Deck 3: Linear Programming: Sensitivity Analysis and Interpretation of Solution

ملء الشاشة (f)
exit full mode
سؤال
When the cost of a resource is sunk, then the dual price can be interpreted as the

A)minimum amount the firm should be willing to pay for one additional unit of the resource.
B)maximum amount the firm should be willing to pay for one additional unit of the resource.
C)minimum amount the firm should be willing to pay for multiple additional units of the resource.
D)maximum amount the firm should be willing to pay for multiple additional units of the resource.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Output from a computer package is precise and answers should never be rounded.
سؤال
A section of output from The Management Scientist is shown here.  Constraint 2\frac { \text { Constraint } } { 2 } Lower Limit 240\frac { \text { Lower Limit } } { 240 } Current Value 300\frac { \text { Current Value } } { 300 } Upper Limit 420\frac { \text { Upper Limit } } { 420 } What will happen if the right-hand side for constraint 2 increases by 200?

A)Nothing.The values of the decision variables, the dual prices, and the objective function will all remain the same.
B)The value of the objective function will change, but the values of the decision variables and the dual prices will remain the same.
C)The same decision variables will be positive, but their values, the objective function value, and the dual prices will change.
D)The problem will need to be resolved to find the new optimal solution and dual price.
سؤال
If the range of feasibility indicates that the original amount of a resource, which was 20, can increase by 5, then the amount of the resource can increase to 25.
سؤال
An objective function reflects the relevant cost of labor hours used in production rather than treating them as a sunk cost. The correct interpretation of the dual price associated with the labor hours constraint is

A)the maximum premium (say for overtime) over the normal price that the company would be willing to pay.
B)the upper limit on the total hourly wage the company would pay.
C)the reduction in hours that could be sustained before the solution would change.
D)the number of hours by which the right-hand side can change before there is a change in the solution point.
سؤال
The amount by which an objective function coefficient would have to improve before it would be possible for the corresponding variable to assume a positive value in the optimal solution is called the

A)reduced cost.
B)relevant cost.
C)sunk cost.
D)dual price.
سؤال
A constraint with a positive slack value

A)will have a positive dual price.
B)will have a negative dual price.
C)will have a dual price of zero.
D)has no restrictions for its dual price.
سؤال
Sensitivity analysis information in computer output is based on the assumption of

A)no coefficient change.
B)one coefficient change.
C)two coefficient change.
D)all coefficients change.
سؤال
If a decision variable is not positive in the optimal solution, its reduced cost is

A)what its objective function value would need to be before it could become positive.
B)the amount its objective function value would need to improve before it could become positive.
C)zero.
D)its dual price.
سؤال
The amount by which an objective function coefficient can change before a different set of values for the decision variables becomes optimal is the

A)optimal solution.
B)dual solution.
C)range of optimality.
D)range of feasibility.
سؤال
The range of feasibility measures

A)the right-hand side values for which the objective function value will not change.
B)the right-hand side values for which the values of the decision variables will not change.
C)the right-hand side values for which the dual prices will not change.
D)each of the above is true.
سؤال
The amount that the objective function coefficient of a decision variable would have to improve before that variable would have a positive value in the solution is the

A)dual price.
B)surplus variable.
C)reduced cost.
D)upper limit.
سؤال
When the right-hand sides of two constraints are each increased by one unit, the objective function value will be adjusted by the sum of the constraints' dual prices.
سؤال
The 100% Rule compares

A)proposed changes to allowed changes.
B)new values to original values.
C)objective function changes to right-hand side changes.
D)dual prices to reduced costs.
سؤال
The reduced cost for a positive decision variable is 0.
سؤال
The dual price measures, per unit increase in the right hand side,

A)the increase in the value of the optimal solution.
B)the decrease in the value of the optimal solution.
C)the improvement in the value of the optimal solution.
D)the change in the value of the optimal solution.
سؤال
To solve a linear programming problem with thousands of variables and constraints

A)a personal computer can be used.
B)a mainframe computer is required.
C)the problem must be partitioned into subparts.
D)unique software would need to be developed.
سؤال
Which of the following is not a question answered by sensitivity analysis?

A)If the right-hand side value of a constraint changes, will the objective function value change?
B)Over what range can a constraint's right-hand side value without the constraint's dual price possibly changing?
C)By how much will the objective function value change if the right-hand side value of a constraint changes beyond the range of feasibility?
D)By how much will the objective function value change if a decision variable's coefficient in the objective function changes within the range of optimality?
سؤال
A section of output from The Management Scientist is shown here.  Variable 1 Lower Limit 60 Current Value 100 Upper Limit 120\begin{array} { c c c c } \frac { \text { Variable } } { 1 } & \frac { \text { Lower Limit } } { 60 } & \frac { \text { Current Value } } { 100 } & \frac { \text { Upper Limit } } { 120 }\end{array} What will happen to the solution if the objective function coefficient for variable 1 decreases by 20?

