Deck 21: Parameters, Coordinates, Integrals

ملء الشاشة (f)
exit full mode
سؤال
Find parametric equations for the sphere Find parametric equations for the sphere  <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the parametric equation of the plane through the point (-4, 2, 4)and parallel to the lines r(t)=(12t)i+(5+2t)j+(34t)k\vec { r } ( t ) = ( 1 - 2 t ) \vec { i } + ( 5 + 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k } and s(t)=(34t)i+4tj+(42t)k\vec { s } ( t ) = ( 3 - 4 t ) \vec { i } + 4 t \vec { j } + ( 4 - 2 t ) \vec { k } Select all that apply.

A) x=42u4v,y=2+2u+4v,z=44u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 - 4 u - 2 v
B) x=42u4v,y=2+2u+4v,z=4+4u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 + 4 u - 2 v .
C) x=42u+4v,y=2+2u4v,z=44u+2vx = - 4 - 2 u + 4 v , y = 2 + 2 u - 4 v , z = 4 - 4 u + 2 v
D) x=2u4v,y=2u+4v,z=4u2vx = - 2 u - 4 v , y = 2 u + 4 v , z = - 4 u - 2 v
E) x=42u4v,y=2+2u+4v,z=44u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 - 4 u - 2 v ..
سؤال
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4).
Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
In each case, give a parameterization Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4). Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder). In each case, give a parameterization   and specify the range of values your parameters must take on. (i)the circle in which the cylinder, S, cuts the plane, P. (ii)the surface of the cylinder S.<div style=padding-top: 35px> and specify the range of values your parameters must take on.
(i)the circle in which the cylinder, S, cuts the plane, P.
(ii)the surface of the cylinder S.
سؤال
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the point (0, -2, 0)?
سؤال
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7).
Find two unit vectors Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.<div style=padding-top: 35px> and Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.<div style=padding-top: 35px> in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.
سؤال
Let R be the region in the first quadrant bounded between the circle Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> and the two axes.Then Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> Let Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> be the region in the first quadrant bounded between the ellipse Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px>
سؤال
Consider the change of variables x = s + 3t, y = s - 2t.
Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R.
Use the change of variables to evaluate Consider the change of variables x = s + 3t, y = s - 2t. Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R. Use the change of variables to evaluate   .<div style=padding-top: 35px> .
سؤال
The following equations represent a curve or a surface.Select the best geometric description. (Note: ρ\rho , φ\varphi , θ\theta are spherical coordinates; r, θ\theta , z are cylindrical coordinates.)

A)Part of a line through the origin
B)Disk
C)Part of a cylinder.
D)Part of a cone.
سؤال
Find parametric equations for the cylinder y2+z2=49y ^ { 2 } + z ^ { 2 } = 49

A) r(s,θ)=7cosθi+7sinθj\vec { r } ( s , \theta ) = 7 \cos \overrightarrow { \theta i } + 7 \sin \theta \vec { j }
B) r(s,θ)=7cosθi+7sinθj+sk\vec { r } ( s , \theta ) = 7 \cos \theta \vec { i } + 7 \sin \theta \vec { j } + s \vec { k }
C) r(s,θ)=si+49cosθj+49sinθk\vec { r } ( s , \theta ) = s \vec { i } + 49 \cos \theta \vec { j } + 49 \sin \theta \vec { k }
D) r(s,θ)=si+7cosθj+7sinθk\vec { r } ( s , \theta ) = \operatorname { si } + 7 \cos \theta \vec { j } + 7 \sin \theta \vec { k }
E) r(s,θ)=si+7cosθj+7cosθk\vec { r } ( s , \theta ) = \operatorname { si } + 7 \cos \theta \vec { j } + 7 \cos \theta \vec { k }
سؤال
Let v1=2i5j+k\vec { v } _ { 1 } = 2 \vec { i } - 5 \vec { j } + \vec { k } and v2=5i+j+k\vec { v } _ { 2 } = 5 \vec { i } + \vec { j } + \vec { k } Find a parametric equation for the plane through the point (1, 2, -1)and containing the vectors v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } Select all that apply.

