Deck 16: Integrating Functions of Several Variables

ملء الشاشة (f)
exit full mode
سؤال
Set up but do not evaluate a (multiple)integral that gives the volume of the solid bounded above by the sphere x2+y2+z2=2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 and below by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

A) 111x21x2x2+y22x2y2dxdydz\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d x d y d z
B) 111x21x2x2y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - x ^ { 2 } - y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
C) 1101x2x2+y22x2y2\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{2-x^{2}-y^{2}}}dzdydx d z d y d x
D) 111x21x2x2+y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
E) 011x21x2x2+y22x2y2dzdydx\int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Estimate \int R f(x, y)dA using the table of values below, where R is the rectangle 0 \le x \le 4, 0 \le y \le 6
yx036023426434181412\begin{array}{c}y\\x\begin{array}{cccc}&0 & 3 & 6\\0 & 2 & 3 & 4 \\2 & 6 & 4 & 3 \\4 & 18 & 14 & 12\end{array}\end{array}
سؤال
Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  <div style=padding-top: 35px> and Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  <div style=padding-top: 35px> respectively.Evaluate Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  <div style=padding-top: 35px>
سؤال
Consider the integral 159x45f(x,y)dydx\int _ { 1 } ^ { 5 } \int _ { 9 x } ^ { 45 } f ( x , y ) d y d x Rewrite the integral with the integration performed in the opposite order.

A) 9xA51y/9f(x,y)dxdy\int _ { 9 x } ^ { A 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
B) 9451y/9f(x,y)dydx\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d y d x
C) 9451y/9f(x,y)dxdy\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
D) 94510yf(x,y)dxdy\int _ { 9 } ^ { 45 } \int _ { 1 } ^ { 0 y } f ( x , y ) d x d y
سؤال
Evaluate the iterated integral. Evaluate the iterated integral.  <div style=padding-top: 35px>
سؤال
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 0603cos4ysin(4x+5)dxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \cos 4 y \sin ( 4 x + 5 ) d x d y
سؤال
Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate   exactly and then give an answer rounded to 4 decimal places.<div style=padding-top: 35px> exactly and then give an answer rounded to 4 decimal places.
سؤال
Evaluate the iterated integral. Evaluate the iterated integral.  <div style=padding-top: 35px>
سؤال
Reverse the order of integration for the following integral. 13x294x12f(x,y)dydx\int _ { 1 } ^ { 3 } \int _ { x ^ { 2 } - 9 } ^ { 4 x - 12 } f ( x , y ) d y d x

A) 08(y+12)/4y+9f(x,y)dxdy\int _ { 0 } ^ { 8 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
B) 80(y+12)/4y+9f(x,y)dydx\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d y d x
C) 80(y+12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
D) 80y+9(y+12)/4f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { \sqrt { y + 9 } } ^ { ( y + 12 ) / 4 } f ( x , y ) d x d y
E) 80(y12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y - 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
سؤال
Evaluate Evaluate   by first reversing the order of integration.<div style=padding-top: 35px> by first reversing the order of integration.
سؤال
Let f(x, y)be a positive function of x and y which is independent of x, that is, f(x, y)= g(y)for some one-variable function g.Suppose that 03g(x)dx=10\int _ { 0 } ^ { 3 } g ( x ) d x = 10 and 010g(x)dx=1\int _ { 0 } ^ { 10 } g ( x ) d x = 1 .
Find RfdA\int _ { R } f d A , where R is the rectangle 0 \le x \le 3, 0 \le y \le 10.
سؤال
Let R1 be the region 0 \le x \le 3, -2 \le y \le 4, and let R2 be the region 3 \le x \le 5, -2 \le y \le 4.Suppose that the average value of f over R1 is 6 and the average value over R2 is 7.
Find the average value of f over R, 0x5,2y20 \leq x \leq 5 , - 2 \leq y \leq 2 .
سؤال
True or false?
If f is any two-variable function, then RfdA=2SfdA\int _ { R } f d A = 2 \int _ { S } f d A , where R is the rectangle 0 \le x \le 2, 0 \le y \le 1 and S is the square 0 \le x, y \le 1.
سؤال
Find the volume of the region under the graph of Find the volume of the region under the graph of   and above the region  <div style=padding-top: 35px> and above the region Find the volume of the region under the graph of   and above the region  <div style=padding-top: 35px>
سؤال
Find a region R such that double integral R(2x2y2)dA\int _ { R } \left( 2 - x ^ { 2 } - y ^ { 2 } \right) d A has the largest value.