A)Nothing.The values of the decision variables, the dual prices, and the objective function will all remain the same.
B)The value of the objective function will change, but the values of the decision variables and the dual prices will remain the same.
C)The same decision variables will be positive, but their values, the objective function value, and the dual prices will change.
D)The problem will need to be resolved to find the new optimal solution and dual price.
سؤال
A negative dual price for a constraint in a minimization problem means

A)as the right-hand side increases, the objective function value will increase.
B)as the right-hand side decreases, the objective function value will increase.
C)as the right-hand side increases, the objective function value will decrease.
D)as the right-hand side decreases, the objective function value will decrease.
سؤال
Describe each of the sections of output that come from The Management Scientist and how you would use each.
سؤال
The dual price associated with a constraint is the improvement in the value of the solution per unit decrease in the right-hand side of the constraint.
سؤال
The binding constraints for this problem are the first and second.
Min
x1 + 2x2
s.t.
x1 + x2 \ge 300
2x1 + x2 \ge 400
2x1 + 5x2 \le 750
x1 , x2 \ge 0
a.Keeping c2 fixed at 2, over what range can c1 vary before there is a change in the optimal solution point?
b.Keeping c1 fixed at 1, over what range can c2 vary before there is a change in the optimal solution point?
c.If the objective function becomes Min 1.5x1 + 2x2, what will be the optimal values of x1, x2, and the objective function?
d.If the objective function becomes Min 7x1 + 6x2, what constraints will be binding?
e.Find the dual price for each constraint in the original problem.
سؤال
For a minimization problem, a positive dual price indicates the value of the objective function will increase.
سؤال
In a linear programming problem, the binding constraints for the optimal solution are
5X + 3Y \le 30
2X + 5Y \le 20
a.Fill in the blanks in the following sentence:
As long as the slope of the objective function stays between _______ and _______, the current optimal solution point will remain optimal.
b.Which of these objective functions will lead to the same optimal solution?
1) 2X + 1Y 2) 7X + 8Y 3) 80X + 60Y 4) 25X + 35Y
سؤال
Decision variables must be clearly defined before constraints can be written.
سؤال
Decreasing the objective function coefficient of a variable to its lower limit will create a revised problem that is unbounded.
سؤال
Explain the two interpretations of dual prices based on the accounting assumptions made in calculating the objective function coefficients.
سؤال
How would sensitivity analysis of a linear program be undertaken if one wishes to consider simultaneous changes for both the right-hand side values and objective function.
سؤال
The dual price for a percentage constraint provides a direct answer to questions about the effect of increases or decreases in that percentage.
سؤال
How is sensitivity analysis used in linear programming? Given an example of what type of questions that can be answered.
سؤال
If the optimal value of a decision variable is zero and its reduced cost is zero, this indicates that alternative optimal solutions exist.
سؤال
There is a dual price for every decision variable in a model.
سؤال
A negative dual price indicates that increasing the right-hand side of the associated constraint would be detrimental to the objective.
سؤال
The amount of a sunk cost will vary depending on the values of the decision variables.
سؤال
For any constraint, either its slack/surplus value must be zero or its dual price must be zero.
سؤال
The 100% Rule does not imply that the optimal solution will necessarily change if the percentage exceeds 100%.
سؤال
The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2.
Max
2x1 + x2
s.t.
4x1 + 1x2 \le 400
4x1 + 3x2 \le 600
1x1 + 2x2 \le 300
x1 , x2 \ge 0
a.Over what range can the coefficient of x1 vary before the current solution is no longer optimal?
b.Over what range can the coefficient of x2 vary before the current solution is no longer optimal?
c.Compute the dual prices for the three constraints.
سؤال
Explain the connection between reduced costs and the range of optimality, and between dual prices and the range of feasibility.
سؤال
How can the interpretation of dual prices help provide an economic justification for new technology?
سؤال
Use the following Management Scientist output to answer the questions.
LINEAR PROGRAMMING PROBLEM
MAX
31X1+35X2+32X3
S.T.
1) 3X1+5X2+2X3>90
2) 6X1+7X2+8X3<150
3) 5X1+3X2+3X3<120
OPTIMAL SOLUTION
Objective Function Value = 763.333 Use the following Management Scientist output to answer the questions. LINEAR PROGRAMMING PROBLEM MAX 31X1+35X2+32X3 S.T. 1) 3X1+5X2+2X3>90 2) 6X1+7X2+8X3<150 3) 5X1+3X2+3X3<120 OPTIMAL SOLUTION Objective Function Value = 763.333     a.Give the solution to the problem. b.Which constraints are binding? c.What would happen if the coefficient of x<sub>1</sub> increased by 3? d.What would happen if the right-hand side of constraint 1 increased by 10?<div style=padding-top: 35px> Use the following Management Scientist output to answer the questions. LINEAR PROGRAMMING PROBLEM MAX 31X1+35X2+32X3 S.T. 1) 3X1+5X2+2X3>90 2) 6X1+7X2+8X3<150 3) 5X1+3X2+3X3<120 OPTIMAL SOLUTION Objective Function Value = 763.333     a.Give the solution to the problem. b.Which constraints are binding? c.What would happen if the coefficient of x<sub>1</sub> increased by 3? d.What would happen if the right-hand side of constraint 1 increased by 10?<div style=padding-top: 35px>
a.Give the solution to the problem.
b.Which constraints are binding?
c.What would happen if the coefficient of x1 increased by 3?
d.What would happen if the right-hand side of constraint 1 increased by 10?
سؤال
Portions of a Management Scientist output are shown below. Use what you know about the solution of linear programs to fill in the ten blanks.
LINEAR PROGRAMMING PROBLEM
MAX
12X1+9X2+7X3
S.T.
1) 3X1+5X2+4X3<150
2) 2X1+1X2+1X3<64
3) 1X1+2X2+1X3<80
4) 2X1+4X2+3X3>116
OPTIMAL SOLUTION
Objective Function Value = 336.000  Variable  Value  Reduced Cost  X1 0.000 X2 24.000 X3 3.500\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Cost } \\\text { X1 } &- & 0.000 \\\text { X2 } &24.000&- \\\text { X3 } &- &3.500 \\\hline\end{array}  Constraint  Slack/Surplus  Dual Price 10.00015.00020.00030.00040.000\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\\hline 1 & 0.000 & 15.000 \\2 & --& 0.000 \\3 & --& 0.000 \\4 & 0.000 &-- \\\hline\end{array}  OBJECTIVE COEFFICIENT RANGES \text { OBJECTIVE COEFFICIENT RANGES }
 Variable  Lower Limit  Current Value  Upper Limit X15.40012.000 No Upper Limit X22.0009.00020.000X3 No Lower Limit 7.00010.500\begin{array}{cccc}\text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit }\\\hline\mathrm{X} 1 & 5.400 & 12.000 & \text { No Upper Limit } \\\mathrm{X} 2 & 2.000 & 9.000 & 20.000 \\\mathrm{X} 3 & \text { No Lower Limit } & 7.000 & 10.500\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }
 Constraint  Lower Limit  Current Value  Upper Limit 1145.000150.000156.667264.000380.0004110.286116.000120.000\begin{array}{lllr}\text { Constraint } & \text { Lower Limit }& \text { Current Value } & \text { Upper Limit }\\\hline1 & 145.000 & 150.000 & 156.667 \\2 &- &- & 64.000 \\3 & -&-& 80.000 \\4 &110.286 &116.000& 120.000\end{array}
سؤال
Excel's Solver tool has been used in the spreadsheet below to solve a linear programming problem with a maximization objective function and all \le constraints. Input Section
 Objective Function Coefficients XY46\begin{array}{l}\text { Objective Function Coefficients }\\ X & Y \\ 4 & 6\end{array}

