Deck 17: Parameterization and Vector Fields

ملء الشاشة (f)
exit full mode
سؤال
Find parametric equations for the line through the point (1, 5, 2)and parallel to the vector Find parametric equations for the line through the point (1, 5, 2)and parallel to the vector   in which the particle is moving with speed 24 (the parameter t represents time).<div style=padding-top: 35px> in which the particle is moving with speed 24 (the parameter t represents time).
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Let f(x, y, z)= xy + 6yz + zx.Then f(2, 2, 3)= 46.
Give an equation to the tangent plane to xy + 6yz + zx = 46.
سؤال
Find a parametric equation for the line which passes through the point (5, 1, -1)and is parallel to the line Find a parametric equation for the line which passes through the point (5, 1, -1)and is parallel to the line   .<div style=padding-top: 35px> .
سؤال
Which of the following equations give alternate parameterizations of the line L parameterized by r=(1+2t)i+(2+2t)j(1+4t)k?\vec { r } = ( 1 + 2 t ) \vec { i } + ( 2 + 2 t ) \vec { j } - ( 1 + 4 t ) \vec { k } ?

A) r=(1+t)itj+(3+2t)k\vec { r } = - ( 1 + t ) \vec { i } - t \vec { j } + ( 3 + 2 t ) \vec { k }
B) r=(32t)i+(22t)j+(34t)k\vec { r } = ( 3 - 2 t ) \vec { i } + ( 2 - 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k }
C) r=(2+3t)i+(1+3t)j+(16t)k\vec { r } = ( 2 + 3 t ) \vec { i } + ( 1 + 3 t ) \vec { j } + ( 1 - 6 t ) \vec { k }
سؤال
Write down a parameterization of the line through the points (2, 2, 4)and (6, 4, 2).Select all that apply.

A) r=2i+2j+4k+t(4i+2j2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 4 \vec { i } + 2 \vec { j } - 2 \vec { k } )
B) r=2i+2j+4k+t(4i2j2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 4 \vec { i } - 2 \vec { j } - 2 \vec { k } )
C) r=2i+2j+4k+t(4i+2j+2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 4 \vec { i } + 2 \vec { j } + 2 \vec { k } )
D) r=2i+2j+4kt(4i+2j2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } - t ( 4 \vec { i } + 2 \vec { j } - 2 \vec { k } )
E) r=2i+2j+4k+t(2i+jk)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 2 \vec { i } + \vec { j } - \vec { k } )
سؤال
Consider the plane x - 4y + 4z = 5 and the line x = a + bt, y = 2 + 2t, z = 5 - t.
Find the values of a and b such that the line lies in the plane.
سؤال
Describe the similarities and differences between the following two curves.  Curve 1: r(t)=(3+3t)i+(1t)j+(3+4t)k,t\text { Curve 1: } \vec { r } ( t ) = ( 3 + 3 t ) \vec { i } + ( 1 - t ) \vec { j } + ( 3 + 4 t ) \vec { k } , - \infty \leq t \leq \infty \text {, }  Curve 2: r(t)=(3+3t2)i+(1t2)j+(3+4t2)k,t\text { Curve 2: } \vec { r } ( t ) = \left( 3 + 3 t ^ { 2 } \right) \vec { i } + \left( 1 - t ^ { 2 } \right) \vec { j } + \left( 3 + 4 t ^ { 2 } \right) \vec { k } , - \infty \leq t \leq \infty \text {. }
سؤال
Find a parameterization of a curve that looks like sin y = z when viewed from the x-axis, and looks like x = z2 when viewed from the y-axis.See the shadows drawn on the planes in the following picture. Find a parameterization of a curve that looks like sin y = z when viewed from the x-axis, and looks like x = z<sup>2 </sup>when viewed from the y-axis.See the shadows drawn on the planes in the following picture.   What does the curve look like when viewed from the z-axis?<div style=padding-top: 35px> What does the curve look like when viewed from the z-axis?
سؤال
Find a parameterization for the circle of radius 4 in the xz-plane, centered at the point (3, 0, -5).Select all that apply.

A) x=3+4cost,y=0,z=5+4sintx = 3 + 4 \cos t , y = 0 , z = 5 + 4 \sin t
B) r=(3i5k)+4(costi+sintk)\vec { r } = ( 3 \vec { i } - 5 \vec { k } ) + 4 ( \cos t \vec { i } + \sin t \vec { k } )
C) x=34sint,y=0,z=5+4costx = 3 - 4 \sin t , y = 0 , z = - 5 + 4 \cos t
D) r=(5i3k)+4(costi+sintk)\vec { r } = ( 5 \vec { i } - 3 \vec { k } ) + 4 ( \cos t \vec { i } + \sin t \vec { k } )
E) x=3+4cost,y=0,z=5+4sintx = 3 + 4 \cos t , y = 0 , z = - 5 + 4 \sin t
سؤال
What curve, C, is traced out by the parameterization r=2i+(cost)j+(sint)k\vec { r } = 2 \vec { i } + ( \cos t ) \vec { j } + ( \sin t ) \vec { k } for 0 \le t \le 2 π\pi ?
Either give a very complete verbal description or sketch the curve (or both).
سؤال
The line through the points (2, 5, 25)and (12, 7, 23)can be parameterized by The line through the points (2, 5, 25)and (12, 7, 23)can be parameterized by   . What value of t gives the point (42, 13, 17)?<div style=padding-top: 35px> .
What value of t gives the point (42, 13, 17)?
سؤال
Give parameterizations for a circle of radius 2 in the plane, centered at origin, traversed anticlockwise.

A) x=cost,y=sint,0t2πx = \cos t , y = \sin t , 0 \leq t \leq 2 \pi
B) x=4cost,y=4sint,0t2πx = 4 \cos t , y = 4 \sin t , 0 \leq t \leq 2 \pi
C) x=2cost,y=2sint,0t2πx = 2 \cos t , y = - 2 \sin t , \quad 0 \leq t \leq 2 \pi
D) x=2cost,y=2sint,0t2πx = 2 \cos t , y = 2 \sin t , 0 \leq t \leq 2 \pi
E) x=2cost,y=2sint,0tπx = 2 \cos t , y = 2 \sin t , \quad 0 \leq t \leq \pi
سؤال
Find a parameterization for the curve y6 = x7 in the xy-plane.Select all that apply.