A) x=1+2t+5s,y=25t+s,z=1+t+sx = 1 + 2 t + 5 s , y = 2 - 5 t + s , z = - 1 + t + s
B) x=1+2t5s,y=25ts,z=1+tsx = 1 + 2 t - 5 s , y = 2 - 5 t - s , z = - 1 + t - s
C) x=1+2t+5s,y=25t+s,z=1+t+sx = - 1 + 2 t + 5 s , y = - 2 - 5 t + s , z = 1 + t + s
D) x=12t+5s,y=2+5t+s,z=1t+sx = 1 - 2 t + 5 s , y = 2 + 5 t + s , z = - 1 - t + s
سؤال
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the x-axis?
سؤال
Let Let   and S be parametric surface   oriented upward. Use the formula for a flux integral over a parametric surface to find   .<div style=padding-top: 35px> and S be parametric surface Let   and S be parametric surface   oriented upward. Use the formula for a flux integral over a parametric surface to find   .<div style=padding-top: 35px> oriented upward.
Use the formula for a flux integral over a parametric surface to find Let   and S be parametric surface   oriented upward. Use the formula for a flux integral over a parametric surface to find   .<div style=padding-top: 35px> .
سؤال
Let Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> Find a vector which is perpendicular to Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> .Express your answer in the form Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px>
سؤال
Consider the plane r(s,t)=(2+s4t)i+(5s+4t)j+(64ts)k\vec { r } ( s , t ) = ( 2 + s - 4 t ) \vec { i } + ( 5 - s + 4 t ) \vec { j } + ( 6 - 4 t - s ) \vec { k } Does it contain the point (1, 6, -1)?
سؤال
Using cylindrical coordinates, find parametric equations for the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 Select all that apply.

A) x=3cosθ,y=3sinθ,z=z,0θ2π,<z<x = 3 \cos \theta , y = 3 \sin \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
B) x=3cosθ,y=3sinθ,0θ2π,<z<x = 3 \cos \theta , y = 3 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
C) x=9cosθ,y=9sinθ,z=z,0θ2π,<z<x = 9 \cos \theta , y = 9 \sin \theta , z = z , \quad 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
D) x=3sinθ,y=3cosθ,z=z,0θ2π,<z<x = 3 \sin \theta , y = 3 \cos \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
E) x=9cosθ,y=9sinθ,0θ2π,<z<x = 9 \cos \theta , y = 9 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
سؤال
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7).
Find the xyz-equation of the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
سؤال
Find parametric equations for the cylinder 49x2+5y2=245,7z549 x ^ { 2 } + 5 y ^ { 2 } = 245 , - 7 \leq z \leq 5

A) x=5cost,y=7sint,z=s,0t2π,7s5x = 5 \cos t , y = 7 \sin t , z = s , 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
B) x=5cost1y=7sint1z=t1,0t2π,7s5x = \sqrt { 5 } \cos t _ { 1 } y = 7 \sin t _ { 1 } \quad z = t _ { 1 } , 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
C) x=7cost1y=5sint1z=s,0t2π,7s5x = \sqrt { 7 } \cos t _ { 1 } y = 5 \sin t _ { 1 } \quad z = s , \quad 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
D) x=5cost1y=7sint,z=s,0tπ,7s5.x = \sqrt { 5 } \cos t _ { 1 } y = 7 \sin t , \quad z = s , \quad 0 \leq t \leq \pi , - 7 \leq s \leq 5 .
E) x=5cost1y=7sint1z=s,0t2π,7s5x = \sqrt { 5 } \cos t _ { 1 } y = 7 \sin t _ { 1 } \quad z = s , \quad 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
سؤال
Compute S(zi+xj+yk)dA\int _ { S } ( z \vec { i } + x \vec { j } + y \vec { k } ) \cdot \overrightarrow { d A } , where S is oriented in the positive j\vec { j } direction and given, for 0 \le s \le 1, 0 \le t \le 2, by x = s, y = t2, z =8 t.
سؤال
Consider the plane r(s,t)=(3+s5t)i+(5s+5t)j+(510t+s)k\vec { r } ( s , t ) = ( 3 + s - 5 t ) \vec { i } + ( 5 - s + 5 t ) \vec { j } + ( 5 - 10 t + s ) \vec { k } Find a normal vector to the plane.