A) x2y22x ^ { 2 } - y ^ { 2 } \leq 2
B) x2y22x ^ { 2 } - y ^ { 2 } \geq 2
C) x2+y22x ^ { 2 } + y ^ { 2 } \leq 2
D) x2+y22x ^ { 2 } + y ^ { 2 } \geq 2
سؤال
Find the volume under the graph of Find the volume under the graph of   lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).<div style=padding-top: 35px> lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).
سؤال
Reverse the order of integration for the following integral. 02y28yf(x,y)c2xdy\int _ { 0 } ^ { 2 } \int _ { y ^ { 2 } } ^ { \sqrt { 8 y } } f ( x , y ) c ^ { 2 } x d y

A) 02x2/8xf(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
B) 04x2/8xf(x,y)dxdy\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d x d y
C) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { x } f ( x , y ) d y d x
D) 048x2xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { 8 x ^ { 2 } } ^ { \sqrt { x } } f ( x , y ) d y d x
E) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
سؤال
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 010z0yx2y5z5dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { z } \int _ { 0 } ^ { y } x ^ { 2 } y ^ { 5 } z ^ { 5 } d x d y d z
سؤال
The function The function   has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.<div style=padding-top: 35px> has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.
سؤال
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 340yy2exydxdy\int _ { 3 } ^ { 4 } \int _ { 0 } ^ { y } y ^ { 2 } e ^ { x y } d x d y

A) 12(7e9+e16)\frac { 1 } { 2 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
B) 12(25e9+e16)\frac { 1 } { 2 } \left( 25 - e ^ { 9 } + e ^ { 16 } \right)
C) 12(7+e9e16)\frac { 1 } { 2 } \left( - 7 + e ^ { 9 } - e ^ { 16 } \right)
D) 13(7e9+e16)\frac { 1 } { 3 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
سؤال
Set up an iterated integral for Wf(x,y,z)dV\int _ { W } f ( x , y , z ) d V , where W is the solid region bounded below by the rectangle 0 \le x \le 3, 0 \le y \le 1 and above by the surface z2+y2=1z ^ { 2 } + y ^ { 2 } = 1

A) Wf(x,y,z)dV=030101y2f(x,y,z)dzcxαdy\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z c x \alpha d y
B) Wf(x,y,z)dV=030101y2f(x,y,z)dydzdx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d z d x
C) Wf(x,y,z)dV=030101y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
D) Wf(x,y,z)dV=03011y21y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
E) Wf(x,y,z)dV=03011y21y2f(x,y,z)dydxdz\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d x d z
سؤال
A cylindrical tube of radius 2cm and length 3cm contains a gas.As the tube spins around its axis, the density of the gas increases as you get farther from the axis.The density, D, at a distance of r cm from the axis is D(r)= 1 +9 r gm/cc.
Write a triple integral representing the total mass of the gas in the tube and evaluate the integral.
سؤال
Set up (but do not evaluate)an iterated integral to compute the mass of the solid paraboloid bounded by z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z = 1, if the density is given by δ\delta (x, y, z)= z2.

A)  Mass =111x21x2x2+y21z2dzdxdy\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d x d y
B)  Mass =0101x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
C) Mass=111x21x201z2dzdydx\operatorname { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { 0 } ^ { 1 } z ^ { 2 } d z d y d x
D)  Mass =111x21x2x2+y21z2dzdydx\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
E)  Mass =011x21x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
سؤال
Compute the area of the flower-like region bounded by r = 6 + 3 cos (8 θ\theta ).
سؤال
Find the triple integral of the function f(x, y, z)= xy sin (18yz)over the rectangular box 0 \le x \le π\pi , 0 \le y \le 1, 0 \le z \le π\pi /6.
سؤال
Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  <strong>Set up the three-dimensional integral  \int _ { R } y d V  where R is the ice-cream cone enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.  </strong> A)  \int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta  B)  \int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta  C)  \int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x  <div style=padding-top: 35px>