A) x=t7/6,y=tx = t ^ { 7 / 6 } , y = t
B) x=t6,y=t7x = t ^ { 6 } , y = t ^ { 7 }
C) x=t6/7,y=tx = t ^ { 6 / 7 } , y = t
D) x=t7,y=t6x = t ^ { 7 } , y = t ^ { 6 }
E) x=t,y=t6/7x=t, y=t^{6 / 7}
سؤال
Suppose z = f(x, y), f(1, 3)= 5 and f(1,3)=4i+5j\nabla f ( 1,3 ) = 4 \vec { i } + 5 \vec { j } the vector 4i+5j+k- 4 \vec { i } + 5 \vec { j } + \vec { k } is perpendicular to the graph of f(x, y)at the point (1, 3).
سؤال
The equation The equation   parameterizes a line through the point (4, 3, 7). What is the value of t at this point?<div style=padding-top: 35px> parameterizes a line through the point (4, 3, 7).
What is the value of t at this point?
سؤال
Consider the plane x - 4y + -2z = 5 and the line x = a + bt, y = 2 + -2t, z = 2 - t.
Find the value of b such that the line is perpendicular to the plane.
سؤال
Find parametric equations for a line through the points, A = (-2, 5, 4)and B = (-2, 25, 9)so that the point A corresponds to t = 0 and the point B to t = 5.
سؤال
Consider the plane Consider the plane   and the line with parametric equation   Give a value of   which makes the line parallel to the plane.(There are many possible answers.)<div style=padding-top: 35px> and the line with parametric equation Consider the plane   and the line with parametric equation   Give a value of   which makes the line parallel to the plane.(There are many possible answers.)<div style=padding-top: 35px> Give a value of Consider the plane   and the line with parametric equation   Give a value of   which makes the line parallel to the plane.(There are many possible answers.)<div style=padding-top: 35px> which makes the line parallel to the plane.(There are many possible answers.)
سؤال
Give parameterizations for a circle of radius 3 in 3-space perpendicular to the y-axis centered at (4, -2, 0).

A) x=4+3cost,y=2,z=3sint,0t2πx = 4 + 3 \cos t , y = - 2 , z = 3 \sin t , \quad 0 \leq t \leq 2 \pi
B) x=4+3cost,y=2,z=3sint,0tπx = 4 + 3 \cos t , y = - 2 , z = 3 \sin t , \quad 0 \leq t \leq \pi
C) x=4+3cost,y=3sint,z=2,0t2πx = 4 + 3 \cos t , y = 3 \sin t , z = - 2 , \quad 0 \leq t \leq 2 \pi
D) x=4+3cost,z=3sint,0t2πx = 4 + 3 \cos t , \quad z = 3 \sin t , \quad 0 \leq t \leq 2 \pi
E) x=3cost,y=2,z=3sint,0t2πx = 3 \cos t , y = - 2 , z = 3 \sin t , \quad 0 \leq t \leq 2 \pi
سؤال
A child is sliding down a helical slide.Her position at time t after the start is given in feet by r=costi+sintj+(12t)k\vec { r } = \cos t \vec { i } + \sin t \vec { j } + ( 12 - t ) \vec { k } .The ground is the xy-plane.
At time t = 2 π\pi , the child leaves the slide on the tangent to the slide at that point.What is the equation of the tangent line?
سؤال
Write a formula for a vector field Write a formula for a vector field   whose vectors are parallel to the x-axis and point away from the y-axis, with magnitude inversely proportional to the cube of the distance from the x-axis.<div style=padding-top: 35px> whose vectors are parallel to the x-axis and point away from the y-axis, with magnitude inversely proportional to the cube of the distance from the x-axis.
سؤال
Find the coordinates of the point where the line tangent to the curve Find the coordinates of the point where the line tangent to the curve   at the point (4, 16, 64)crosses the xy-plane.<div style=padding-top: 35px> at the point (4, 16, 64)crosses the xy-plane.
سؤال
A particle moves at a constant speed along a line through P = (10,-20, 22)and Q = (22, -46, 46).Find a parametric equation for the line if the particle passes through P at time t = 3 and passes through Q at time t = 7.
سؤال
Calculate the length of the curve Calculate the length of the curve   from x = -3 to x = 3.<div style=padding-top: 35px> from x = -3 to x = 3.
سؤال
A particle moves with position vector r(t)=lnti+t1j+etk\vec { r } ( t ) = \ln t \vec { i } + t ^ { - 1 } \vec { j } + e ^ { - t } \vec { k } . Describe the movement of the particle as t \rightarrow \infty .

A)The particle will approach the positive x-axis asymptotically as t \rightarrow \infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive y-axis with slower and slower speed.
B)The particle will approach the positive y-axis asymptotically as t \rightarrow\infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive x-axis with slower and slower speed.
C)The particle will approach the positive x-axis asymptotically as t \rightarrow \infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive x-axis with increasing speed.
D)The particle will approach the positive x-axis asymptotically as t \rightarrow\infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive x-axis with slower and slower speed.
E)The particle will approach the positive x-axis asymptotically as t \rightarrow \infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive z-axis with slower and slower speed.
سؤال
The equation The equation   describes the motion of a particle moving on a circle.Assume x and y are in miles and t is in days. What is the speed of the particle when it passes through the point (0, 2)?<div style=padding-top: 35px> describes the motion of a particle moving on a circle.Assume x and y are in miles and t is in days.
What is the speed of the particle when it passes through the point (0, 2)?
سؤال
Let f(x, y)be a function that depends on only one of the variables, that is, of the form f(x, y)= g(x)or f(x, y)= g(y). Could the following picture be the gradient of f? <strong>Let f(x, y)be a function that depends on only one of the variables, that is, of the form f(x, y)= g(x)or f(x, y)= g(y). Could the following picture be the gradient of f?  </strong> A)No B)Yes C)Not possible to say <div style=padding-top: 35px>

A)No
B)Yes
C)Not possible to say
سؤال
The parametric vector form of the position of a roller coaster is r(t)=30sin(t)i+30cos(t)j+15cos(t)k\vec { r } ( t ) = 30 \sin ( t ) \vec { i } + 30 \cos ( t ) \vec { j } + 15 \cos ( t ) \vec { k } Answer the following questions about the ride.
(a)The scariest point of the ride is when it is traveling fastest.For which value of t > 0 does this occur first?
(b)Does the velocity vector of the roller coaster ever point directly downward?
سؤال
Match the vector field F(x,y)=xi+yj\vec{F}(x, y)=x \vec{i}+y \vec{j} with the descriptions (a)-(d).