 Constraints  Avail. #13560#23248#31120\begin{array}{|c|c|c|c|}\hline \text { Constraints } & & & \text { Avail. } \\\hline \# 1 & 3 & 5 & 60 \\\hline \# 2 & 3 & 2 & 48 \\\hline \# 3 & 1 & 1 & 20 \\\hline\end{array}
 Output Section \text { Output Section }
 Variables 13.3333334 Profit 53.3333332477.333333\begin{array}{|l|c|c|c|}\hline \text { Variables } & 13.333333 & 4 & \\\hline \text { Profit } & 53.333333 & 24 & 77.333333 \\\hline\end{array}

 Constraint  Usage  Slack #1601.789E11#2482.69E11#317.3333332.6666667\begin{array}{|c|c|c|}\hline \text { Constraint } & \text { Usage } & \text { Slack } \\\hline \# 1 & 60 & 1.789 \mathrm{E}-11 \\\hline \# 2 & 48 & -2.69 \mathrm{E}-11 \\\hline \# 3 & 17.333333 & 2.6666667 \\\hline\end{array}
a.Give the original linear programming problem.
b.Give the complete optimal solution.
سؤال
Excel's Solver tool has been used in the spreadsheet below to solve a linear programming problem with a minimization objective function and all \ge constraints.  Input Section \text { Input Section }
 Objective Function Coefficients XY54\begin{array}{l}\text { Objective Function Coefficients }\\\begin{array}{c|c}\hline X & Y \\\hline 5 & 4\end{array}\end{array}

 Constraints  Req’d. #14360#22550#398144\begin{array}{|c|c|c|c|}\hline \text { Constraints } & & & \text { Req'd. } \\\hline \# 1 & 4 & 3 & 60 \\\hline \# 2 & 2 & 5 & 50 \\\hline \# 3 & 9 & 8 & 144 \\\hline\end{array}
 Output Section \text { Output Section }
 Variables 9.67.2 Profit 4828.876.8\begin{array}{|l|c|c|c|}\hline \text { Variables } & 9.6 & 7.2 & \\\hline \text { Profit } & 48 & 28.8 & 76.8 \\\hline\end{array}

