Deck 5: Security-Market Indexes

ملء الشاشة (f)
exit full mode
سؤال
The low correlations between the U.S. and Japan confirm the benefit of global diversification.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The major U.S. stock indexes are highly correlated.
سؤال
The Dow Jones Industrial Average is a value weighted average.
سؤال
There are no composite series currently available that will measure the performance of all securities (i.e. stocks and bonds) in a given country.
سؤال
To solve comparability problems across countries, global equity indexes with consistent sample selection, weighting and computational procedure have been developed.
سؤال
A two for one stock split causes the divisor in a price-weighted series to decline.
سؤال
The Dow Jones Industrial Average has been criticized for being blue-chip biased.
سؤال
Unlike the Dow Jones Industrial Average, the Nikkei-Dow Jones Average is price weighted.
سؤال
The New York Stock Exchange Index is based on a sample of all of the New York Stock Exchange stocks.
سؤال
The general purpose of a market indicator series is to provide an overall indication of aggregate market changes or movements.
سؤال
A bond market index is easier to create than a stock market index because the universe of bonds is much broader than that of stocks.
سؤال
An equally weighted indicator series is also known as an unweighted indicator series.
سؤال
The NYSE series should have higher rates of return and risk measures than the AMEX and OTC series.
سؤال
A value weighted index automatically adjusts for stock splits.
سؤال
It is easier to construct an indicator series for bonds because of their relatively stable returns pattern.
سؤال
There is a high correlation between the Wilshire 5000 index and the alternative NYSE series (S&P 500 and the NYSE), representing the substantial influence of large NYSE stocks on the Wilshire 5000 index.
سؤال
Bond-market indicator series have been around much longer than stock-market indicator series.
سؤال
An aggregate market index can be used as a benchmark to judge the performance of professional money managers.
سؤال
The correlations among the U.S. investment-grade-bond series were very high because all rates of return for investment-grade bonds over time are impacted by common macroeconomic variables.
سؤال
A price weighted series is disproportionately influenced by larger capitalization companies.
سؤال
A price-weighted index such as the DJIA is a geometric mean of current stock prices.
سؤال
Of the following indices, which includes the most comprehensive list of stocks?

A)New York Exchange Index
B)Standard and Poor's Index
C)American Stock Exchange Index
D)NASDAQ Series Index
E)Wilshire Equity Index
سؤال
An example of a value weighted stock market indicator series is the

A)Dow Jones Industrial Average.
B)Nikkei Dow Jones Average.
C)S & P 500 Index.
D)Value Line Index.
E)Shearson Lehman Hutton Index.
سؤال
The Value Line Composite Average is calculated using the ____ of percentage price changes.

A)arithmetic average
B)harmonic average
C)expected value
D)geometric average
E)logarithmic average
سؤال
Studies of correlations among monthly equity price index returns have found:

A)Low correlations between various U.S. equity indexes
B)High correlations between various U.S. equity indexes
C)High correlations between U.S. and non-U.S. equity indexes
D)Negative correlations between various U.S. equity indexes
E)None of the above
سؤال
In a price weighted average stock market indicator series, the following type of stock has the greatest influence

A)The stock with the highest price
B)The stock with the lowest price
C)The stock with the highest market capitalization
D)The stock with the lowest market capitalization
E)The stock with the highest P/E ratio
سؤال
The Standard & Poor's International Index consists of 3 international, 19 national, and 38 international industry indexes.
سؤال
A properly selected sample for use in constructing a market indicator series will consider the sample's source, size and

A)Breadth.
B)Average beta.
C)Value.
D)Variability.
E)Dividend record.
سؤال
The most common way to test a portfolio manager's performance is to compare the portfolio return to a benchmark.
سؤال
In a value weighted index

A)Exchange rate fluctuations have a large impact.
B)Exchange rate fluctuations have a small impact.
C)Large companies have a disproportionate influence on the index.
D)Small companies have an exaggerated effect on the index.
E)None of the above
سؤال
Which of the following are factors that make it difficult to create and maintain a bond index?