A)A swirling in a clockwise direction.
B)An attractive force field pointing toward the origin.
C)A repulsive force field pointing away from the origin.
D)A swirling in a counter-clockwise direction.
سؤال
A vector field A vector field   is shown below.   Find  <div style=padding-top: 35px> is shown below. A vector field   is shown below.   Find  <div style=padding-top: 35px> Find A vector field   is shown below.   Find  <div style=padding-top: 35px>
سؤال
For the following vector field, identify which one of the following formulas could represent it. The scales in the x and y directions are the same.No reasons need be given.  <strong>For the following vector field, identify which one of the following formulas could represent it. The scales in the x and y directions are the same.No reasons need be given.  </strong> A)  \vec { i } + x \vec { j }  B)  x ^ { 2 } \vec { i } + x y \vec { j }  C)  y \vec { i }  D)  x \vec { i } + y \vec { j }  <div style=padding-top: 35px>

A) i+xj\vec { i } + x \vec { j }
B) x2i+xyjx ^ { 2 } \vec { i } + x y \vec { j }
C) yiy \vec { i }
D) xi+yjx \vec { i } + y \vec { j }
سؤال
Answer the following as "true", "false" or "need more information".
If a particle moves with velocity Answer the following as true, false or need more information. If a particle moves with velocity   , then the particle stops at the origin.<div style=padding-top: 35px> , then the particle stops at the origin.
سؤال
The path of an object moving in xyz-space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object..<div style=padding-top: 35px> .
The temperature at a point (x, y, z)in space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object..<div style=padding-top: 35px> Calculate the directional derivative of f in the direction of The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object..<div style=padding-top: 35px> at the point (12, 3, 8), where The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object..<div style=padding-top: 35px> is the velocity vector of the object..
سؤال
Find a parameterization of the curve Find a parameterization of the curve   and use it to calculate the path length of this curve from (0, 0)to (1, 1).<div style=padding-top: 35px> and use it to calculate the path length of this curve from (0, 0)to (1, 1).
سؤال
The path of an object moving in xyz-space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate   .<div style=padding-top: 35px> .
The temperature at a point (x, y, z)in space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate   .<div style=padding-top: 35px> Calculate The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate   .<div style=padding-top: 35px> .
سؤال
Let Let   and let C be the helix parameterized by   Find an expression for the outward pointing normal vector whose   component is 0 at an arbitrary point ( sin(t), cos(t), t)of C.<div style=padding-top: 35px> and let C be the helix parameterized by Let   and let C be the helix parameterized by   Find an expression for the outward pointing normal vector whose   component is 0 at an arbitrary point ( sin(t), cos(t), t)of C.<div style=padding-top: 35px> Find an expression for the outward pointing normal vector whose Let   and let C be the helix parameterized by   Find an expression for the outward pointing normal vector whose   component is 0 at an arbitrary point ( sin(t), cos(t), t)of C.<div style=padding-top: 35px> component is 0 at an arbitrary point ( sin(t), cos(t), t)of C.
سؤال
Sketch the vector fields v=xi\vec { v } = x \vec { i }

A)  Neither is correct. \text { Neither is correct. }
B)  <strong>Sketch the vector fields  \vec { v } = x \vec { i } </strong> A)  \text { Neither is correct. }  B)   C)   <div style=padding-top: 35px>
C)  <strong>Sketch the vector fields  \vec { v } = x \vec { i } </strong> A)  \text { Neither is correct. }  B)   C)   <div style=padding-top: 35px>
سؤال
An object moves with constant velocity in 3-space.It passes through (4, 0, 1)at time t = 1 and through (13, 6, -11)at time t = 4.Find its velocity vector.
سؤال
The figure below shows the contour map of a function z = f(x, y).  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)   <div style=padding-top: 35px>  Let F\vec{F} be the gradient vector field of f, i.e., F= gradf \vec{F}=\text { gradf } Which of the vector fields show F?\vec { F } ?

A)  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)   <div style=padding-top: 35px>
B)  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)   <div style=padding-top: 35px>
C)  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)   <div style=padding-top: 35px>
سؤال
A particle moves at a constant speed along a line through P = (7,-14, 13)and Q = (19, -37, 37).Find a parametric equation for the line if:
The speed of the particle is 9 units per second and it is moving in the direction of A particle moves at a constant speed along a line through P = (7,-14, 13)and Q = (19, -37, 37).Find a parametric equation for the line if: The speed of the particle is 9 units per second and it is moving in the direction of   .<div style=padding-top: 35px> .
سؤال
Let Let   be a constant velocity field. Find the flow line of   that passes through the origin at time t = 2.<div style=padding-top: 35px> be a constant velocity field.
Find the flow line of Let   be a constant velocity field. Find the flow line of   that passes through the origin at time t = 2.<div style=padding-top: 35px> that passes through the origin at time t = 2.
سؤال
Consider the plane r(s,t)=(4+s4t)i+(5s+4t)j+(64ts)k\vec { r } ( s , t ) = ( - 4 + s - 4 t ) \vec { i } + ( 5 - s + 4 t ) \vec { j } + ( 6 - 4 t - s ) \vec { k } Does it contain the point (-7, 8, -7)?
سؤال
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4).
Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
In each case, give a parameterization Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4). Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder). In each case, give a parameterization   and specify the range of values your parameters must take on. (i)the circle in which the cylinder, S, cuts the plane, P. (ii)the surface of the cylinder S.<div style=padding-top: 35px> and specify the range of values your parameters must take on.
(i)the circle in which the cylinder, S, cuts the plane, P.
(ii)the surface of the cylinder S.
سؤال
Let v1=2i1j+k\vec { v } _ { 1 } = 2 \vec { i } - 1 \vec { j } + \vec { k } and v2=1i+j+k\vec { v } _ { 2 } = 1 \vec { i } + \vec { j } + \vec { k } Find a parametric equation for the plane through the point (1, 2, -1)and containing the vectors v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } Select all that apply.