 Constraint  Usage  Slack #1601.35E11#255.25.2#31442.62E11\begin{array}{|c|c|c|}\hline \text { Constraint } & \text { Usage } & \text { Slack } \\\hline \# 1 & 60 & 1.35 \mathrm{E}-11 \\\hline \# 2 & 55.2 & -5.2 \\\hline \# 3 & 144 & -2.62 \mathrm{E}-11 \\\hline\end{array}
a. Give the original linear programming problem.
b. Give the complete optimal solution.
سؤال
LINDO output is given for the following linear programming problem.
MIN
12 X1 + 10 X2 + 9 X3
SUBJECT TO
2) 5 X1 + 8 X2 + 5 X3 > = 60
3) 8 X1 + 10 X2 + 5 X3 > = 80
END
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1) 80.000000  VARIABLE  VALUE  REDUCED COST  X1 .0000004.000000 X2 8.000000.000000 X3 .0000004.000000\begin{array} { c c c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\text { X1 } & .000000 & 4.000000 \\\text { X2 } & 8.000000 & .000000 \\\text { X3 } & .000000 & 4.000000\end{array}  ROW  SLACK OR SURPLUS  DUAL PRICE  2) 4.000000.0000003).0000001.000000\begin{array}{rrr}\text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE }\\\text { 2) } & 4.000000 & .000000 \\3) & .000000 & -1.000000\end{array} NO. ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:  OBJ. COEFFICIENT RANGES  CURRENT  ALLOWABLE  ALLOWABLE  VARIABLE  COEFFICIENT  INCREASE  DECREASE  X1 12.000000 INFINITY 4.000000 X2 10.0000005.00000010.000000 X3 9.000000 INFINITY 4.000000\begin{array} { c c c c } && { \text { OBJ. COEFFICIENT RANGES } } \\ & \text { CURRENT } & \text { ALLOWABLE } & \text { ALLOWABLE } \\\text { VARIABLE }&\text { COEFFICIENT }& \text { INCREASE } & \text { DECREASE } \\\hline \text { X1 } & 12.000000 & \text { INFINITY } & 4.000000 \\\text { X2 } & 10.000000 & 5.000000 & 10.000000 \\\text { X3 } & 9.000000 &\text { INFINITY } & 4.000000\\\end{array}  RIGHT HAND SIDE RANGES  CURRENT  ALLOWABLE  ALLOWABLE  ROW  RHS  INCREASE  DECREASE 260.0000004.000000 INFINITY 380.000000 INFINITY 5.000000\begin{array}{cccc}&&&\text { RIGHT HAND SIDE RANGES }\\&\text { CURRENT } & \text { ALLOWABLE }& \text { ALLOWABLE }\\\text { ROW } & \text { RHS } & \text { INCREASE } & \text { DECREASE } \\\hline2 & 60.000000 & 4.000000 & \text { INFINITY } \\3 & 80.000000 & \text { INFINITY } & 5.000000\end{array}
a.What is the solution to the problem?
b.Which constraints are binding?
c.Interpret the reduced cost for x1.
d.Interpret the dual price for constraint 2.
e.What would happen if the cost of x1 dropped to 10 and the cost of x2 increased to 12?
سؤال
Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks.
MIN
6 X1 + 7.5 X2 + 10 X3
SUBJECT TO
2) 25 X1 + 35 X2 + 30 X3 >= 2400
3) 2 X1 + 4 X2 + 8 X3 >= 400
END
LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE
1) 612.50000 Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks. MIN 6 X1 + 7.5 X2 + 10 X3 SUBJECT TO 2) 25 X1 + 35 X2 + 30 X3 >= 2400 3) 2 X1 + 4 X2 + 8 X3 >= 400 END LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 612.50000   NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED:    <div style=padding-top: 35px> NO. ITERATIONS= 2
RANGES IN WHICH THE BASIS IS UNCHANGED: Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks. MIN 6 X1 + 7.5 X2 + 10 X3 SUBJECT TO 2) 25 X1 + 35 X2 + 30 X3 >= 2400 3) 2 X1 + 4 X2 + 8 X3 >= 400 END LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 612.50000   NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED:    <div style=padding-top: 35px> Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks. MIN 6 X1 + 7.5 X2 + 10 X3 SUBJECT TO 2) 25 X1 + 35 X2 + 30 X3 >= 2400 3) 2 X1 + 4 X2 + 8 X3 >= 400 END LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 612.50000   NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED:    <div style=padding-top: 35px>
سؤال
Use the following Management Scientist output to answer the questions.
MIN
4X1+5X2+6X3
S.T.
1) X1+X2+X3<85
2) 3X1+4X2+2X3>280
3) 2X1+4X2+4X3>320
Objective Function Value = 400.000  Variable  Value  Reduced Cost  X1 0.0001.500 X2 80.0000.000 X3 0.0001.000\begin{array} { c r c } \text { Variable } & \text { Value } & \text { Reduced Cost } \\\text { X1 } & 0.000 & 1.500 \\\text { X2 } & 80.000 & 0.000 \\\text { X3 } & 0.000 & 1.000\end{array}  Constraint  Slack/Surplus  Dual Frice 15.0000.000240.0000.00030.0001.250\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Frice } \\ 1 & 5.000 & 0.000 \\ 2 & 40.000 & 0.000 \\ 3 & 0.000 & - 1.250 \end{array}
OBJECTIVE COEFFICIENT RANGES
 Variable  Lower Limit  Current Value  Upper Limit X12.5004.000 No Upper Limit X20.0005.0006.000X35.0006.000 No Upper Limit \begin{array}{lllc}\text { Variable }&\text { Lower Limit } & \text { Current Value } & \text { Upper Limit }\\\hline\mathrm{X} 1 & 2.500 & 4.000 & \text { No Upper Limit } \\\mathrm{X} 2 & 0.000 & 5.000 & 6.000 \\\mathrm{X} 3 & 5.000 & 6.000 & \text { No Upper Limit }\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }
 Constraint  Lower Limit  Current Value  Upper Limit 180.00085.000 No Upper Limit 2 No Lower Limit 280.000320.0003280.000320.000340.000\begin{array}{cccc}\text { Constraint }&\text { Lower Limit } & \text { Current Value } & \text { Upper Limit }\\\hline1 & 80.000 & 85.000 & \text { No Upper Limit } \\2 & \text { No Lower Limit } & 280.000 & 320.000 \\3 & 280.000 & 320.000 & 340.000\end{array}
a.What is the optimal solution, and what is the value of the profit contribution?
b.Which constraints are binding?
c.What are the dual prices for each resource? Interpret.
d.Compute and interpret the ranges of optimality.
e.Compute and interpret the ranges of feasibility.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/47
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 3: Linear Programming: Sensitivity Analysis and Interpretation of Solution
1
When the cost of a resource is sunk, then the dual price can be interpreted as the

A)minimum amount the firm should be willing to pay for one additional unit of the resource.
B)maximum amount the firm should be willing to pay for one additional unit of the resource.
C)minimum amount the firm should be willing to pay for multiple additional units of the resource.
D)maximum amount the firm should be willing to pay for multiple additional units of the resource.
B
2
Output from a computer package is precise and answers should never be rounded.
False
3
A section of output from The Management Scientist is shown here.  Constraint 2\frac { \text { Constraint } } { 2 } Lower Limit 240\frac { \text { Lower Limit } } { 240 } Current Value 300\frac { \text { Current Value } } { 300 } Upper Limit 420\frac { \text { Upper Limit } } { 420 } What will happen if the right-hand side for constraint 2 increases by 200?