A)The universe of bonds is broader than stocks.
B)The universe of bonds is constantly changing due to new issues, bond maturities, calls, and bond sinking funds.
C)It is difficult to derive value, up-to-date prices.
D)Choices a and c
E)All of the above
سؤال
The Morgan Stanley group index for Europe, Australia, and the Far East (EAFE) is a price weighted index.
سؤال
Which of the following is not a global equity indicator series?

A)Morgan Stanley Capital International Indexes
B)Dow Jones World Stock Index
C)FT/S & P-Actuaries World Indexes
D)Merrill Lynch-Wilshire World Indexes
E)None of the above (that is, each is a global equity indicator series)
سؤال
What effect does a stock substitution or stock split have on a price-weighted series?

A)Index remains the same, divisor will increase/decrease.
B)Divisor remains the same, index will increase/decrease.
C)Index and divisor will both remain the same.
D)Index and divisor will both reflect the changes (immediately).
E)Not enough information is provided.
سؤال
Which of the following is not a U.S. investment-grade bond index?

A)Merrill Lynch
B)Ryan Treasury
C)Salomon Brothers
D)Lehman Brothers
E)None of the above (that is, all are U.S. investment-grade bond indexes)
سؤال
The Standard & Poor's 500 index is an example of a value weighted index.
سؤال
Which of the following is not a value-weighted series?

A)NASDAQ Industrial Index
B)Dow Jones Industrial Average
C)Wilshire 5000 Equity Index
D)American Stock Exchange Series
E)NASDAQ Composite Index
سؤال
Which of the following is true of the various market index series?

A)A low correlation exists between the U.S. indexes and those of Japan.
B)The NYSE series have higher rates of return and risk measures than the AMEX and OTC series.
C)A low correlation exists between alternative series that include almost all NYSE stocks.
D)A low correlation exists between alternative bond series.
E)None of the above
سؤال
The Ryan Treasury Index is an example of a

A)Bond market indicator series.
B)Stock market indicator series.
C)Composite security market series.
D)World market series.
E)Commodity market series.
سؤال
Which of the following is not a use of security market indicator series?

A)To use as a benchmark of individual portfolio performance
B)To develop an index portfolio
C)To determine factors influencing aggregate security price movements
D)To use in the measurement of systematic risk
E)To use in the measurement of diversifiable risk
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. What is the divisor at the beginning of January 14th?

A)3.0
B)2.5
C)2.2734
D)1.9375
E)None of the above
سؤال
Exhibit 5.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Companies  Number of shares  outstanding  Closing Prices  Day T  (per share)  Day T+112,000$30.00$25.0027,00055.0060.0035,00020.0025.0044,00040.0045.00\begin{array} { c c c c } \text { Companies } & \begin{array} { c } \text { Number of shares } \\\text { outstanding }\end{array} & \begin{array} { c } \text { Closing Prices } \\\text { Day T }\end{array} & \begin{array} { c } \text { (per share) } \\\text { Day } \mathbf { T } + \mathbf { 1 }\end{array} \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4,000 & 40.00 & 45.00\end{array}

-Refer to Exhibit 5.1. Assume that a stock price-weighted indicator consisted of the four issues with their prices. What are the values of the stock indicator for Day T and T + 1 and what is the percentage change?

A)36.25, 38.75, 6.9%
B)38.75, 36.25, -6.9%
C)100, 106.9, 6.9%
D)107.48, 106.33, 1.15%
E)None of the above
سؤال
A style index created to track ethical funds is known as:

A)Green index
B)SRI index
C)EAFE index
D)Freedom index
E)Ethical index
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for January 16th if the initial index value is 100.

A)123.07
B)100.00
C)102.31
D)111.54
E)None of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighted average for January 14th.