A) x=1+2t+1s,y=21t+s,z=1+t+sx = 1 + 2 t + 1 s , y = 2 - 1 t + s , z = - 1 + t + s
B) x=1+2t1s,y=21ts,z=1+tsx = 1 + 2 t - 1 s , y = 2 - 1 t - s , z = - 1 + t - s
C) x=1+2t+1s,y=21t+s,z=1+t+sx = - 1 + 2 t + 1 s , y = - 2 - 1 t + s , z = 1 + t + s
D) x=12t+1s,y=2+1t+s,z=1t+sx = 1 - 2 t + 1 s , y = 2 + 1 t + s , z = - 1 - t + s
سؤال
Suppose
Suppose   Find a function f(x, y, z) of three variables with the property that the vectors in   on a level surface of f (x, y, z) are perpendicular to the level surface of  f(x, y, z) at each point.  <div style=padding-top: 35px>
Find a function f(x, y, z) of three variables with the property that the vectors in Suppose   Find a function f(x, y, z) of three variables with the property that the vectors in   on a level surface of f (x, y, z) are perpendicular to the level surface of  f(x, y, z) at each point.  <div style=padding-top: 35px> on a level surface of f (x, y, z) are perpendicular to the level surface of f(x, y, z) at each point.

سؤال
Find the parametric equation of the plane through the point (5, 2, 2)and parallel to the lines r(t)=(12t)i+(5+2t)j+(34t)k\vec { r } ( t ) = ( 1 - 2 t ) \vec { i } + ( 5 + 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k } and s(t)=(34t)i+4tj+(42t)k\vec { s } ( t ) = ( 3 - 4 t ) \vec { i } + 4 t \vec { j } + ( 4 - 2 t ) \vec { k }
Select all that apply.

A) x=52u4v,y=2+2u+4v,z=24u2vx = 5 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 2 - 4 u - 2 v
B) x=52u4v,y=2+2u+4v,z=2+4u2vx = 5 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 2 + 4 u - 2 v
C) x=52u+4v,y=2+2u4v,z=24u+2vx = 5 - 2 u + 4 v , y = 2 + 2 u - 4 v , z = 2 - 4 u + 2 v
D) x=2u4v,y=2u+4v,z=4u2vx = - 2 u - 4 v , y = 2 u + 4 v , z = - 4 u - 2 v
E) x=52u4v,y=2+2u+4v,z=24u2vx = 5 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 2 - 4 u - 2 v .
سؤال
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4).
Find the xyz-equation of the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
سؤال
Match the surface with its parameterization below.  <strong>Match the surface with its parameterization below.  </strong> A)  \cos t \vec { i } + ( s + t ) \vec { j } + \sin t \vec { k }  B)  s \vec { i } + ( s + t ) \vec { j } + t ^ { 2 } \vec { k }  C)  s \vec { i } + s \cos t \vec { j } + s \sin t \vec { k }  D)  s \vec { i } + \left( s + t ^ { 3 } \right) \vec { j } + ( s + t ) \vec { k }  <div style=padding-top: 35px>

A) costi+(s+t)j+sintk\cos t \vec { i } + ( s + t ) \vec { j } + \sin t \vec { k }
B) si+(s+t)j+t2ks \vec { i } + ( s + t ) \vec { j } + t ^ { 2 } \vec { k }
C) si+scostj+ssintks \vec { i } + s \cos t \vec { j } + s \sin t \vec { k }
D) si+(s+t3)j+(s+t)ks \vec { i } + \left( s + t ^ { 3 } \right) \vec { j } + ( s + t ) \vec { k }
سؤال
Find parametric equations for the cylinder y2+z2=16y ^ { 2 } + z ^ { 2 } = 16

A) r(s,θ)=4cosθi+4sinθj\vec { r } ( s , \theta ) = 4 \cos \overrightarrow { \theta i } + 4 \sin \theta \vec { j }
B) r(s,θ)=4cosθi+4sinθj+sk\vec { r } ( s , \theta ) = 4 \cos \theta \vec { i } + 4 \sin \theta \vec { j } + s \vec { k }
C) r(s,θ)=s+16cosθj+16sinθk\vec { r } ( s , \theta ) = \vec { s } + 16 \cos \theta \vec { j } + 16 \sin \theta \vec { k }
D) r(s,θ)=si+4cosθj+4sinθk\vec { r } ( s , \theta ) = \operatorname { si } + 4 \cos \theta \vec { j } + 4 \sin \theta \vec { k }
E) r(s,θ)=si+4cosθj+4cosθk\vec { r } ( s , \theta ) = \operatorname { si } + 4 \cos \theta \vec { j } + 4 \cos \theta \vec { k }
سؤال
Let Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> Find a vector which is perpendicular to Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px> .Express your answer in the form Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  <div style=padding-top: 35px>
سؤال
Find an equation for a vector field with all of the following properties.
• Defined at all points except (1, -5)
• All vectors have length 1.
• All vectors point away from the point (1, -5).
سؤال
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7).
Find two unit vectors Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.<div style=padding-top: 35px> and Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.<div style=padding-top: 35px> in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.
سؤال
The following equations represent a curve or a surface.Select the best geometric description. (Note: ρ\rho , φ\varphi , θ\theta are spherical coordinates; r, θ\theta , z are cylindrical coordinates.) x=t,y=2t,z=3t,0t10x = t , y = 2 t , z = 3 t , 0 \leq t \leq 10

A)Part of a line through the origin
B)Part of a cylinder.
C)Part of a cone.
D)Disk
سؤال
Find parametric equations for the cylinder 49x2+11y2=539,7z1149 x ^ { 2 } + 11 y ^ { 2 } = 539 , - 7 \leq z \leq 11

A) x=11cost,y=7sint,z=s,0t2π,7s11x = 11 \cos t , y = 7 \sin t , z = s , 0 \leq t \leq 2 \pi , - 7 \leq s \leq 11
B) x=11cost1y=7sint1z=t10t2π17s11x = \sqrt { 11 } \cos t _ { 1 } y = 7 \sin t _ { 1 } \quad z = t _ { 1 } \quad 0 \leq t \leq 2 \pi _ { 1 } - 7 \leq s \leq 11
C) x=7cost1y=11sint1z=s,0t2π,7s11x = \sqrt { 7 } \cos t _ { 1 } y = 11 \sin t _ { 1 } \quad z = s , \quad 0 \leq t \leq 2 \pi , - 7 \leq s \leq 11
D) x=11cost,y=7sint,z=s,0tπ,7s11x=\sqrt{11} \cos t, y=7 \sin t, \quad z=s, \quad 0 \leq t \leq \pi,-7 \leq s \leq 11
E) x=11cost,y=7sint,z=s,0t2π7s11x=\sqrt{11} \cos t, y=7 \sin t, \quad z=s, \quad 0 \leq t \leq 2 \pi\,-7 \leq s \leq 11
سؤال
Using cylindrical coordinates, find parametric equations for the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 Select all that apply.