A)Nothing.The values of the decision variables, the dual prices, and the objective function will all remain the same.
B)The value of the objective function will change, but the values of the decision variables and the dual prices will remain the same.
C)The same decision variables will be positive, but their values, the objective function value, and the dual prices will change.
D)The problem will need to be resolved to find the new optimal solution and dual price.
The problem will need to be resolved to find the new optimal solution and dual price.
4
If the range of feasibility indicates that the original amount of a resource, which was 20, can increase by 5, then the amount of the resource can increase to 25.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
5
An objective function reflects the relevant cost of labor hours used in production rather than treating them as a sunk cost. The correct interpretation of the dual price associated with the labor hours constraint is

A)the maximum premium (say for overtime) over the normal price that the company would be willing to pay.
B)the upper limit on the total hourly wage the company would pay.
C)the reduction in hours that could be sustained before the solution would change.
D)the number of hours by which the right-hand side can change before there is a change in the solution point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
6
The amount by which an objective function coefficient would have to improve before it would be possible for the corresponding variable to assume a positive value in the optimal solution is called the

A)reduced cost.
B)relevant cost.
C)sunk cost.
D)dual price.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
7
A constraint with a positive slack value

A)will have a positive dual price.
B)will have a negative dual price.
C)will have a dual price of zero.
D)has no restrictions for its dual price.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
8
Sensitivity analysis information in computer output is based on the assumption of

A)no coefficient change.
B)one coefficient change.
C)two coefficient change.
D)all coefficients change.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
9
If a decision variable is not positive in the optimal solution, its reduced cost is

A)what its objective function value would need to be before it could become positive.
B)the amount its objective function value would need to improve before it could become positive.
C)zero.
D)its dual price.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
10
The amount by which an objective function coefficient can change before a different set of values for the decision variables becomes optimal is the

A)optimal solution.
B)dual solution.
C)range of optimality.
D)range of feasibility.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
11
The range of feasibility measures

A)the right-hand side values for which the objective function value will not change.
B)the right-hand side values for which the values of the decision variables will not change.
C)the right-hand side values for which the dual prices will not change.
D)each of the above is true.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
12
The amount that the objective function coefficient of a decision variable would have to improve before that variable would have a positive value in the solution is the

A)dual price.
B)surplus variable.
C)reduced cost.
D)upper limit.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
13
When the right-hand sides of two constraints are each increased by one unit, the objective function value will be adjusted by the sum of the constraints' dual prices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
14
The 100% Rule compares

A)proposed changes to allowed changes.
B)new values to original values.
C)objective function changes to right-hand side changes.
D)dual prices to reduced costs.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
15
The reduced cost for a positive decision variable is 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
16
The dual price measures, per unit increase in the right hand side,

A)the increase in the value of the optimal solution.
B)the decrease in the value of the optimal solution.
C)the improvement in the value of the optimal solution.
D)the change in the value of the optimal solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
17
To solve a linear programming problem with thousands of variables and constraints

A)a personal computer can be used.
B)a mainframe computer is required.
C)the problem must be partitioned into subparts.
D)unique software would need to be developed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
18
Which of the following is not a question answered by sensitivity analysis?

A)If the right-hand side value of a constraint changes, will the objective function value change?
B)Over what range can a constraint's right-hand side value without the constraint's dual price possibly changing?
C)By how much will the objective function value change if the right-hand side value of a constraint changes beyond the range of feasibility?
D)By how much will the objective function value change if a decision variable's coefficient in the objective function changes within the range of optimality?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
19
A section of output from The Management Scientist is shown here.  Variable 1 Lower Limit 60 Current Value 100 Upper Limit 120\begin{array} { c c c c } \frac { \text { Variable } } { 1 } & \frac { \text { Lower Limit } } { 60 } & \frac { \text { Current Value } } { 100 } & \frac { \text { Upper Limit } } { 120 }\end{array} What will happen to the solution if the objective function coefficient for variable 1 decreases by 20?