A)32
B)30
C)36.13
D)34
E)None of the above
سؤال
The following are examples of Style Indexes

A)Small-cap growth
B)Mid-cap value
C)Small-cap value
D)All of the above
E)None of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighted average for January 13th.

A)32
B)30
C)36.13
D)34
E)None of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. What is the divisor at the beginning of January 16th?

A)1.9375
B)3.0
C)2.5
D)2.2734
E)None of the above
سؤال
Which index is created by first deriving the initial total market value of all stocks used in the index?

A)Equally-weighted index.
B)Price-weighted index.
C)Unweighted index.
D)Value-weighted index.
E)All of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for January 15th if the initial index value is 100.

A)102.31
B)100
C)123.07
D)111.54
E)None of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for Jan. 14th if the initial index value is 100.

A)100
B)102.31
C)123.07
D)111.54
E)None of the above
سؤال
Studies of correlations among monthly U.S. bond price index returns have found:

A)Low correlations between investment grade bonds and high yield bonds
B)High correlations between investment grade bonds and high yield bonds
C)Low correlations between various investment grade bond indexes
D)Negative correlations between investment grade bonds and high yield bonds
E)None of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for Jan. 13th if the initial index value is 100.

A)111.54
B)100
C)102.31
D)123.07
E)None of the above
سؤال
The actual index movements are typically based on the arithmetic mean of the percent changes in price or value for the stocks in the

A)Price-weighted index.
B)Unweighted index.
C)Value-weighted index.
D)All of the above
E)None of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighted average for January 16th.

A)30
B)32
C)34
D)36.13
E)None of the above
سؤال
Exhibit 5.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Companies  Number of shares  outstanding  Closing Prices  Day T  (per share)  Day T+112,000$30.00$25.0027,00055.0060.0035,00020.0025.0044,00040.0045.00\begin{array} { c c c c } \text { Companies } & \begin{array} { c } \text { Number of shares } \\\text { outstanding }\end{array} & \begin{array} { c } \text { Closing Prices } \\\text { Day T }\end{array} & \begin{array} { c } \text { (per share) } \\\text { Day } \mathbf { T } + \mathbf { 1 }\end{array} \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4,000 & 40.00 & 45.00\end{array}

-Refer to Exhibit 5.1. For a value-weighted series, assume that Day T is the base period and the base value is 100. What is the new index value for Day T + 1 and what is the percentage change in the index from Day T?

A)106.33, 6.33%
B)107.48, 7.48%
C)109.93, 9.93%
D)108.7, 8.7%
E)None of the above
سؤال
Which of the fundamental factors was not used in the Fundamental Index created by Research Affiliates, Inc.?

A)Sales
B)Profits (cash flow)
C)Leverage (debt/equity)
D)Net assets (book value)
E)Dividends
سؤال
Exhibit 5.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Companies  Number of shares  outstanding  Closing Prices  Day T  (per share)  Day T+112,000$30.00$25.0027,00055.0060.0035,00020.0025.0044,00040.0045.00\begin{array} { c c c c } \text { Companies } & \begin{array} { c } \text { Number of shares } \\\text { outstanding }\end{array} & \begin{array} { c } \text { Closing Prices } \\\text { Day T }\end{array} & \begin{array} { c } \text { (per share) } \\\text { Day } \mathbf { T } + \mathbf { 1 }\end{array} \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4,000 & 40.00 & 45.00\end{array}

-Refer to Exhibit 5.1. Compute an unweighted price indicator series, using geometric means. What is the percentage change in the index from Day T to Day T+1? Assume a base index value of 100 on Day T.

A)5.35%
B)7.48%
C)9.93%
D)6.33%
E)None of the above
سؤال
Index movements are influenced by differential prices of the components in a(n)

A)Equally-weighted index.
B)Price-weighted index.
C)Unweighted index.
D)Value-weighted index.
E)All of the above
سؤال
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighed average for January 15th.