A) x=4cosθ,y=4sinθ,z=z,0θ2π,<z<x = 4 \cos \theta , y = 4 \sin \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
B) x=4cosθ,y=4sinθ,0θ2π,<z<x = 4 \cos \theta , y = 4 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
C) x=16cosθ,y=16sinθ,z=z,0θ2π,<z<x = 16 \cos \theta , y = 16 \sin \theta , z = z , \quad 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
D) x=4sinθ,y=4cosθ,z=z,0θ2π,<z<x = 4 \sin \theta , y = 4 \cos \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
E) x=16cosθ,y=16sinθ,0θ2π,<z<x = 16 \cos \theta , y = 16 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
سؤال
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the y-axis?
سؤال
The vector field The vector field   represents an ocean current.An iceberg is at the point (1, 2)at t = 0. Determine the position of the iceberg at time t = 2.<div style=padding-top: 35px> represents an ocean current.An iceberg is at the point (1, 2)at t = 0.
Determine the position of the iceberg at time t = 2.
سؤال
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+2tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 2 t \vec { k } Does it contain the point (0, -3, -4)?
سؤال
Consider the plane r(s,t)=(4+s5t)i+(5s+5t)j+(210t+s)k\vec { r } ( s , t ) = ( - 4 + s - 5 t ) \vec { i } + ( 5 - s + 5 t ) \vec { j } + ( 2 - 10 t + s ) \vec { k } Find a normal vector to the plane.

A) 12(i+k)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { k } )
B) 13(i+jk)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } - \vec { k } )
C) 12(i+j)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { j } )
D) 13(i+j+k)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } + \vec { k } )
E) 12(ij)\frac { 1 } { \sqrt { 2 } } ( \vec { i } - \vec { j } )
سؤال
Find parametric equations for the sphere Find parametric equations for the sphere  <div style=padding-top: 35px>
سؤال
Consider the curve r(t)=(2t2+1)i+(t22)j+tk\vec { r } ( t ) = \left( 2 t ^ { 2 } + 1 \right) \vec { i } + \left( t ^ { 2 } - 2 \right) \vec { j } + t \vec { k } Does it pass through the point (1, -2, 0)?
سؤال
Parameterize the circle x2+y2=25,z=15x ^ { 2 } + y ^ { 2 } = 25 , z = 15 Select all that apply.

A) x=5cost,y=5sint,z=15x = 5 \cos t , y = 5 \sin t , z = 15
B) x=5sint,y=5cost,z=15x = 5 \sin t , y = 5 \cos t , z = 15
C) x=5cost,y=5sint,z=15x = - 5 \cos t , y = - 5 \sin t , z = 15
D) x=5cos2t,y=5sin2t,z=15x = 5 \cos 2 t , y = 5 \sin 2 t , z = 15
E) x=25cost,y=25sint,z=15x = 25 \cos t , y = 25 \sin t , z = 15
سؤال
Find the parametric equations for the line of the intersection of the planes Find the parametric equations for the line of the intersection of the planes   and   .<div style=padding-top: 35px> and Find the parametric equations for the line of the intersection of the planes   and   .<div style=padding-top: 35px> .
سؤال
Use cylindrical coordinates to parameterize the part of the plane x + y - z = 10 inside the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 .
سؤال
If a particle is moving along a parameterized curve r(t)\vec { r } ( t ) , then the acceleration vector at any point cannot be parallel to the velocity vector at that point.
سؤال
Are the lines parallel? l1:x=2t+5,y=3t+3,z=4t2l _ { 1 } : x = 2 t + 5 , y = 3 t + 3 , z = - 4 t - 2 l2:x=5t+1,y=2t4,z=11t+7l _ { 2 } : x = 5 t + 1 , y = 2 t - 4 , z = 11 t + 7
سؤال
The lines The lines   and   are perpendicular.Find a.<div style=padding-top: 35px> and The lines   and   are perpendicular.Find a.<div style=padding-top: 35px> are perpendicular.Find a.
سؤال
Consider the curve r(t)=(2t2+1)i+(t2+1)j+tk\vec { r } ( t ) = \left( 2 t ^ { 2 } + 1 \right) \vec { i } + \left( t ^ { 2 } + 1 \right) \vec { j } + t \vec { k } Does the curve lie on the parametric surface x=s2+t2,y=s2,z=t?x = s ^ { 2 } + t ^ { 2 } , y = s ^ { 2 } , z = t ?
سؤال
Let S be the parametric surface Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3).<div style=padding-top: 35px> for Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3).<div style=padding-top: 35px> , Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3).<div style=padding-top: 35px> .
(a)What does the projection of S onto the xy-plane look like?
(b)Show that S is part of the surface Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3).<div style=padding-top: 35px> .
(c)Find a unit vector that is normal to the surface at the point (1,2,3).
سؤال
The curve The curve   passes through the point (-12, 1, 51).Find a and b.<div style=padding-top: 35px> passes through the point (-12, 1, 51).Find a and b.
سؤال
Consider the curve Consider the curve   . (a)Find a unit vector tangent to the curve at the point (1,2,3). (b)Show that the curve lies on the surface   .<div style=padding-top: 35px> .
(a)Find a unit vector tangent to the curve at the point (1,2,3).
(b)Show that the curve lies on the surface Consider the curve   . (a)Find a unit vector tangent to the curve at the point (1,2,3). (b)Show that the curve lies on the surface   .<div style=padding-top: 35px> .
سؤال
Do the lines intersect? l1:x=5t+1,y=7t+1,z=3tl _ { 1 } : x = - 5 t + 1 , y = - 7 t + 1 , z = 3 t l2:x=12t+3,y=7,z=11t6l _ { 2 } : x = 12 t + 3 , y = 7 , z = - 11 t - 6
سؤال
A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building.<div style=padding-top: 35px> is parallel to A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building.<div style=padding-top: 35px> , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building.<div style=padding-top: 35px> is parallel to A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building.<div style=padding-top: 35px> .Given that ground level is the plane z = 0 and the units are feet, find the height of the building.
سؤال
If a particle moves with constant speed, the path of the particle must be a line.
سؤال
Parameterize the curve which lies on the plane 5x - 10y + z = 6 above the circle x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