A) Ryd V=02π013r4r2r2sinθdzdrdθ\int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta
B) RydV=02π0π/602ρ3sinθsin2ϕdρdϕdθ\int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta
C) RydV=111x21x23x2+3y24x2y2ydzdydx\int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x
سؤال
Consider the volume between a cone centered along the positive z-axis, with vertex at the origin and containing the point (0, 1, 1), and a sphere of radius 3 centered at the origin.
Write a triple integral which represents this volume and evaluate it.Use spherical coordinates.
سؤال
Calculate the following integral: Calculate the following integral:  <div style=padding-top: 35px>
سؤال
Calculate the following integral: Calculate the following integral:   where R is the shaded region shown below. ·  <div style=padding-top: 35px> where R is the shaded region shown below.
· Calculate the following integral:   where R is the shaded region shown below. ·  <div style=padding-top: 35px>
سؤال
Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass.<div style=padding-top: 35px> .If the density of this solid at a point (x, y, z)is given by Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass.<div style=padding-top: 35px> , find its mass.
سؤال
A solid is bounded below by the triangle z = 0, x \ge 0, y \ge 0, x + y \le 1 and above by the plane z = x + 6y + 2.If the density of the solid is given by δ\delta (x, y, z)= z, find its mass.
سؤال
Evaluate Evaluate   Provide an exact answer.<div style=padding-top: 35px> Provide an exact answer.
سؤال
For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region. For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region.  <div style=padding-top: 35px>
سؤال
Evaluate the integral Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles  <div style=padding-top: 35px> , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles  <div style=padding-top: 35px>
سؤال
Let R be the ice-cream cone lying inside the sphere Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R.<div style=padding-top: 35px> and inside the cone Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R.<div style=padding-top: 35px> .Find the center of mass of R.
سؤال
Evaluate exactly the integral Evaluate exactly the integral   , where R is the region shown below.  <div style=padding-top: 35px> , where R is the region shown below. Evaluate exactly the integral   , where R is the region shown below.  <div style=padding-top: 35px>
سؤال
Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it). Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it).  <div style=padding-top: 35px>
سؤال
Evaluate the iterated integral Evaluate the iterated integral  <div style=padding-top: 35px>
سؤال
Find the volume of the solid bounded by the paraboloid Find the volume of the solid bounded by the paraboloid   and the plane z = 1.<div style=padding-top: 35px> and the plane z = 1.
سؤال
Convert the integral Convert the integral   to polar coordinates and hence evaluate it exactly.<div style=padding-top: 35px> to polar coordinates and hence evaluate it exactly.
سؤال
Let x and y have joint density function Let x and y have joint density function   Find the probability that x > y +0.4.<div style=padding-top: 35px> Find the probability that x > y +0.4.
سؤال
Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region. <strong>Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region.  </strong> A)spherical coordinates B)cylindrical coordinates C)rectangular coordinates D)None of the above. <div style=padding-top: 35px>

A)spherical coordinates
B)cylindrical coordinates
C)rectangular coordinates
D)None of the above.
سؤال
Evaluate the integral Evaluate the integral   in spherical coordinates.<div style=padding-top: 35px> in spherical coordinates.
سؤال
Evaluate Evaluate   where W is the first octant portion of the ball of radius 3 centered at the origin.<div style=padding-top: 35px> where W is the first octant portion of the ball of radius 3 centered at the origin.
سؤال
Let W be the region between the cylinders Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  <div style=padding-top: 35px> and Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  <div style=padding-top: 35px> in the first octant and under the plane z = 1.Evaluate Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  <div style=padding-top: 35px>
سؤال
Rewrite the integral Rewrite the integral   in spherical coordinates.You do not have to evaluate the integral.<div style=padding-top: 35px> in spherical coordinates.You do not have to evaluate the integral.
سؤال
Evaluate the integral by interchanging the order of integration. Evaluate the integral by interchanging the order of integration.   .<div style=padding-top: 35px> .
سؤال
Let x and y have joint density function p(x,y)={x+y if 0x1,0y10 otherwise p ( x , y ) = \left\{ \begin{array} { l l } x + y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\0 & \text { otherwise }\end{array} \right. Find the probability that 0.5 \le x \le 0.6.
سؤال
Consider the change of variables x = s + 3t, y = s - 2t.
Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R.
Use the change of variables to evaluate R2x+3ydA\int _ { R } 2 x + 3 y d A
سؤال
The joint density function for x, y is given by The joint density function for x, y is given by   Find the probability that (x, y)satisfies  <div style=padding-top: 35px> Find the probability that (x, y)satisfies The joint density function for x, y is given by   Find the probability that (x, y)satisfies  <div style=padding-top: 35px>
سؤال
An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by   What is the probability that the arrow strikes within 0.45 feet of the center of the target.<div style=padding-top: 35px> What is the probability that the arrow strikes within 0.45 feet of the center of the target.
سؤال
Find the mass of the solid cylinder Find the mass of the solid cylinder   with density function  <div style=padding-top: 35px> with density function Find the mass of the solid cylinder   with density function  <div style=padding-top: 35px>
سؤال
Evaluate the integral Evaluate the integral   .Give your answer to two decimal places.<div style=padding-top: 35px> .Give your answer to two decimal places.
سؤال
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where p(x,y)={ax+by,0x8,0y80 otherwise p ( x , y ) = \left\{ \begin{array} { c l } a x + b y , & 0 \leq x \leq 8,0 \leq y \leq 8 \\0 & \text { otherwise }\end{array} \right.