A)Nothing.The values of the decision variables, the dual prices, and the objective function will all remain the same.
B)The value of the objective function will change, but the values of the decision variables and the dual prices will remain the same.
C)The same decision variables will be positive, but their values, the objective function value, and the dual prices will change.
D)The problem will need to be resolved to find the new optimal solution and dual price.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
20
A negative dual price for a constraint in a minimization problem means

A)as the right-hand side increases, the objective function value will increase.
B)as the right-hand side decreases, the objective function value will increase.
C)as the right-hand side increases, the objective function value will decrease.
D)as the right-hand side decreases, the objective function value will decrease.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
21
Describe each of the sections of output that come from The Management Scientist and how you would use each.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
22
The dual price associated with a constraint is the improvement in the value of the solution per unit decrease in the right-hand side of the constraint.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
23
The binding constraints for this problem are the first and second.
Min
x1 + 2x2
s.t.
x1 + x2 \ge 300
2x1 + x2 \ge 400
2x1 + 5x2 \le 750
x1 , x2 \ge 0
a.Keeping c2 fixed at 2, over what range can c1 vary before there is a change in the optimal solution point?
b.Keeping c1 fixed at 1, over what range can c2 vary before there is a change in the optimal solution point?
c.If the objective function becomes Min 1.5x1 + 2x2, what will be the optimal values of x1, x2, and the objective function?
d.If the objective function becomes Min 7x1 + 6x2, what constraints will be binding?
e.Find the dual price for each constraint in the original problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
24
For a minimization problem, a positive dual price indicates the value of the objective function will increase.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
25
In a linear programming problem, the binding constraints for the optimal solution are
5X + 3Y \le 30
2X + 5Y \le 20
a.Fill in the blanks in the following sentence:
As long as the slope of the objective function stays between _______ and _______, the current optimal solution point will remain optimal.
b.Which of these objective functions will lead to the same optimal solution?
1) 2X + 1Y 2) 7X + 8Y 3) 80X + 60Y 4) 25X + 35Y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
26
Decision variables must be clearly defined before constraints can be written.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
27
Decreasing the objective function coefficient of a variable to its lower limit will create a revised problem that is unbounded.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
28
Explain the two interpretations of dual prices based on the accounting assumptions made in calculating the objective function coefficients.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
29
How would sensitivity analysis of a linear program be undertaken if one wishes to consider simultaneous changes for both the right-hand side values and objective function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
30
The dual price for a percentage constraint provides a direct answer to questions about the effect of increases or decreases in that percentage.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
31
How is sensitivity analysis used in linear programming? Given an example of what type of questions that can be answered.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
32
If the optimal value of a decision variable is zero and its reduced cost is zero, this indicates that alternative optimal solutions exist.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
33
There is a dual price for every decision variable in a model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
34
A negative dual price indicates that increasing the right-hand side of the associated constraint would be detrimental to the objective.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
35
The amount of a sunk cost will vary depending on the values of the decision variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
36
For any constraint, either its slack/surplus value must be zero or its dual price must be zero.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
37
The 100% Rule does not imply that the optimal solution will necessarily change if the percentage exceeds 100%.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
38
The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2.
Max
2x1 + x2
s.t.
4x1 + 1x2 \le 400
4x1 + 3x2 \le 600
1x1 + 2x2 \le 300
x1 , x2 \ge 0
a.Over what range can the coefficient of x1 vary before the current solution is no longer optimal?
b.Over what range can the coefficient of x2 vary before the current solution is no longer optimal?
c.Compute the dual prices for the three constraints.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
39
Explain the connection between reduced costs and the range of optimality, and between dual prices and the range of feasibility.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
40
How can the interpretation of dual prices help provide an economic justification for new technology?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
41
Use the following Management Scientist output to answer the questions.
LINEAR PROGRAMMING PROBLEM
MAX
31X1+35X2+32X3
S.T.
1) 3X1+5X2+2X3>90
2) 6X1+7X2+8X3<150
3) 5X1+3X2+3X3<120
OPTIMAL SOLUTION
Objective Function Value = 763.333 Use the following Management Scientist output to answer the questions. LINEAR PROGRAMMING PROBLEM MAX 31X1+35X2+32X3 S.T. 1) 3X1+5X2+2X3>90 2) 6X1+7X2+8X3<150 3) 5X1+3X2+3X3<120 OPTIMAL SOLUTION Objective Function Value = 763.333     a.Give the solution to the problem. b.Which constraints are binding? c.What would happen if the coefficient of x<sub>1</sub> increased by 3? d.What would happen if the right-hand side of constraint 1 increased by 10? Use the following Management Scientist output to answer the questions. LINEAR PROGRAMMING PROBLEM MAX 31X1+35X2+32X3 S.T. 1) 3X1+5X2+2X3>90 2) 6X1+7X2+8X3<150 3) 5X1+3X2+3X3<120 OPTIMAL SOLUTION Objective Function Value = 763.333     a.Give the solution to the problem. b.Which constraints are binding? c.What would happen if the coefficient of x<sub>1</sub> increased by 3? d.What would happen if the right-hand side of constraint 1 increased by 10?
a.Give the solution to the problem.
b.Which constraints are binding?
c.What would happen if the coefficient of x1 increased by 3?
d.What would happen if the right-hand side of constraint 1 increased by 10?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
42
Portions of a Management Scientist output are shown below. Use what you know about the solution of linear programs to fill in the ten blanks.
LINEAR PROGRAMMING PROBLEM
MAX
12X1+9X2+7X3
S.T.
1) 3X1+5X2+4X3<150
2) 2X1+1X2+1X3<64
3) 1X1+2X2+1X3<80
4) 2X1+4X2+3X3>116
OPTIMAL SOLUTION
Objective Function Value = 336.000  Variable  Value  Reduced Cost  X1 0.000 X2 24.000 X3 3.500\begin{array} { c c c } \text { Variable } & \text { Value } & \text { Reduced Cost } \\\text { X1 } &- & 0.000 \\\text { X2 } &24.000&- \\\text { X3 } &- &3.500 \\\hline\end{array}  Constraint  Slack/Surplus  Dual Price 10.00015.00020.00030.00040.000\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Price } \\\hline 1 & 0.000 & 15.000 \\2 & --& 0.000 \\3 & --& 0.000 \\4 & 0.000 &-- \\\hline\end{array}  OBJECTIVE COEFFICIENT RANGES \text { OBJECTIVE COEFFICIENT RANGES }
 Variable  Lower Limit  Current Value  Upper Limit X15.40012.000 No Upper Limit X22.0009.00020.000X3 No Lower Limit 7.00010.500\begin{array}{cccc}\text { Variable } & \text { Lower Limit } & \text { Current Value } & \text { Upper Limit }\\\hline\mathrm{X} 1 & 5.400 & 12.000 & \text { No Upper Limit } \\\mathrm{X} 2 & 2.000 & 9.000 & 20.000 \\\mathrm{X} 3 & \text { No Lower Limit } & 7.000 & 10.500\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }
 Constraint  Lower Limit  Current Value  Upper Limit 1145.000150.000156.667264.000380.0004110.286116.000120.000\begin{array}{lllr}\text { Constraint } & \text { Lower Limit }& \text { Current Value } & \text { Upper Limit }\\\hline1 & 145.000 & 150.000 & 156.667 \\2 &- &- & 64.000 \\3 & -&-& 80.000 \\4 &110.286 &116.000& 120.000\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
43
Excel's Solver tool has been used in the spreadsheet below to solve a linear programming problem with a maximization objective function and all \le constraints. Input Section
 Objective Function Coefficients XY46\begin{array}{l}\text { Objective Function Coefficients }\\ X & Y \\ 4 & 6\end{array}