A) r(t)=5sinti+5costj+(65sint+10cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 5 \sin t + 10 \cos t ) \vec { k }
B) r(t)=5sinti+5costj+(625sint50cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 25 \sin t - 50 \cos t ) \vec { k }
C) r(t)=5sinti+5costj+(6+25sint+25cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 + 25 \sin t + 25 \cos t ) \vec { k }
D) r(t)=5sinti+5costj+(625sint+50cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 25 \sin t + 50 \cos t ) \vec { k }
E) r(t)=5sinti+5costj+(65sint+25cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 5 \sin t + 25 \cos t ) \vec { k }
سؤال
Consider the curve Consider the curve   Find the equation of the tangent line at the point where t = 2.<div style=padding-top: 35px> Find the equation of the tangent line at the point where t = 2.
سؤال
Use spherical coordinates to parameterize the part of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 above the plane z = 1.
سؤال
The two planes are parallel.
Plane 1: x=2+s+t,y=4+st,z=1+2sx = 2 + s + t , y = 4 + s - t , z = 1 + 2 s
Plane 2: x=2+s+2t,y=t,z=stx = 2 + s + 2 t , y = t , z = s - t
سؤال
Suppose the vector field F(x,y)\vec { F } ( x , y ) represents an ocean current and that r(t)=8costi+9tsintj\vec { r } ( t ) = 8 \cos t \vec { i } + 9 t \sin t \vec { j } is a flow line of F\vec{F} Find the acceleration vector of the flow line at (0, 9 π\pi /2).
سؤال
How many parameters are needed to parameterize a surface in 3-space?
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/86
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 17: Parameterization and Vector Fields
1
Find parametric equations for the line through the point (1, 5, 2)and parallel to the vector Find parametric equations for the line through the point (1, 5, 2)and parallel to the vector   in which the particle is moving with speed 24 (the parameter t represents time). in which the particle is moving with speed 24 (the parameter t represents time).
x = 1 + 16 t, y = 5 + 16 t, and z = 2 - 8 t.
2
Let f(x, y, z)= xy + 6yz + zx.Then f(2, 2, 3)= 46.
Give an equation to the tangent plane to xy + 6yz + zx = 46.
5x + 20y + 14z = 92
3
Find a parametric equation for the line which passes through the point (5, 1, -1)and is parallel to the line Find a parametric equation for the line which passes through the point (5, 1, -1)and is parallel to the line   . .
4
Which of the following equations give alternate parameterizations of the line L parameterized by r=(1+2t)i+(2+2t)j(1+4t)k?\vec { r } = ( 1 + 2 t ) \vec { i } + ( 2 + 2 t ) \vec { j } - ( 1 + 4 t ) \vec { k } ?

A) r=(1+t)itj+(3+2t)k\vec { r } = - ( 1 + t ) \vec { i } - t \vec { j } + ( 3 + 2 t ) \vec { k }
B) r=(32t)i+(22t)j+(34t)k\vec { r } = ( 3 - 2 t ) \vec { i } + ( 2 - 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k }
C) r=(2+3t)i+(1+3t)j+(16t)k\vec { r } = ( 2 + 3 t ) \vec { i } + ( 1 + 3 t ) \vec { j } + ( 1 - 6 t ) \vec { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
5
Write down a parameterization of the line through the points (2, 2, 4)and (6, 4, 2).Select all that apply.

A) r=2i+2j+4k+t(4i+2j2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 4 \vec { i } + 2 \vec { j } - 2 \vec { k } )
B) r=2i+2j+4k+t(4i2j2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 4 \vec { i } - 2 \vec { j } - 2 \vec { k } )
C) r=2i+2j+4k+t(4i+2j+2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 4 \vec { i } + 2 \vec { j } + 2 \vec { k } )
D) r=2i+2j+4kt(4i+2j2k)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } - t ( 4 \vec { i } + 2 \vec { j } - 2 \vec { k } )
E) r=2i+2j+4k+t(2i+jk)\vec { r } = 2 \vec { i } + 2 \vec { j } + 4 \vec { k } + t ( 2 \vec { i } + \vec { j } - \vec { k } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
6
Consider the plane x - 4y + 4z = 5 and the line x = a + bt, y = 2 + 2t, z = 5 - t.
Find the values of a and b such that the line lies in the plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
7
Describe the similarities and differences between the following two curves.  Curve 1: r(t)=(3+3t)i+(1t)j+(3+4t)k,t\text { Curve 1: } \vec { r } ( t ) = ( 3 + 3 t ) \vec { i } + ( 1 - t ) \vec { j } + ( 3 + 4 t ) \vec { k } , - \infty \leq t \leq \infty \text {, }  Curve 2: r(t)=(3+3t2)i+(1t2)j+(3+4t2)k,t\text { Curve 2: } \vec { r } ( t ) = \left( 3 + 3 t ^ { 2 } \right) \vec { i } + \left( 1 - t ^ { 2 } \right) \vec { j } + \left( 3 + 4 t ^ { 2 } \right) \vec { k } , - \infty \leq t \leq \infty \text {. }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find a parameterization of a curve that looks like sin y = z when viewed from the x-axis, and looks like x = z2 when viewed from the y-axis.See the shadows drawn on the planes in the following picture. Find a parameterization of a curve that looks like sin y = z when viewed from the x-axis, and looks like x = z<sup>2 </sup>when viewed from the y-axis.See the shadows drawn on the planes in the following picture.   What does the curve look like when viewed from the z-axis? What does the curve look like when viewed from the z-axis?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find a parameterization for the circle of radius 4 in the xz-plane, centered at the point (3, 0, -5).Select all that apply.

A) x=3+4cost,y=0,z=5+4sintx = 3 + 4 \cos t , y = 0 , z = 5 + 4 \sin t
B) r=(3i5k)+4(costi+sintk)\vec { r } = ( 3 \vec { i } - 5 \vec { k } ) + 4 ( \cos t \vec { i } + \sin t \vec { k } )
C) x=34sint,y=0,z=5+4costx = 3 - 4 \sin t , y = 0 , z = - 5 + 4 \cos t
D) r=(5i3k)+4(costi+sintk)\vec { r } = ( 5 \vec { i } - 3 \vec { k } ) + 4 ( \cos t \vec { i } + \sin t \vec { k } )
E) x=3+4cost,y=0,z=5+4sintx = 3 + 4 \cos t , y = 0 , z = - 5 + 4 \sin t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
10
What curve, C, is traced out by the parameterization r=2i+(cost)j+(sint)k\vec { r } = 2 \vec { i } + ( \cos t ) \vec { j } + ( \sin t ) \vec { k } for 0 \le t \le 2 π\pi ?
Either give a very complete verbal description or sketch the curve (or both).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
11
The line through the points (2, 5, 25)and (12, 7, 23)can be parameterized by The line through the points (2, 5, 25)and (12, 7, 23)can be parameterized by   . What value of t gives the point (42, 13, 17)? .
What value of t gives the point (42, 13, 17)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
12
Give parameterizations for a circle of radius 2 in the plane, centered at origin, traversed anticlockwise.