A) a+b=1256a + b = \frac { 1 } { 256 }
B) a+b=132a + b = \frac { 1 } { 32 }
C) a+b<1256a + b < \frac { 1 } { 256 }
D)a=b
E) a+b=1512a + b = \frac { 1 } { 512 }
سؤال
Consider the change of variables x = s + 5t, y = s - 3t.
Find the absolute value of the Jacobian Consider the change of variables x = s + 5t, y = s - 3t. Find the absolute value of the Jacobian   .<div style=padding-top: 35px> .
سؤال
Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2)dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A

A)240 π\pi
B)3240 π\pi
C)162 π\pi
D)1620 π\pi
E)1620
سؤال
Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is   After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.<div style=padding-top: 35px> After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.
سؤال
Evaluate the integral Evaluate the integral   in cylindrical coordinates.<div style=padding-top: 35px> in cylindrical coordinates.
سؤال
The region W is shown below.Write the limits of integration for wf(x,y,z)dV\int _ { w } f ( x , y , z ) d V in spherical coordinates.  <strong>The region W is shown below.Write the limits of integration for  \int _ { w } f ( x , y , z ) d V  in spherical coordinates.  </strong> A)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta  B)  \int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x  C)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta  <div style=padding-top: 35px>

A) Wf(x,y,z)dV=0ππ/2π01f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕdρdϕdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta
B) Wf(x,y,z)dV=1101x21x2y20f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x
C) Wf(x,y,z)dV=0π011r20f(rcosθ,rsinθ,z)rdzdrdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta
سؤال
Let R be the region in the first quadrant bounded between the circle Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> and the two axes.Then Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> Let Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> be the region in the first quadrant bounded between the ellipse Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px>
سؤال
The joint density function for random variables x and y is The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places.<div style=padding-top: 35px> Find the probability The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places.<div style=padding-top: 35px> .Give your answer to 3 decimal places.
سؤال
If f and g are two continuous functions on a region R, then RfgdA=RfdARgdA\int _ { R } f \cdot g d A = \int _ { R } f d A \cdot \int _ { R } g d A .
سؤال
Consider the integral Consider the integral   . (a)Sketch the region of integration and rewrite the integral with order of integration reversed. (b)Rewrite the integral in polar coordinates.<div style=padding-top: 35px> .
(a)Sketch the region of integration and rewrite the integral with order of integration reversed.
(b)Rewrite the integral in polar coordinates.
سؤال
The joint density function for x, y is given by p(x,y)={1150ex/10ey/15x0,y00 otherwise p ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } & x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. Write down an iterated integral to compute the probability that x + y \le 10.You do not need to do the integral.

A) 0100101150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d ^ { } y d x
B) 010010x1150ex/10ey/15dxdy\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
C) 010010x1150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d y d x
D) 010010x110ex/10ey/15dyd2x\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 10 } e ^ { - x / 10 } e ^ { - y / 15 } d y d ^ { 2 } x
E) 010x0101150ex/10ey/15dxdy\int _ { 0 } ^ { 10 - x } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
سؤال
Let W be the part of the solid sphere of radius 4, centered at the origin, that lies above the plane z = 2.Express WzdV\int _ { W } z d V in
(a)Cartesian
(b)Cylindrical
(c)Spherical coordinates.
سؤال
Consider the integral Consider the integral   .Convert the integral to polar coordinates.<div style=padding-top: 35px> .Convert the integral to polar coordinates.
سؤال
Evaluate the integral Evaluate the integral   , where R is the region shown below.  <div style=padding-top: 35px> , where R is the region shown below. Evaluate the integral   , where R is the region shown below.  <div style=padding-top: 35px>
سؤال
Consider the region in 3-space bounded by the surface Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.<div style=padding-top: 35px> and the plane Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.<div style=padding-top: 35px> where Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.<div style=padding-top: 35px> .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.
سؤال
Convert the integral to polar coordinates. 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

A) π/43π/41/sinθ2f(rcosθ,rsinθ)drdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) d r d \theta
B) 03π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { 0 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
C) π/43π/412f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
D) π/43π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
E) π/43π/41/sinθ2f(rcosθ,rsinθ)rdθdr\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d \theta d r
سؤال
Evaluate the integral Evaluate the integral   in spherical coordinates.<div style=padding-top: 35px> in spherical coordinates.
سؤال
Find the mass of the solid cylinder Find the mass of the solid cylinder   ,   with density function  <div style=padding-top: 35px> , Find the mass of the solid cylinder   ,   with density function  <div style=padding-top: 35px> with density function Find the mass of the solid cylinder   ,   with density function  <div style=padding-top: 35px>
سؤال
Find the area of the part of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 .