A)30
B)36.13
C)32
D)34
E)None of the above
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the unweighted index for Dec 31, 2003, prior to the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)100.0
B)200.0
C)150.0
D)120.0
E)175.0
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the percentage return in the price weighted series for the period Dec 31, 2000 to Dec 31, 2004.

A)12.68%
B)20.00%
C)21.76%
D)33.33%
E)40.00%
سؤال
Exhibit 5.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for G B Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for G B Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3. Calculate the average annual rate of change for GB Industries for the 5 year period using the arithmetic mean.

A)0.098%
B)9.80%
C)8.50%
D)8.00%
E)89.00%
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the value weighted index for Dec 31, 2004. Assume a base index value of 100. The base year is Dec 31, 2003.

A)121.25
B)100.0
C)81.69
D)72.5
E)120.0
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the percentage return in the value weighted index for the period Dec 31, 2003 to Dec 31, 2004.

A)12.68%
B)20.00%
C)21.76%
D)33.33%
E)40.00%
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the price weighted series for Dec 31, 2003, prior to the splits.

A)81.69
B)100.0
C)72.5
D)121.25
E)119.25
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the unweighted index (geometric mean) for Dec 31, 2004. Assume a base index value of 100. The base year is Dec 31, 2003.

A)119.25
B)121.25
C)151.25
D)95.25
E)100.25
سؤال
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. Compute the arithmetic mean of the price change of Stocks Q, R, and S from days T to T + 1.

A)8.65%
B)10.14%
C)15.69%
D)30.42%
E)47.08%
سؤال
Exhibit 5.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for Stock Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for Stock Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4. Calculate the average annual rate of change for this index for the 5 year period using the geometric mean.

A)0.09%
B)1.99%
C)3.99%
D)4.50%
E)4.67%
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the price weighted series for Dec 31, 2003, after the splits.

A)72.5
B)100.0
C)119.25
D)121.25
E)81.69
سؤال
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. Calculate a price weighted average for Day T.

A)46.20
B)53.33
C)54.12
D)92.39
E)108.23
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the value weighted index for Dec 31, 2003, after the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)72.5
B)81.69
C)100.0
D)120.0
E)121.25
سؤال
Exhibit 5.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for G B Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for G B Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3. Calculate the average annual rate of change for GB Industries for the 5 year period using the geometric mean.

A)9.7800%
B)0.0978%
C)9.0700%
D)0.0970%
E)3.6400%
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the value weighted index for Dec 31, 2003, prior to the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)120.0
B)81.69
C)72.5
D)100.0
E)121.25
سؤال
Exhibit 5.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for Stock Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for Stock Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4. Calculate the average annual rate of change for this index for the 5 year period using the arithmetic mean.

A)0.28%
B)1.28%
C)2.80%
D)3.58%
E)6.38%
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the price weighted series for Dec 31, 2004.

A)121.25
B)119.25
C)100.0
D)72.5
E)81.69
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the unweighted index for Dec 31, 2003, after the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)110.0
B)200.0
C)100.0
D)120.0
E)150.0
سؤال
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the percentage return in the unweighted index (geometric mean) for the period Dec 31, 2003 to Dec 31, 2004. Assume a base index value of 100. Base year is Dec 31, 2003.

A)19.25%
B)21.25%
C)51.25%
D)5.25%
E)100.25%
سؤال
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. Calculate a value weighted average for Day T + 1. Assume a base index value of 100 on Day T.

A)46.20
B)53.33
C)54.12
D)92.39
E)108.23
سؤال
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. If an equal-weighted index is constructed on Day T with $10,000 in each stock, what is the percentage change in wealth for this index on Day T + 1? Assume a base index value of 100 on Day T.