A) x=cost,y=sint,0t2πx = \cos t , y = \sin t , 0 \leq t \leq 2 \pi
B) x=4cost,y=4sint,0t2πx = 4 \cos t , y = 4 \sin t , 0 \leq t \leq 2 \pi
C) x=2cost,y=2sint,0t2πx = 2 \cos t , y = - 2 \sin t , \quad 0 \leq t \leq 2 \pi
D) x=2cost,y=2sint,0t2πx = 2 \cos t , y = 2 \sin t , 0 \leq t \leq 2 \pi
E) x=2cost,y=2sint,0tπx = 2 \cos t , y = 2 \sin t , \quad 0 \leq t \leq \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find a parameterization for the curve y6 = x7 in the xy-plane.Select all that apply.

A) x=t7/6,y=tx = t ^ { 7 / 6 } , y = t
B) x=t6,y=t7x = t ^ { 6 } , y = t ^ { 7 }
C) x=t6/7,y=tx = t ^ { 6 / 7 } , y = t
D) x=t7,y=t6x = t ^ { 7 } , y = t ^ { 6 }
E) x=t,y=t6/7x=t, y=t^{6 / 7}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
14
Suppose z = f(x, y), f(1, 3)= 5 and f(1,3)=4i+5j\nabla f ( 1,3 ) = 4 \vec { i } + 5 \vec { j } the vector 4i+5j+k- 4 \vec { i } + 5 \vec { j } + \vec { k } is perpendicular to the graph of f(x, y)at the point (1, 3).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
15
The equation The equation   parameterizes a line through the point (4, 3, 7). What is the value of t at this point? parameterizes a line through the point (4, 3, 7).
What is the value of t at this point?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
16
Consider the plane x - 4y + -2z = 5 and the line x = a + bt, y = 2 + -2t, z = 2 - t.
Find the value of b such that the line is perpendicular to the plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find parametric equations for a line through the points, A = (-2, 5, 4)and B = (-2, 25, 9)so that the point A corresponds to t = 0 and the point B to t = 5.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
18
Consider the plane Consider the plane   and the line with parametric equation   Give a value of   which makes the line parallel to the plane.(There are many possible answers.) and the line with parametric equation Consider the plane   and the line with parametric equation   Give a value of   which makes the line parallel to the plane.(There are many possible answers.) Give a value of Consider the plane   and the line with parametric equation   Give a value of   which makes the line parallel to the plane.(There are many possible answers.) which makes the line parallel to the plane.(There are many possible answers.)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
19
Give parameterizations for a circle of radius 3 in 3-space perpendicular to the y-axis centered at (4, -2, 0).

A) x=4+3cost,y=2,z=3sint,0t2πx = 4 + 3 \cos t , y = - 2 , z = 3 \sin t , \quad 0 \leq t \leq 2 \pi
B) x=4+3cost,y=2,z=3sint,0tπx = 4 + 3 \cos t , y = - 2 , z = 3 \sin t , \quad 0 \leq t \leq \pi
C) x=4+3cost,y=3sint,z=2,0t2πx = 4 + 3 \cos t , y = 3 \sin t , z = - 2 , \quad 0 \leq t \leq 2 \pi
D) x=4+3cost,z=3sint,0t2πx = 4 + 3 \cos t , \quad z = 3 \sin t , \quad 0 \leq t \leq 2 \pi
E) x=3cost,y=2,z=3sint,0t2πx = 3 \cos t , y = - 2 , z = 3 \sin t , \quad 0 \leq t \leq 2 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
20
A child is sliding down a helical slide.Her position at time t after the start is given in feet by r=costi+sintj+(12t)k\vec { r } = \cos t \vec { i } + \sin t \vec { j } + ( 12 - t ) \vec { k } .The ground is the xy-plane.
At time t = 2 π\pi , the child leaves the slide on the tangent to the slide at that point.What is the equation of the tangent line?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
21
Write a formula for a vector field Write a formula for a vector field   whose vectors are parallel to the x-axis and point away from the y-axis, with magnitude inversely proportional to the cube of the distance from the x-axis. whose vectors are parallel to the x-axis and point away from the y-axis, with magnitude inversely proportional to the cube of the distance from the x-axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the coordinates of the point where the line tangent to the curve Find the coordinates of the point where the line tangent to the curve   at the point (4, 16, 64)crosses the xy-plane. at the point (4, 16, 64)crosses the xy-plane.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
23
A particle moves at a constant speed along a line through P = (10,-20, 22)and Q = (22, -46, 46).Find a parametric equation for the line if the particle passes through P at time t = 3 and passes through Q at time t = 7.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
24
Calculate the length of the curve Calculate the length of the curve   from x = -3 to x = 3. from x = -3 to x = 3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
25
A particle moves with position vector r(t)=lnti+t1j+etk\vec { r } ( t ) = \ln t \vec { i } + t ^ { - 1 } \vec { j } + e ^ { - t } \vec { k } . Describe the movement of the particle as t \rightarrow \infty .