A) 6565553π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi  <strong>Find the area of the part of the hyperbolic paraboloid  z = y ^ { 2 } - x ^ { 2 }  that lies between the cylinders  x ^ { 2 } + y ^ { 2 } = 1  and  x ^ { 2 } + y ^ { 2 } = 16  .</strong> A)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi    B)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi  C)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi  D)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi  E)  \frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi  <div style=padding-top: 35px>
B) 6556π\frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi
C) 6565556π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi
D) 6553π\frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi
E) 3265453π\frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi
سؤال
Evaluate the integral Evaluate the integral   in cylindrical coordinates.<div style=padding-top: 35px> in cylindrical coordinates.
سؤال
The function The function   has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.<div style=padding-top: 35px> has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.
سؤال
Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2)1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2)1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .

A) 8640π8640 \pi
B) 2160π2160 \pi
C) 24π24 \pi
D) 360π360 \pi
E) 360π3360 \pi ^ { 3 }
سؤال
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where  <div style=padding-top: 35px>
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/76
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 16: Integrating Functions of Several Variables
1
Set up but do not evaluate a (multiple)integral that gives the volume of the solid bounded above by the sphere x2+y2+z2=2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 and below by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

A) 111x21x2x2+y22x2y2dxdydz\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d x d y d z
B) 111x21x2x2y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - x ^ { 2 } - y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
C) 1101x2x2+y22x2y2\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{2-x^{2}-y^{2}}}dzdydx d z d y d x
D) 111x21x2x2+y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
E) 011x21x2x2+y22x2y2dzdydx\int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
111x21x2x2+y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
2
Estimate \int R f(x, y)dA using the table of values below, where R is the rectangle 0 \le x \le 4, 0 \le y \le 6
yx036023426434181412\begin{array}{c}y\\x\begin{array}{cccc}&0 & 3 & 6\\0 & 2 & 3 & 4 \\2 & 6 & 4 & 3 \\4 & 18 & 14 & 12\end{array}\end{array}
165
3
Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  and Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  respectively.Evaluate Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate
3
4
Consider the integral 159x45f(x,y)dydx\int _ { 1 } ^ { 5 } \int _ { 9 x } ^ { 45 } f ( x , y ) d y d x Rewrite the integral with the integration performed in the opposite order.

A) 9xA51y/9f(x,y)dxdy\int _ { 9 x } ^ { A 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
B) 9451y/9f(x,y)dydx\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d y d x
C) 9451y/9f(x,y)dxdy\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
D) 94510yf(x,y)dxdy\int _ { 9 } ^ { 45 } \int _ { 1 } ^ { 0 y } f ( x , y ) d x d y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
5
Evaluate the iterated integral. Evaluate the iterated integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
6
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 0603cos4ysin(4x+5)dxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \cos 4 y \sin ( 4 x + 5 ) d x d y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
7
Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate   exactly and then give an answer rounded to 4 decimal places. exactly and then give an answer rounded to 4 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
8
Evaluate the iterated integral. Evaluate the iterated integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
9
Reverse the order of integration for the following integral. 13x294x12f(x,y)dydx\int _ { 1 } ^ { 3 } \int _ { x ^ { 2 } - 9 } ^ { 4 x - 12 } f ( x , y ) d y d x

