Deck 16: Markov Processes

ملء الشاشة (f)
exit full mode
سؤال
The probability that a system is in a particular state after a large number of periods is

A)independent of the beginning state of the system.
B)dependent on the beginning state of the system.
C)equal to one half.
D)the same for every ending system.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
If an absorbing state exists, then the probability that a unit will ultimately move into the absorbing state is given by the steady state probability.
سؤال
In Markov analysis, we are concerned with the probability that the

A)state is part of a system.
B)system is in a particular state at a given time.
C)time has reached a steady state.
D)transition will occur.
سؤال
A unique matrix of transition probabilities should be developed for each customer.
سؤال
All Markov chains have steady-state probabilities.
سؤال
The probability of going from state 1 in period 2 to state 4 in period 3 is

A)p12
B)p23
C)p14
D)p43
سؤال
Analysis of a Markov process

A)describes future behavior of the system.
B)optimizes the system.
C)leads to higher order decision making.
D)All of the alternatives are true.
سؤال
A transition probability describes

A)the probability of a success in repeated, independent trials.
B)the probability a system in a particular state now will be in a specific state next period.
C)the probability of reaching an absorbing state.
D)None of the alternatives is correct.
سؤال
The probability of reaching an absorbing state is given by the

A)R matrix.
B)NR matrix.
C)Q matrix.
D)(I - Q)-1 matrix
سؤال
The probability that the system is in state 2 in the 5th period is π\pi 5(2).
سؤال
At steady state

A) π\pi 1(n+1) > π\pi 1(n)
B) π\pi 1 = π\pi 2
C) π\pi 1 + π\pi 2 > 1
D) π\pi 1(n+1) = π\pi 1
سؤال
Steady state probabilities are independent of initial state.
سؤال
A Markov chain cannot consist of all absorbing states.
سؤال
If the probability of making a transition from a state is 0, then that state is called a(n)

A)steady state.
B)final state.
C)origin state.
D)absorbing state.
سؤال
All entries in a matrix of transition probabilities sum to 1.
سؤال
The fundamental matrix is used to calculate the probability of the process moving into each absorbing state.
سؤال
For a situation with weekly dining at either an Italian or Mexican restaurant,

A)the weekly visit is the trial and the restaurant is the state.
B)the weekly visit is the state and the restaurant is the trial.
C)the weekly visit is the trend and the restaurant is the transition.
D)the weekly visit is the transition and the restaurant is the trend.
سؤال
All Markov chain transition matrices have the same number of rows as columns.
سؤال
Absorbing state probabilities are the same as

A)steady state probabilities.
B)transition probabilities.
C)fundamental probabilities.
D)None of the alternatives is true.
سؤال
Markov processes use historical probabilities.
سؤال
All entries in a row of a matrix of transition probabilities sum to 1.
سؤال
When absorbing states are present, each row of the transition matrix corresponding to an absorbing state will have a single 1 and all other probabilities will be 0.
سؤال
A state i is a transient state if there exists a state j that is reachable from i, but the state i is not reachable from state j.
سؤال
For Markov processes having the memoryless property, the prior states of the system must be considered in order to predict the future behavior of the system.
سؤال
A state i is an absorbing state if pii = 0.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 16: Markov Processes
1
The probability that a system is in a particular state after a large number of periods is

A)independent of the beginning state of the system.
B)dependent on the beginning state of the system.
C)equal to one half.
D)the same for every ending system.
A
2
If an absorbing state exists, then the probability that a unit will ultimately move into the absorbing state is given by the steady state probability.
False
3
In Markov analysis, we are concerned with the probability that the

A)state is part of a system.
B)system is in a particular state at a given time.
C)time has reached a steady state.
D)transition will occur.
B
4
A unique matrix of transition probabilities should be developed for each customer.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
5
All Markov chains have steady-state probabilities.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
6
The probability of going from state 1 in period 2 to state 4 in period 3 is

A)p12
B)p23
C)p14
D)p43
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
7
Analysis of a Markov process

A)describes future behavior of the system.
B)optimizes the system.
C)leads to higher order decision making.
D)All of the alternatives are true.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
8
A transition probability describes

A)the probability of a success in repeated, independent trials.
B)the probability a system in a particular state now will be in a specific state next period.
C)the probability of reaching an absorbing state.
D)None of the alternatives is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
9
The probability of reaching an absorbing state is given by the

A)R matrix.
B)NR matrix.
C)Q matrix.
D)(I - Q)-1 matrix
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
10
The probability that the system is in state 2 in the 5th period is π\pi 5(2).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
11
At steady state

A) π\pi 1(n+1) > π\pi 1(n)
B) π\pi 1 = π\pi 2
C) π\pi 1 + π\pi 2 > 1
D) π\pi 1(n+1) = π\pi 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
12
Steady state probabilities are independent of initial state.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
13
A Markov chain cannot consist of all absorbing states.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
14
If the probability of making a transition from a state is 0, then that state is called a(n)

A)steady state.
B)final state.
C)origin state.
D)absorbing state.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
15
All entries in a matrix of transition probabilities sum to 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
16
The fundamental matrix is used to calculate the probability of the process moving into each absorbing state.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
17
For a situation with weekly dining at either an Italian or Mexican restaurant,

A)the weekly visit is the trial and the restaurant is the state.
B)the weekly visit is the state and the restaurant is the trial.
C)the weekly visit is the trend and the restaurant is the transition.
D)the weekly visit is the transition and the restaurant is the trend.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
18
All Markov chain transition matrices have the same number of rows as columns.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
19
Absorbing state probabilities are the same as

A)steady state probabilities.
B)transition probabilities.
C)fundamental probabilities.
D)None of the alternatives is true.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
20
Markov processes use historical probabilities.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
21
All entries in a row of a matrix of transition probabilities sum to 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
22
When absorbing states are present, each row of the transition matrix corresponding to an absorbing state will have a single 1 and all other probabilities will be 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
23
A state i is a transient state if there exists a state j that is reachable from i, but the state i is not reachable from state j.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
24
For Markov processes having the memoryless property, the prior states of the system must be considered in order to predict the future behavior of the system.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
25
A state i is an absorbing state if pii = 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.