A)8.65%
B)10.14%
C)15.69%
D)30.42%
E)47.08%
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/84
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 5: Security-Market Indexes
1
The low correlations between the U.S. and Japan confirm the benefit of global diversification.
True
2
The major U.S. stock indexes are highly correlated.
True
3
The Dow Jones Industrial Average is a value weighted average.
False
4
There are no composite series currently available that will measure the performance of all securities (i.e. stocks and bonds) in a given country.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
5
To solve comparability problems across countries, global equity indexes with consistent sample selection, weighting and computational procedure have been developed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
6
A two for one stock split causes the divisor in a price-weighted series to decline.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
7
The Dow Jones Industrial Average has been criticized for being blue-chip biased.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
8
Unlike the Dow Jones Industrial Average, the Nikkei-Dow Jones Average is price weighted.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
9
The New York Stock Exchange Index is based on a sample of all of the New York Stock Exchange stocks.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
10
The general purpose of a market indicator series is to provide an overall indication of aggregate market changes or movements.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
11
A bond market index is easier to create than a stock market index because the universe of bonds is much broader than that of stocks.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
12
An equally weighted indicator series is also known as an unweighted indicator series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
13
The NYSE series should have higher rates of return and risk measures than the AMEX and OTC series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
14
A value weighted index automatically adjusts for stock splits.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
15
It is easier to construct an indicator series for bonds because of their relatively stable returns pattern.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
16
There is a high correlation between the Wilshire 5000 index and the alternative NYSE series (S&P 500 and the NYSE), representing the substantial influence of large NYSE stocks on the Wilshire 5000 index.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
17
Bond-market indicator series have been around much longer than stock-market indicator series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
18
An aggregate market index can be used as a benchmark to judge the performance of professional money managers.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
19
The correlations among the U.S. investment-grade-bond series were very high because all rates of return for investment-grade bonds over time are impacted by common macroeconomic variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
20
A price weighted series is disproportionately influenced by larger capitalization companies.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
21
A price-weighted index such as the DJIA is a geometric mean of current stock prices.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
22
Of the following indices, which includes the most comprehensive list of stocks?

A)New York Exchange Index
B)Standard and Poor's Index
C)American Stock Exchange Index
D)NASDAQ Series Index
E)Wilshire Equity Index
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
23
An example of a value weighted stock market indicator series is the

A)Dow Jones Industrial Average.
B)Nikkei Dow Jones Average.
C)S & P 500 Index.
D)Value Line Index.
E)Shearson Lehman Hutton Index.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
24
The Value Line Composite Average is calculated using the ____ of percentage price changes.

A)arithmetic average
B)harmonic average
C)expected value
D)geometric average
E)logarithmic average
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
25
Studies of correlations among monthly equity price index returns have found:

A)Low correlations between various U.S. equity indexes
B)High correlations between various U.S. equity indexes
C)High correlations between U.S. and non-U.S. equity indexes
D)Negative correlations between various U.S. equity indexes
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
26
In a price weighted average stock market indicator series, the following type of stock has the greatest influence

A)The stock with the highest price
B)The stock with the lowest price
C)The stock with the highest market capitalization
D)The stock with the lowest market capitalization
E)The stock with the highest P/E ratio
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
27
The Standard & Poor's International Index consists of 3 international, 19 national, and 38 international industry indexes.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
28
A properly selected sample for use in constructing a market indicator series will consider the sample's source, size and

A)Breadth.
B)Average beta.
C)Value.
D)Variability.
E)Dividend record.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
29
The most common way to test a portfolio manager's performance is to compare the portfolio return to a benchmark.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
30
In a value weighted index

A)Exchange rate fluctuations have a large impact.
B)Exchange rate fluctuations have a small impact.
C)Large companies have a disproportionate influence on the index.
D)Small companies have an exaggerated effect on the index.
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
31
Which of the following are factors that make it difficult to create and maintain a bond index?

A)The universe of bonds is broader than stocks.
B)The universe of bonds is constantly changing due to new issues, bond maturities, calls, and bond sinking funds.
C)It is difficult to derive value, up-to-date prices.
D)Choices a and c
E)All of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
32
The Morgan Stanley group index for Europe, Australia, and the Far East (EAFE) is a price weighted index.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
33
Which of the following is not a global equity indicator series?