A) 08(y+12)/4y+9f(x,y)dxdy\int _ { 0 } ^ { 8 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
B) 80(y+12)/4y+9f(x,y)dydx\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d y d x
C) 80(y+12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
D) 80y+9(y+12)/4f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { \sqrt { y + 9 } } ^ { ( y + 12 ) / 4 } f ( x , y ) d x d y
E) 80(y12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y - 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
10
Evaluate Evaluate   by first reversing the order of integration. by first reversing the order of integration.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
11
Let f(x, y)be a positive function of x and y which is independent of x, that is, f(x, y)= g(y)for some one-variable function g.Suppose that 03g(x)dx=10\int _ { 0 } ^ { 3 } g ( x ) d x = 10 and 010g(x)dx=1\int _ { 0 } ^ { 10 } g ( x ) d x = 1 .
Find RfdA\int _ { R } f d A , where R is the rectangle 0 \le x \le 3, 0 \le y \le 10.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
12
Let R1 be the region 0 \le x \le 3, -2 \le y \le 4, and let R2 be the region 3 \le x \le 5, -2 \le y \le 4.Suppose that the average value of f over R1 is 6 and the average value over R2 is 7.
Find the average value of f over R, 0x5,2y20 \leq x \leq 5 , - 2 \leq y \leq 2 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
13
True or false?
If f is any two-variable function, then RfdA=2SfdA\int _ { R } f d A = 2 \int _ { S } f d A , where R is the rectangle 0 \le x \le 2, 0 \le y \le 1 and S is the square 0 \le x, y \le 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the volume of the region under the graph of Find the volume of the region under the graph of   and above the region  and above the region Find the volume of the region under the graph of   and above the region
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find a region R such that double integral R(2x2y2)dA\int _ { R } \left( 2 - x ^ { 2 } - y ^ { 2 } \right) d A has the largest value.

A) x2y22x ^ { 2 } - y ^ { 2 } \leq 2
B) x2y22x ^ { 2 } - y ^ { 2 } \geq 2
C) x2+y22x ^ { 2 } + y ^ { 2 } \leq 2
D) x2+y22x ^ { 2 } + y ^ { 2 } \geq 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the volume under the graph of Find the volume under the graph of   lying over the triangle with vertices (0, 0), (2, 2)and (4, 0). lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
17
Reverse the order of integration for the following integral. 02y28yf(x,y)c2xdy\int _ { 0 } ^ { 2 } \int _ { y ^ { 2 } } ^ { \sqrt { 8 y } } f ( x , y ) c ^ { 2 } x d y

A) 02x2/8xf(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
B) 04x2/8xf(x,y)dxdy\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d x d y
C) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { x } f ( x , y ) d y d x
D) 048x2xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { 8 x ^ { 2 } } ^ { \sqrt { x } } f ( x , y ) d y d x
E) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
18
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 010z0yx2y5z5dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { z } \int _ { 0 } ^ { y } x ^ { 2 } y ^ { 5 } z ^ { 5 } d x d y d z
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
19
The function The function   has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a. has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
20
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 340yy2exydxdy\int _ { 3 } ^ { 4 } \int _ { 0 } ^ { y } y ^ { 2 } e ^ { x y } d x d y

A) 12(7e9+e16)\frac { 1 } { 2 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
B) 12(25e9+e16)\frac { 1 } { 2 } \left( 25 - e ^ { 9 } + e ^ { 16 } \right)
C) 12(7+e9e16)\frac { 1 } { 2 } \left( - 7 + e ^ { 9 } - e ^ { 16 } \right)
D) 13(7e9+e16)\frac { 1 } { 3 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
21
Set up an iterated integral for Wf(x,y,z)dV\int _ { W } f ( x , y , z ) d V , where W is the solid region bounded below by the rectangle 0 \le x \le 3, 0 \le y \le 1 and above by the surface z2+y2=1z ^ { 2 } + y ^ { 2 } = 1

A) Wf(x,y,z)dV=030101y2f(x,y,z)dzcxαdy\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z c x \alpha d y
B) Wf(x,y,z)dV=030101y2f(x,y,z)dydzdx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d z d x
C) Wf(x,y,z)dV=030101y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
D) Wf(x,y,z)dV=03011y21y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
E) Wf(x,y,z)dV=03011y21y2f(x,y,z)dydxdz\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d x d z
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
22
A cylindrical tube of radius 2cm and length 3cm contains a gas.As the tube spins around its axis, the density of the gas increases as you get farther from the axis.The density, D, at a distance of r cm from the axis is D(r)= 1 +9 r gm/cc.
Write a triple integral representing the total mass of the gas in the tube and evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
23
Set up (but do not evaluate)an iterated integral to compute the mass of the solid paraboloid bounded by z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z = 1, if the density is given by δ\delta (x, y, z)= z2.