A) 12(i+k)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { k } )
B) 13(i+jk)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } - \vec { k } )
C) 12(i+j)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { j } )
D) 13(i+j+k)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } + \vec { k } )
E) 12(ij)\frac { 1 } { \sqrt { 2 } } ( \vec { i } - \vec { j } )
سؤال
Consider the change of variables x = s + 4t, y = s - 5t.
Find the absolute value of the Jacobian Consider the change of variables x = s + 4t, y = s - 5t. Find the absolute value of the Jacobian   .<div style=padding-top: 35px> .
سؤال
Let F=x(1+z)i+2y(1+z)j{ \vec { F } } = x ( 1 + z ) \vec { i } + 2 y ( 1 + z ) \vec { j } Find the flux of F\vec { F } across the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward.
سؤال
Compute the flux of the vector field H=yi+2zj\overrightarrow { \vec { H } } = \vec { y } i + 2 z \vec { j } over the surface S, which is oriented upward and given, for 0 \le s \le 1, 0 \le t \le 2 by x=s+t2,y=s2,z=4tx = s + t ^ { 2 } , y = s ^ { 2 } , z = 4 t
سؤال
Let F=x(1+z)i+7y(1+z)j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j } Show that the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward can also be written as the surface z=x2+y2,1z2z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 2 . Which of the following iterated integrals calculates the flux of F\vec { F } across S? Select all that apply.

A) T(x2+7y2(1+x2+y2)x2+y2dxdy\int _ { T } \frac { \left( x ^ { 2 } + 7 y ^ { 2 } \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) \right. } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
B) 02π12r2(1+r)drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) d r d \theta
C) 02π12r2(1+r)ndθdr\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) n d \theta d r
D) 02π12r2(1+r)(cos2θ+bsin2θ)drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) \left( \cos ^ { 2 } \theta + b \sin ^ { 2 } \theta \right) d r d \theta
E) T(x2+y2)(1+x2+y2)x2+y2dxdy- \int _ { T } \frac { \left( x ^ { 2 } + y ^ { 2 } \right) \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/23
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 21: Parameters, Coordinates, Integrals
1
Find parametric equations for the sphere Find parametric equations for the sphere
2
Find the parametric equation of the plane through the point (-4, 2, 4)and parallel to the lines r(t)=(12t)i+(5+2t)j+(34t)k\vec { r } ( t ) = ( 1 - 2 t ) \vec { i } + ( 5 + 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k } and s(t)=(34t)i+4tj+(42t)k\vec { s } ( t ) = ( 3 - 4 t ) \vec { i } + 4 t \vec { j } + ( 4 - 2 t ) \vec { k } Select all that apply.

A) x=42u4v,y=2+2u+4v,z=44u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 - 4 u - 2 v
B) x=42u4v,y=2+2u+4v,z=4+4u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 + 4 u - 2 v .
C) x=42u+4v,y=2+2u4v,z=44u+2vx = - 4 - 2 u + 4 v , y = 2 + 2 u - 4 v , z = 4 - 4 u + 2 v
D) x=2u4v,y=2u+4v,z=4u2vx = - 2 u - 4 v , y = 2 u + 4 v , z = - 4 u - 2 v
E) x=42u4v,y=2+2u+4v,z=44u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 - 4 u - 2 v ..
x=42u4v,y=2+2u+4v,z=44u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 - 4 u - 2 v
x=42u+4v,y=2+2u4v,z=44u+2vx = - 4 - 2 u + 4 v , y = 2 + 2 u - 4 v , z = 4 - 4 u + 2 v
x=42u4v,y=2+2u+4v,z=44u2vx = - 4 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 4 - 4 u - 2 v ..
3
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4).
Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
In each case, give a parameterization Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4). Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder). In each case, give a parameterization   and specify the range of values your parameters must take on. (i)the circle in which the cylinder, S, cuts the plane, P. (ii)the surface of the cylinder S. and specify the range of values your parameters must take on.
(i)the circle in which the cylinder, S, cuts the plane, P.
(ii)the surface of the cylinder S.
(i) (i)   (ii)
(ii) (i)   (ii)
4
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the point (0, -2, 0)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
5
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7).
Find two unit vectors Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other. and Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (4, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other. in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
6
Let R be the region in the first quadrant bounded between the circle Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  and the two axes.Then Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  Let Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  be the region in the first quadrant bounded between the ellipse Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
7
Consider the change of variables x = s + 3t, y = s - 2t.
Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R.
Use the change of variables to evaluate Consider the change of variables x = s + 3t, y = s - 2t. Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R. Use the change of variables to evaluate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
8
The following equations represent a curve or a surface.Select the best geometric description. (Note: ρ\rho , φ\varphi , θ\theta are spherical coordinates; r, θ\theta , z are cylindrical coordinates.)