A)Morgan Stanley Capital International Indexes
B)Dow Jones World Stock Index
C)FT/S & P-Actuaries World Indexes
D)Merrill Lynch-Wilshire World Indexes
E)None of the above (that is, each is a global equity indicator series)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
34
What effect does a stock substitution or stock split have on a price-weighted series?

A)Index remains the same, divisor will increase/decrease.
B)Divisor remains the same, index will increase/decrease.
C)Index and divisor will both remain the same.
D)Index and divisor will both reflect the changes (immediately).
E)Not enough information is provided.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
35
Which of the following is not a U.S. investment-grade bond index?

A)Merrill Lynch
B)Ryan Treasury
C)Salomon Brothers
D)Lehman Brothers
E)None of the above (that is, all are U.S. investment-grade bond indexes)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
36
The Standard & Poor's 500 index is an example of a value weighted index.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
37
Which of the following is not a value-weighted series?

A)NASDAQ Industrial Index
B)Dow Jones Industrial Average
C)Wilshire 5000 Equity Index
D)American Stock Exchange Series
E)NASDAQ Composite Index
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
38
Which of the following is true of the various market index series?

A)A low correlation exists between the U.S. indexes and those of Japan.
B)The NYSE series have higher rates of return and risk measures than the AMEX and OTC series.
C)A low correlation exists between alternative series that include almost all NYSE stocks.
D)A low correlation exists between alternative bond series.
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
39
The Ryan Treasury Index is an example of a

A)Bond market indicator series.
B)Stock market indicator series.
C)Composite security market series.
D)World market series.
E)Commodity market series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
40
Which of the following is not a use of security market indicator series?

A)To use as a benchmark of individual portfolio performance
B)To develop an index portfolio
C)To determine factors influencing aggregate security price movements
D)To use in the measurement of systematic risk
E)To use in the measurement of diversifiable risk
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
41
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. What is the divisor at the beginning of January 14th?

A)3.0
B)2.5
C)2.2734
D)1.9375
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
42
Exhibit 5.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Companies  Number of shares  outstanding  Closing Prices  Day T  (per share)  Day T+112,000$30.00$25.0027,00055.0060.0035,00020.0025.0044,00040.0045.00\begin{array} { c c c c } \text { Companies } & \begin{array} { c } \text { Number of shares } \\\text { outstanding }\end{array} & \begin{array} { c } \text { Closing Prices } \\\text { Day T }\end{array} & \begin{array} { c } \text { (per share) } \\\text { Day } \mathbf { T } + \mathbf { 1 }\end{array} \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4,000 & 40.00 & 45.00\end{array}

-Refer to Exhibit 5.1. Assume that a stock price-weighted indicator consisted of the four issues with their prices. What are the values of the stock indicator for Day T and T + 1 and what is the percentage change?

A)36.25, 38.75, 6.9%
B)38.75, 36.25, -6.9%
C)100, 106.9, 6.9%
D)107.48, 106.33, 1.15%
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
43
A style index created to track ethical funds is known as:

A)Green index
B)SRI index
C)EAFE index
D)Freedom index
E)Ethical index
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
44
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for January 16th if the initial index value is 100.

A)123.07
B)100.00
C)102.31
D)111.54
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
45
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighted average for January 14th.

A)32
B)30
C)36.13
D)34
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
46
The following are examples of Style Indexes

A)Small-cap growth
B)Mid-cap value
C)Small-cap value
D)All of the above
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
47
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighted average for January 13th.

A)32
B)30
C)36.13
D)34
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
48
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. What is the divisor at the beginning of January 16th?

A)1.9375
B)3.0
C)2.5
D)2.2734
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
49
Which index is created by first deriving the initial total market value of all stocks used in the index?

A)Equally-weighted index.
B)Price-weighted index.
C)Unweighted index.
D)Value-weighted index.
E)All of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
50
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for January 15th if the initial index value is 100.

A)102.31
B)100
C)123.07
D)111.54
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
51
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for Jan. 14th if the initial index value is 100.