A)  Mass =111x21x2x2+y21z2dzdxdy\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d x d y
B)  Mass =0101x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
C) Mass=111x21x201z2dzdydx\operatorname { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { 0 } ^ { 1 } z ^ { 2 } d z d y d x
D)  Mass =111x21x2x2+y21z2dzdydx\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
E)  Mass =011x21x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
24
Compute the area of the flower-like region bounded by r = 6 + 3 cos (8 θ\theta ).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
25
Find the triple integral of the function f(x, y, z)= xy sin (18yz)over the rectangular box 0 \le x \le π\pi , 0 \le y \le 1, 0 \le z \le π\pi /6.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
26
Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  <strong>Set up the three-dimensional integral  \int _ { R } y d V  where R is the ice-cream cone enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.  </strong> A)  \int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta  B)  \int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta  C)  \int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x

A) Ryd V=02π013r4r2r2sinθdzdrdθ\int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta
B) RydV=02π0π/602ρ3sinθsin2ϕdρdϕdθ\int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta
C) RydV=111x21x23x2+3y24x2y2ydzdydx\int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
27
Consider the volume between a cone centered along the positive z-axis, with vertex at the origin and containing the point (0, 1, 1), and a sphere of radius 3 centered at the origin.
Write a triple integral which represents this volume and evaluate it.Use spherical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
28
Calculate the following integral: Calculate the following integral:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
29
Calculate the following integral: Calculate the following integral:   where R is the shaded region shown below. ·  where R is the shaded region shown below.
· Calculate the following integral:   where R is the shaded region shown below. ·
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
30
Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass. .If the density of this solid at a point (x, y, z)is given by Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass. , find its mass.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
31
A solid is bounded below by the triangle z = 0, x \ge 0, y \ge 0, x + y \le 1 and above by the plane z = x + 6y + 2.If the density of the solid is given by δ\delta (x, y, z)= z, find its mass.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
32
Evaluate Evaluate   Provide an exact answer. Provide an exact answer.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
33
For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region. For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
34
Evaluate the integral Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles  , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
35
Let R be the ice-cream cone lying inside the sphere Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R. and inside the cone Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R. .Find the center of mass of R.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
36
Evaluate exactly the integral Evaluate exactly the integral   , where R is the region shown below.  , where R is the region shown below. Evaluate exactly the integral   , where R is the region shown below.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
37
Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it). Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
38
Evaluate the iterated integral Evaluate the iterated integral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the volume of the solid bounded by the paraboloid Find the volume of the solid bounded by the paraboloid   and the plane z = 1. and the plane z = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
40
Convert the integral Convert the integral   to polar coordinates and hence evaluate it exactly. to polar coordinates and hence evaluate it exactly.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
41
Let x and y have joint density function Let x and y have joint density function   Find the probability that x > y +0.4. Find the probability that x > y +0.4.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
42
Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region. <strong>Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region.  </strong> A)spherical coordinates B)cylindrical coordinates C)rectangular coordinates D)None of the above.

A)spherical coordinates
B)cylindrical coordinates
C)rectangular coordinates
D)None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
43
Evaluate the integral Evaluate the integral   in spherical coordinates. in spherical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
44
Evaluate Evaluate   where W is the first octant portion of the ball of radius 3 centered at the origin. where W is the first octant portion of the ball of radius 3 centered at the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
45
Let W be the region between the cylinders Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  and Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  in the first octant and under the plane z = 1.Evaluate Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
46
Rewrite the integral Rewrite the integral   in spherical coordinates.You do not have to evaluate the integral. in spherical coordinates.You do not have to evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
47
Evaluate the integral by interchanging the order of integration. Evaluate the integral by interchanging the order of integration.   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
48
Let x and y have joint density function p(x,y)={x+y if 0x1,0y10 otherwise p ( x , y ) = \left\{ \begin{array} { l l } x + y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\0 & \text { otherwise }\end{array} \right. Find the probability that 0.5 \le x \le 0.6.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
49
Consider the change of variables x = s + 3t, y = s - 2t.
Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R.
Use the change of variables to evaluate R2x+3ydA\int _ { R } 2 x + 3 y d A
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
50
The joint density function for x, y is given by The joint density function for x, y is given by   Find the probability that (x, y)satisfies  Find the probability that (x, y)satisfies The joint density function for x, y is given by   Find the probability that (x, y)satisfies
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
51
An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by   What is the probability that the arrow strikes within 0.45 feet of the center of the target. What is the probability that the arrow strikes within 0.45 feet of the center of the target.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the mass of the solid cylinder Find the mass of the solid cylinder   with density function  with density function Find the mass of the solid cylinder   with density function
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
53
Evaluate the integral Evaluate the integral   .Give your answer to two decimal places. .Give your answer to two decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where p(x,y)={ax+by,0x8,0y80 otherwise p ( x , y ) = \left\{ \begin{array} { c l } a x + b y , & 0 \leq x \leq 8,0 \leq y \leq 8 \\0 & \text { otherwise }\end{array} \right.