A)Part of a line through the origin
B)Disk
C)Part of a cylinder.
D)Part of a cone.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find parametric equations for the cylinder y2+z2=49y ^ { 2 } + z ^ { 2 } = 49

A) r(s,θ)=7cosθi+7sinθj\vec { r } ( s , \theta ) = 7 \cos \overrightarrow { \theta i } + 7 \sin \theta \vec { j }
B) r(s,θ)=7cosθi+7sinθj+sk\vec { r } ( s , \theta ) = 7 \cos \theta \vec { i } + 7 \sin \theta \vec { j } + s \vec { k }
C) r(s,θ)=si+49cosθj+49sinθk\vec { r } ( s , \theta ) = s \vec { i } + 49 \cos \theta \vec { j } + 49 \sin \theta \vec { k }
D) r(s,θ)=si+7cosθj+7sinθk\vec { r } ( s , \theta ) = \operatorname { si } + 7 \cos \theta \vec { j } + 7 \sin \theta \vec { k }
E) r(s,θ)=si+7cosθj+7cosθk\vec { r } ( s , \theta ) = \operatorname { si } + 7 \cos \theta \vec { j } + 7 \cos \theta \vec { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
10
Let v1=2i5j+k\vec { v } _ { 1 } = 2 \vec { i } - 5 \vec { j } + \vec { k } and v2=5i+j+k\vec { v } _ { 2 } = 5 \vec { i } + \vec { j } + \vec { k } Find a parametric equation for the plane through the point (1, 2, -1)and containing the vectors v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } Select all that apply.

A) x=1+2t+5s,y=25t+s,z=1+t+sx = 1 + 2 t + 5 s , y = 2 - 5 t + s , z = - 1 + t + s
B) x=1+2t5s,y=25ts,z=1+tsx = 1 + 2 t - 5 s , y = 2 - 5 t - s , z = - 1 + t - s
C) x=1+2t+5s,y=25t+s,z=1+t+sx = - 1 + 2 t + 5 s , y = - 2 - 5 t + s , z = 1 + t + s
D) x=12t+5s,y=2+5t+s,z=1t+sx = 1 - 2 t + 5 s , y = 2 + 5 t + s , z = - 1 - t + s
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
11
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the x-axis?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
12
Let Let   and S be parametric surface   oriented upward. Use the formula for a flux integral over a parametric surface to find   . and S be parametric surface Let   and S be parametric surface   oriented upward. Use the formula for a flux integral over a parametric surface to find   . oriented upward.
Use the formula for a flux integral over a parametric surface to find Let   and S be parametric surface   oriented upward. Use the formula for a flux integral over a parametric surface to find   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
13
Let Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  Find a vector which is perpendicular to Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  .Express your answer in the form Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
14
Consider the plane r(s,t)=(2+s4t)i+(5s+4t)j+(64ts)k\vec { r } ( s , t ) = ( 2 + s - 4 t ) \vec { i } + ( 5 - s + 4 t ) \vec { j } + ( 6 - 4 t - s ) \vec { k } Does it contain the point (1, 6, -1)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
15
Using cylindrical coordinates, find parametric equations for the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 Select all that apply.

A) x=3cosθ,y=3sinθ,z=z,0θ2π,<z<x = 3 \cos \theta , y = 3 \sin \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
B) x=3cosθ,y=3sinθ,0θ2π,<z<x = 3 \cos \theta , y = 3 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
C) x=9cosθ,y=9sinθ,z=z,0θ2π,<z<x = 9 \cos \theta , y = 9 \sin \theta , z = z , \quad 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
D) x=3sinθ,y=3cosθ,z=z,0θ2π,<z<x = 3 \sin \theta , y = 3 \cos \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
E) x=9cosθ,y=9sinθ,0θ2π,<z<x = 9 \cos \theta , y = 9 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
16
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7).
Find the xyz-equation of the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find parametric equations for the cylinder 49x2+5y2=245,7z549 x ^ { 2 } + 5 y ^ { 2 } = 245 , - 7 \leq z \leq 5