A)100
B)102.31
C)123.07
D)111.54
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
52
Studies of correlations among monthly U.S. bond price index returns have found:

A)Low correlations between investment grade bonds and high yield bonds
B)High correlations between investment grade bonds and high yield bonds
C)Low correlations between various investment grade bond indexes
D)Negative correlations between investment grade bonds and high yield bonds
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
53
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a value weighted index for Jan. 13th if the initial index value is 100.

A)111.54
B)100
C)102.31
D)123.07
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
54
The actual index movements are typically based on the arithmetic mean of the percent changes in price or value for the stocks in the

A)Price-weighted index.
B)Unweighted index.
C)Value-weighted index.
D)All of the above
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
55
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighted average for January 16th.

A)30
B)32
C)34
D)36.13
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
56
Exhibit 5.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Companies  Number of shares  outstanding  Closing Prices  Day T  (per share)  Day T+112,000$30.00$25.0027,00055.0060.0035,00020.0025.0044,00040.0045.00\begin{array} { c c c c } \text { Companies } & \begin{array} { c } \text { Number of shares } \\\text { outstanding }\end{array} & \begin{array} { c } \text { Closing Prices } \\\text { Day T }\end{array} & \begin{array} { c } \text { (per share) } \\\text { Day } \mathbf { T } + \mathbf { 1 }\end{array} \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4,000 & 40.00 & 45.00\end{array}

-Refer to Exhibit 5.1. For a value-weighted series, assume that Day T is the base period and the base value is 100. What is the new index value for Day T + 1 and what is the percentage change in the index from Day T?

A)106.33, 6.33%
B)107.48, 7.48%
C)109.93, 9.93%
D)108.7, 8.7%
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
57
Which of the fundamental factors was not used in the Fundamental Index created by Research Affiliates, Inc.?

A)Sales
B)Profits (cash flow)
C)Leverage (debt/equity)
D)Net assets (book value)
E)Dividends
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
58
Exhibit 5.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Companies  Number of shares  outstanding  Closing Prices  Day T  (per share)  Day T+112,000$30.00$25.0027,00055.0060.0035,00020.0025.0044,00040.0045.00\begin{array} { c c c c } \text { Companies } & \begin{array} { c } \text { Number of shares } \\\text { outstanding }\end{array} & \begin{array} { c } \text { Closing Prices } \\\text { Day T }\end{array} & \begin{array} { c } \text { (per share) } \\\text { Day } \mathbf { T } + \mathbf { 1 }\end{array} \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4,000 & 40.00 & 45.00\end{array}

-Refer to Exhibit 5.1. Compute an unweighted price indicator series, using geometric means. What is the percentage change in the index from Day T to Day T+1? Assume a base index value of 100 on Day T.

A)5.35%
B)7.48%
C)9.93%
D)6.33%
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
59
Index movements are influenced by differential prices of the components in a(n)

A)Equally-weighted index.
B)Price-weighted index.
C)Unweighted index.
D)Value-weighted index.
E)All of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
60
Exhibit 5.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lllrlll}&\text { Stock Price } &&&\text { \# Shares }\\&\mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\\hline \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000 * * & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array} *2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2. Calculate a price weighed average for January 15th.

A)30
B)36.13
C)32
D)34
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
61
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the unweighted index for Dec 31, 2003, prior to the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)100.0
B)200.0
C)150.0
D)120.0
E)175.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
62
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the percentage return in the price weighted series for the period Dec 31, 2000 to Dec 31, 2004.

A)12.68%
B)20.00%
C)21.76%
D)33.33%
E)40.00%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
63
Exhibit 5.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for G B Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for G B Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3. Calculate the average annual rate of change for GB Industries for the 5 year period using the arithmetic mean.

A)0.098%
B)9.80%
C)8.50%
D)8.00%
E)89.00%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
64
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the value weighted index for Dec 31, 2004. Assume a base index value of 100. The base year is Dec 31, 2003.

