ^ { 2 } .

Evaluate the average cost Cˉ(200)\bar { C } ( 200 ) .

A)$12,199.80
B) $59.80
C) $12,160.00
D) $59.20
E) $60.80
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find the value of x for which the marginal profit is zero.
C(x)=2x,R(x)=6xx21,000C ( x ) = 2 x , R ( x ) = 6 x - \frac { x ^ { 2 } } { 1,000 }

A) x=3,000x = 3,000
B) x=4,000x = 4,000
C) x=2,000x = 2,000
D) x=2,000x = - 2,000
E) x=1,000x = 1,000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 104 في هذه المجموعة.