A) x=5cost,y=7sint,z=s,0t2π,7s5x = 5 \cos t , y = 7 \sin t , z = s , 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
B) x=5cost1y=7sint1z=t1,0t2π,7s5x = \sqrt { 5 } \cos t _ { 1 } y = 7 \sin t _ { 1 } \quad z = t _ { 1 } , 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
C) x=7cost1y=5sint1z=s,0t2π,7s5x = \sqrt { 7 } \cos t _ { 1 } y = 5 \sin t _ { 1 } \quad z = s , \quad 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
D) x=5cost1y=7sint,z=s,0tπ,7s5.x = \sqrt { 5 } \cos t _ { 1 } y = 7 \sin t , \quad z = s , \quad 0 \leq t \leq \pi , - 7 \leq s \leq 5 .
E) x=5cost1y=7sint1z=s,0t2π,7s5x = \sqrt { 5 } \cos t _ { 1 } y = 7 \sin t _ { 1 } \quad z = s , \quad 0 \leq t \leq 2 \pi , - 7 \leq s \leq 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
18
Compute S(zi+xj+yk)dA\int _ { S } ( z \vec { i } + x \vec { j } + y \vec { k } ) \cdot \overrightarrow { d A } , where S is oriented in the positive j\vec { j } direction and given, for 0 \le s \le 1, 0 \le t \le 2, by x = s, y = t2, z =8 t.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
19
Consider the plane r(s,t)=(3+s5t)i+(5s+5t)j+(510t+s)k\vec { r } ( s , t ) = ( 3 + s - 5 t ) \vec { i } + ( 5 - s + 5 t ) \vec { j } + ( 5 - 10 t + s ) \vec { k } Find a normal vector to the plane.

A) 12(i+k)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { k } )
B) 13(i+jk)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } - \vec { k } )
C) 12(i+j)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { j } )
D) 13(i+j+k)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } + \vec { k } )
E) 12(ij)\frac { 1 } { \sqrt { 2 } } ( \vec { i } - \vec { j } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
20
Consider the change of variables x = s + 4t, y = s - 5t.
Find the absolute value of the Jacobian Consider the change of variables x = s + 4t, y = s - 5t. Find the absolute value of the Jacobian   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
21
Let F=x(1+z)i+2y(1+z)j{ \vec { F } } = x ( 1 + z ) \vec { i } + 2 y ( 1 + z ) \vec { j } Find the flux of F\vec { F } across the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
22
Compute the flux of the vector field H=yi+2zj\overrightarrow { \vec { H } } = \vec { y } i + 2 z \vec { j } over the surface S, which is oriented upward and given, for 0 \le s \le 1, 0 \le t \le 2 by x=s+t2,y=s2,z=4tx = s + t ^ { 2 } , y = s ^ { 2 } , z = 4 t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
23
Let F=x(1+z)i+7y(1+z)j { \vec { F } } = x ( 1 + z ) \vec { i } + 7 y ( 1 + z ) \vec { j } Show that the parametric surface S given by x = s cos t, y = s sin t, z = s, for 1 \le s \le 2, 0 \le t \le 2 π\pi , oriented downward can also be written as the surface z=x2+y2,1z2z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 2 . Which of the following iterated integrals calculates the flux of F\vec { F } across S? Select all that apply.

A) T(x2+7y2(1+x2+y2)x2+y2dxdy\int _ { T } \frac { \left( x ^ { 2 } + 7 y ^ { 2 } \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) \right. } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
B) 02π12r2(1+r)drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) d r d \theta
C) 02π12r2(1+r)ndθdr\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) n d \theta d r
D) 02π12r2(1+r)(cos2θ+bsin2θ)drdθ\int _ { 0 } ^ { 2 \pi } \int _ { 1 } ^ { 2 } r ^ { 2 } ( 1 + r ) \left( \cos ^ { 2 } \theta + b \sin ^ { 2 } \theta \right) d r d \theta
E) T(x2+y2)(1+x2+y2)x2+y2dxdy- \int _ { T } \frac { \left( x ^ { 2 } + y ^ { 2 } \right) \left( 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } \right) } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 23 في هذه المجموعة.