A)121.25
B)100.0
C)81.69
D)72.5
E)120.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
65
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the percentage return in the value weighted index for the period Dec 31, 2003 to Dec 31, 2004.

A)12.68%
B)20.00%
C)21.76%
D)33.33%
E)40.00%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
66
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the price weighted series for Dec 31, 2003, prior to the splits.

A)81.69
B)100.0
C)72.5
D)121.25
E)119.25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
67
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the unweighted index (geometric mean) for Dec 31, 2004. Assume a base index value of 100. The base year is Dec 31, 2003.

A)119.25
B)121.25
C)151.25
D)95.25
E)100.25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
68
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. Compute the arithmetic mean of the price change of Stocks Q, R, and S from days T to T + 1.

A)8.65%
B)10.14%
C)15.69%
D)30.42%
E)47.08%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
69
Exhibit 5.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for Stock Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for Stock Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4. Calculate the average annual rate of change for this index for the 5 year period using the geometric mean.

A)0.09%
B)1.99%
C)3.99%
D)4.50%
E)4.67%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
70
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the price weighted series for Dec 31, 2003, after the splits.

A)72.5
B)100.0
C)119.25
D)121.25
E)81.69
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
71
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. Calculate a price weighted average for Day T.

A)46.20
B)53.33
C)54.12
D)92.39
E)108.23
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
72
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the value weighted index for Dec 31, 2003, after the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)72.5
B)81.69
C)100.0
D)120.0
E)121.25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
73
Exhibit 5.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for G B Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for G B Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3. Calculate the average annual rate of change for GB Industries for the 5 year period using the geometric mean.

A)9.7800%
B)0.0978%
C)9.0700%
D)0.0970%
E)3.6400%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
74
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the value weighted index for Dec 31, 2003, prior to the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)120.0
B)81.69
C)72.5
D)100.0
E)121.25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
75
Exhibit 5.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Year  % Price Change for Stock Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Change for Stock Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4. Calculate the average annual rate of change for this index for the 5 year period using the arithmetic mean.

A)0.28%
B)1.28%
C)2.80%
D)3.58%
E)6.38%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
76
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the price weighted series for Dec 31, 2004.

A)121.25
B)119.25
C)100.0
D)72.5
E)81.69
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
77
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the unweighted index for Dec 31, 2003, after the splits. Assume a base index value of 100. The base year is Dec 31, 2003.

A)110.0
B)200.0
C)100.0
D)120.0
E)150.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
78
Exhibit 5.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Stock  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  31-Dec-04  Shares W$75.0010000$50.0020000 X $150.005000$65.0010000 Y $25.0020000$35.0020000Z$40.0025000$50.0025000\begin{array} { c c c c c } \text { Stock } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\\text { X } & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\\text { Y } & \$ 25.00 & 20000 & \$ 35.00 & 20000 \\Z & \$ 40.00 & 25000 & \$ 50.00 & 25000\end{array} Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5. Calculate the percentage return in the unweighted index (geometric mean) for the period Dec 31, 2003 to Dec 31, 2004. Assume a base index value of 100. Base year is Dec 31, 2003.

A)19.25%
B)21.25%
C)51.25%
D)5.25%
E)100.25%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
79
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. Calculate a value weighted average for Day T + 1. Assume a base index value of 100 on Day T.

A)46.20
B)53.33
C)54.12
D)92.39
E)108.23
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
80
Exhibit 5.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Price  Stock  Number of Shares  Day T  Day T + 1  Q 5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } & & { \text { Price } } \\\text { Stock } & \text { Number of Shares } & \text { Day T } & \text { Day T + 1 } \\\hline \text { Q } & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6. If an equal-weighted index is constructed on Day T with $10,000 in each stock, what is the percentage change in wealth for this index on Day T + 1? Assume a base index value of 100 on Day T.

A)8.65%
B)10.14%
C)15.69%
D)30.42%
E)47.08%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 84 في هذه المجموعة.