A) a+b=1256a + b = \frac { 1 } { 256 }
B) a+b=132a + b = \frac { 1 } { 32 }
C) a+b<1256a + b < \frac { 1 } { 256 }
D)a=b
E) a+b=1512a + b = \frac { 1 } { 512 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
55
Consider the change of variables x = s + 5t, y = s - 3t.
Find the absolute value of the Jacobian Consider the change of variables x = s + 5t, y = s - 3t. Find the absolute value of the Jacobian   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
56
Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2)dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A

A)240 π\pi
B)3240 π\pi
C)162 π\pi
D)1620 π\pi
E)1620
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
57
Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is   After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet. After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
58
Evaluate the integral Evaluate the integral   in cylindrical coordinates. in cylindrical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
59
The region W is shown below.Write the limits of integration for wf(x,y,z)dV\int _ { w } f ( x , y , z ) d V in spherical coordinates.  <strong>The region W is shown below.Write the limits of integration for  \int _ { w } f ( x , y , z ) d V  in spherical coordinates.  </strong> A)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta  B)  \int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x  C)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta

A) Wf(x,y,z)dV=0ππ/2π01f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕdρdϕdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta
B) Wf(x,y,z)dV=1101x21x2y20f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x
C) Wf(x,y,z)dV=0π011r20f(rcosθ,rsinθ,z)rdzdrdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
60
Let R be the region in the first quadrant bounded between the circle Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  and the two axes.Then Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  Let Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  be the region in the first quadrant bounded between the ellipse Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
61
The joint density function for random variables x and y is The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places. Find the probability The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places. .Give your answer to 3 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
62
If f and g are two continuous functions on a region R, then RfgdA=RfdARgdA\int _ { R } f \cdot g d A = \int _ { R } f d A \cdot \int _ { R } g d A .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
63
Consider the integral Consider the integral   . (a)Sketch the region of integration and rewrite the integral with order of integration reversed. (b)Rewrite the integral in polar coordinates. .
(a)Sketch the region of integration and rewrite the integral with order of integration reversed.
(b)Rewrite the integral in polar coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
64
The joint density function for x, y is given by p(x,y)={1150ex/10ey/15x0,y00 otherwise p ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } & x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. Write down an iterated integral to compute the probability that x + y \le 10.You do not need to do the integral.

A) 0100101150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d ^ { } y d x
B) 010010x1150ex/10ey/15dxdy\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
C) 010010x1150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d y d x
D) 010010x110ex/10ey/15dyd2x\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 10 } e ^ { - x / 10 } e ^ { - y / 15 } d y d ^ { 2 } x
E) 010x0101150ex/10ey/15dxdy\int _ { 0 } ^ { 10 - x } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
65
Let W be the part of the solid sphere of radius 4, centered at the origin, that lies above the plane z = 2.Express WzdV\int _ { W } z d V in
(a)Cartesian
(b)Cylindrical
(c)Spherical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
66
Consider the integral Consider the integral   .Convert the integral to polar coordinates. .Convert the integral to polar coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
67
Evaluate the integral Evaluate the integral   , where R is the region shown below.  , where R is the region shown below. Evaluate the integral   , where R is the region shown below.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
68
Consider the region in 3-space bounded by the surface Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane. and the plane Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane. where Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane. .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
69
Convert the integral to polar coordinates. 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

A) π/43π/41/sinθ2f(rcosθ,rsinθ)drdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) d r d \theta
B) 03π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { 0 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
C) π/43π/412f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
D) π/43π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
E) π/43π/41/sinθ2f(rcosθ,rsinθ)rdθdr\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d \theta d r
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
70
Evaluate the integral Evaluate the integral   in spherical coordinates. in spherical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find the mass of the solid cylinder Find the mass of the solid cylinder   ,   with density function  , Find the mass of the solid cylinder   ,   with density function  with density function Find the mass of the solid cylinder   ,   with density function
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the area of the part of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 .

A) 6565553π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi  <strong>Find the area of the part of the hyperbolic paraboloid  z = y ^ { 2 } - x ^ { 2 }  that lies between the cylinders  x ^ { 2 } + y ^ { 2 } = 1  and  x ^ { 2 } + y ^ { 2 } = 16  .</strong> A)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi    B)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi  C)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi  D)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi  E)  \frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi
B) 6556π\frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi
C) 6565556π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi
D) 6553π\frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi
E) 3265453π\frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
73
Evaluate the integral Evaluate the integral   in cylindrical coordinates. in cylindrical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
74
The function The function   has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k. has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
75
Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2)1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2)1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .

A) 8640π8640 \pi
B) 2160π2160 \pi
C) 24π24 \pi
D) 360π360 \pi
E) 360π3360 \pi ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 76 في هذه المجموعة.