 Constraints  Avail. #13560#23248#31120\begin{array}{|c|c|c|c|}\hline \text { Constraints } & & & \text { Avail. } \\\hline \# 1 & 3 & 5 & 60 \\\hline \# 2 & 3 & 2 & 48 \\\hline \# 3 & 1 & 1 & 20 \\\hline\end{array}
 Output Section \text { Output Section }
 Variables 13.3333334 Profit 53.3333332477.333333\begin{array}{|l|c|c|c|}\hline \text { Variables } & 13.333333 & 4 & \\\hline \text { Profit } & 53.333333 & 24 & 77.333333 \\\hline\end{array}

 Constraint  Usage  Slack #1601.789E11#2482.69E11#317.3333332.6666667\begin{array}{|c|c|c|}\hline \text { Constraint } & \text { Usage } & \text { Slack } \\\hline \# 1 & 60 & 1.789 \mathrm{E}-11 \\\hline \# 2 & 48 & -2.69 \mathrm{E}-11 \\\hline \# 3 & 17.333333 & 2.6666667 \\\hline\end{array}
a.Give the original linear programming problem.
b.Give the complete optimal solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
44
Excel's Solver tool has been used in the spreadsheet below to solve a linear programming problem with a minimization objective function and all \ge constraints.  Input Section \text { Input Section }
 Objective Function Coefficients XY54\begin{array}{l}\text { Objective Function Coefficients }\\\begin{array}{c|c}\hline X & Y \\\hline 5 & 4\end{array}\end{array}

 Constraints  Req’d. #14360#22550#398144\begin{array}{|c|c|c|c|}\hline \text { Constraints } & & & \text { Req'd. } \\\hline \# 1 & 4 & 3 & 60 \\\hline \# 2 & 2 & 5 & 50 \\\hline \# 3 & 9 & 8 & 144 \\\hline\end{array}
 Output Section \text { Output Section }
 Variables 9.67.2 Profit 4828.876.8\begin{array}{|l|c|c|c|}\hline \text { Variables } & 9.6 & 7.2 & \\\hline \text { Profit } & 48 & 28.8 & 76.8 \\\hline\end{array}

 Constraint  Usage  Slack #1601.35E11#255.25.2#31442.62E11\begin{array}{|c|c|c|}\hline \text { Constraint } & \text { Usage } & \text { Slack } \\\hline \# 1 & 60 & 1.35 \mathrm{E}-11 \\\hline \# 2 & 55.2 & -5.2 \\\hline \# 3 & 144 & -2.62 \mathrm{E}-11 \\\hline\end{array}
a. Give the original linear programming problem.
b. Give the complete optimal solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
45
LINDO output is given for the following linear programming problem.
MIN
12 X1 + 10 X2 + 9 X3
SUBJECT TO
2) 5 X1 + 8 X2 + 5 X3 > = 60
3) 8 X1 + 10 X2 + 5 X3 > = 80
END
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1) 80.000000  VARIABLE  VALUE  REDUCED COST  X1 .0000004.000000 X2 8.000000.000000 X3 .0000004.000000\begin{array} { c c c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\text { X1 } & .000000 & 4.000000 \\\text { X2 } & 8.000000 & .000000 \\\text { X3 } & .000000 & 4.000000\end{array}  ROW  SLACK OR SURPLUS  DUAL PRICE  2) 4.000000.0000003).0000001.000000\begin{array}{rrr}\text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE }\\\text { 2) } & 4.000000 & .000000 \\3) & .000000 & -1.000000\end{array} NO. ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:  OBJ. COEFFICIENT RANGES  CURRENT  ALLOWABLE  ALLOWABLE  VARIABLE  COEFFICIENT  INCREASE  DECREASE  X1 12.000000 INFINITY 4.000000 X2 10.0000005.00000010.000000 X3 9.000000 INFINITY 4.000000\begin{array} { c c c c } && { \text { OBJ. COEFFICIENT RANGES } } \\ & \text { CURRENT } & \text { ALLOWABLE } & \text { ALLOWABLE } \\\text { VARIABLE }&\text { COEFFICIENT }& \text { INCREASE } & \text { DECREASE } \\\hline \text { X1 } & 12.000000 & \text { INFINITY } & 4.000000 \\\text { X2 } & 10.000000 & 5.000000 & 10.000000 \\\text { X3 } & 9.000000 &\text { INFINITY } & 4.000000\\\end{array}  RIGHT HAND SIDE RANGES  CURRENT  ALLOWABLE  ALLOWABLE  ROW  RHS  INCREASE  DECREASE 260.0000004.000000 INFINITY 380.000000 INFINITY 5.000000\begin{array}{cccc}&&&\text { RIGHT HAND SIDE RANGES }\\&\text { CURRENT } & \text { ALLOWABLE }& \text { ALLOWABLE }\\\text { ROW } & \text { RHS } & \text { INCREASE } & \text { DECREASE } \\\hline2 & 60.000000 & 4.000000 & \text { INFINITY } \\3 & 80.000000 & \text { INFINITY } & 5.000000\end{array}
a.What is the solution to the problem?
b.Which constraints are binding?
c.Interpret the reduced cost for x1.
d.Interpret the dual price for constraint 2.
e.What would happen if the cost of x1 dropped to 10 and the cost of x2 increased to 12?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
46
Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks.
MIN
6 X1 + 7.5 X2 + 10 X3
SUBJECT TO
2) 25 X1 + 35 X2 + 30 X3 >= 2400
3) 2 X1 + 4 X2 + 8 X3 >= 400
END
LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE
1) 612.50000 Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks. MIN 6 X1 + 7.5 X2 + 10 X3 SUBJECT TO 2) 25 X1 + 35 X2 + 30 X3 >= 2400 3) 2 X1 + 4 X2 + 8 X3 >= 400 END LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 612.50000   NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED:    NO. ITERATIONS= 2
RANGES IN WHICH THE BASIS IS UNCHANGED: Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks. MIN 6 X1 + 7.5 X2 + 10 X3 SUBJECT TO 2) 25 X1 + 35 X2 + 30 X3 >= 2400 3) 2 X1 + 4 X2 + 8 X3 >= 400 END LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 612.50000   NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED:    Eight of the entries have been deleted from the LINDO output that follows. Use what you know about linear programming to find values for the blanks. MIN 6 X1 + 7.5 X2 + 10 X3 SUBJECT TO 2) 25 X1 + 35 X2 + 30 X3 >= 2400 3) 2 X1 + 4 X2 + 8 X3 >= 400 END LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) 612.50000   NO. ITERATIONS= 2 RANGES IN WHICH THE BASIS IS UNCHANGED:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
47
Use the following Management Scientist output to answer the questions.
MIN
4X1+5X2+6X3
S.T.
1) X1+X2+X3<85
2) 3X1+4X2+2X3>280
3) 2X1+4X2+4X3>320
Objective Function Value = 400.000  Variable  Value  Reduced Cost  X1 0.0001.500 X2 80.0000.000 X3 0.0001.000\begin{array} { c r c } \text { Variable } & \text { Value } & \text { Reduced Cost } \\\text { X1 } & 0.000 & 1.500 \\\text { X2 } & 80.000 & 0.000 \\\text { X3 } & 0.000 & 1.000\end{array}  Constraint  Slack/Surplus  Dual Frice 15.0000.000240.0000.00030.0001.250\begin{array} { c c c } \text { Constraint } & \text { Slack/Surplus } & \text { Dual Frice } \\ 1 & 5.000 & 0.000 \\ 2 & 40.000 & 0.000 \\ 3 & 0.000 & - 1.250 \end{array}
OBJECTIVE COEFFICIENT RANGES
 Variable  Lower Limit  Current Value  Upper Limit X12.5004.000 No Upper Limit X20.0005.0006.000X35.0006.000 No Upper Limit \begin{array}{lllc}\text { Variable }&\text { Lower Limit } & \text { Current Value } & \text { Upper Limit }\\\hline\mathrm{X} 1 & 2.500 & 4.000 & \text { No Upper Limit } \\\mathrm{X} 2 & 0.000 & 5.000 & 6.000 \\\mathrm{X} 3 & 5.000 & 6.000 & \text { No Upper Limit }\end{array}
 RIGHT HAND SIDE RANGES \text { RIGHT HAND SIDE RANGES }
 Constraint  Lower Limit  Current Value  Upper Limit 180.00085.000 No Upper Limit 2 No Lower Limit 280.000320.0003280.000320.000340.000\begin{array}{cccc}\text { Constraint }&\text { Lower Limit } & \text { Current Value } & \text { Upper Limit }\\\hline1 & 80.000 & 85.000 & \text { No Upper Limit } \\2 & \text { No Lower Limit } & 280.000 & 320.000 \\3 & 280.000 & 320.000 & 340.000\end{array}
a.What is the optimal solution, and what is the value of the profit contribution?
b.Which constraints are binding?
c.What are the dual prices for each resource? Interpret.
d.Compute and interpret the ranges of optimality.
e.Compute and interpret the ranges of feasibility.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 47 في هذه المجموعة.