A)The particle will approach the positive x-axis asymptotically as t \rightarrow \infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive y-axis with slower and slower speed.
B)The particle will approach the positive y-axis asymptotically as t \rightarrow\infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive x-axis with slower and slower speed.
C)The particle will approach the positive x-axis asymptotically as t \rightarrow \infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive x-axis with increasing speed.
D)The particle will approach the positive x-axis asymptotically as t \rightarrow\infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive x-axis with slower and slower speed.
E)The particle will approach the positive x-axis asymptotically as t \rightarrow \infty .Also, since each component of v(t)\vec { v } ( t ) approaches 0 as t \rightarrow \infty , we expect the particle to approach the positive z-axis with slower and slower speed.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
26
The equation The equation   describes the motion of a particle moving on a circle.Assume x and y are in miles and t is in days. What is the speed of the particle when it passes through the point (0, 2)? describes the motion of a particle moving on a circle.Assume x and y are in miles and t is in days.
What is the speed of the particle when it passes through the point (0, 2)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
27
Let f(x, y)be a function that depends on only one of the variables, that is, of the form f(x, y)= g(x)or f(x, y)= g(y). Could the following picture be the gradient of f? <strong>Let f(x, y)be a function that depends on only one of the variables, that is, of the form f(x, y)= g(x)or f(x, y)= g(y). Could the following picture be the gradient of f?  </strong> A)No B)Yes C)Not possible to say

A)No
B)Yes
C)Not possible to say
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
28
The parametric vector form of the position of a roller coaster is r(t)=30sin(t)i+30cos(t)j+15cos(t)k\vec { r } ( t ) = 30 \sin ( t ) \vec { i } + 30 \cos ( t ) \vec { j } + 15 \cos ( t ) \vec { k } Answer the following questions about the ride.
(a)The scariest point of the ride is when it is traveling fastest.For which value of t > 0 does this occur first?
(b)Does the velocity vector of the roller coaster ever point directly downward?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
29
Match the vector field F(x,y)=xi+yj\vec{F}(x, y)=x \vec{i}+y \vec{j} with the descriptions (a)-(d).

A)A swirling in a clockwise direction.
B)An attractive force field pointing toward the origin.
C)A repulsive force field pointing away from the origin.
D)A swirling in a counter-clockwise direction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
30
A vector field A vector field   is shown below.   Find  is shown below. A vector field   is shown below.   Find  Find A vector field   is shown below.   Find
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
31
For the following vector field, identify which one of the following formulas could represent it. The scales in the x and y directions are the same.No reasons need be given.  <strong>For the following vector field, identify which one of the following formulas could represent it. The scales in the x and y directions are the same.No reasons need be given.  </strong> A)  \vec { i } + x \vec { j }  B)  x ^ { 2 } \vec { i } + x y \vec { j }  C)  y \vec { i }  D)  x \vec { i } + y \vec { j }

A) i+xj\vec { i } + x \vec { j }
B) x2i+xyjx ^ { 2 } \vec { i } + x y \vec { j }
C) yiy \vec { i }
D) xi+yjx \vec { i } + y \vec { j }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
32
Answer the following as "true", "false" or "need more information".
If a particle moves with velocity Answer the following as true, false or need more information. If a particle moves with velocity   , then the particle stops at the origin. , then the particle stops at the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
33
The path of an object moving in xyz-space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object.. .
The temperature at a point (x, y, z)in space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object.. Calculate the directional derivative of f in the direction of The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object.. at the point (12, 3, 8), where The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate the directional derivative of f in the direction of   at the point (12, 3, 8), where   is the velocity vector of the object.. is the velocity vector of the object..
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find a parameterization of the curve Find a parameterization of the curve   and use it to calculate the path length of this curve from (0, 0)to (1, 1). and use it to calculate the path length of this curve from (0, 0)to (1, 1).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
35
The path of an object moving in xyz-space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate   . .
The temperature at a point (x, y, z)in space is given by The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate   . Calculate The path of an object moving in xyz-space is given by   . The temperature at a point (x, y, z)in space is given by   Calculate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
36
Let Let   and let C be the helix parameterized by   Find an expression for the outward pointing normal vector whose   component is 0 at an arbitrary point ( sin(t), cos(t), t)of C. and let C be the helix parameterized by Let   and let C be the helix parameterized by   Find an expression for the outward pointing normal vector whose   component is 0 at an arbitrary point ( sin(t), cos(t), t)of C. Find an expression for the outward pointing normal vector whose Let   and let C be the helix parameterized by   Find an expression for the outward pointing normal vector whose   component is 0 at an arbitrary point ( sin(t), cos(t), t)of C. component is 0 at an arbitrary point ( sin(t), cos(t), t)of C.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
37
Sketch the vector fields v=xi\vec { v } = x \vec { i }

A)  Neither is correct. \text { Neither is correct. }
B)  <strong>Sketch the vector fields  \vec { v } = x \vec { i } </strong> A)  \text { Neither is correct. }  B)   C)
C)  <strong>Sketch the vector fields  \vec { v } = x \vec { i } </strong> A)  \text { Neither is correct. }  B)   C)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
38
An object moves with constant velocity in 3-space.It passes through (4, 0, 1)at time t = 1 and through (13, 6, -11)at time t = 4.Find its velocity vector.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
39
The figure below shows the contour map of a function z = f(x, y).  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)    Let F\vec{F} be the gradient vector field of f, i.e., F= gradf \vec{F}=\text { gradf } Which of the vector fields show F?\vec { F } ?

A)  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)
B)  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)
C)  <strong>The figure below shows the contour map of a function z = f(x, y).   Let  \vec{F}  be the gradient vector field of f, i.e.,  \vec{F}=\text { gradf }  Which of the vector fields show  \vec { F } ? </strong> A)   B)   C)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
40
A particle moves at a constant speed along a line through P = (7,-14, 13)and Q = (19, -37, 37).Find a parametric equation for the line if:
The speed of the particle is 9 units per second and it is moving in the direction of A particle moves at a constant speed along a line through P = (7,-14, 13)and Q = (19, -37, 37).Find a parametric equation for the line if: The speed of the particle is 9 units per second and it is moving in the direction of   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
41
Let Let   be a constant velocity field. Find the flow line of   that passes through the origin at time t = 2. be a constant velocity field.
Find the flow line of Let   be a constant velocity field. Find the flow line of   that passes through the origin at time t = 2. that passes through the origin at time t = 2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
42
Consider the plane r(s,t)=(4+s4t)i+(5s+4t)j+(64ts)k\vec { r } ( s , t ) = ( - 4 + s - 4 t ) \vec { i } + ( 5 - s + 4 t ) \vec { j } + ( 6 - 4 t - s ) \vec { k } Does it contain the point (-7, 8, -7)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
43
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4).
Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
In each case, give a parameterization Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4). Let P be the plane containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder). In each case, give a parameterization   and specify the range of values your parameters must take on. (i)the circle in which the cylinder, S, cuts the plane, P. (ii)the surface of the cylinder S. and specify the range of values your parameters must take on.
(i)the circle in which the cylinder, S, cuts the plane, P.
(ii)the surface of the cylinder S.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
44
Let v1=2i1j+k\vec { v } _ { 1 } = 2 \vec { i } - 1 \vec { j } + \vec { k } and v2=1i+j+k\vec { v } _ { 2 } = 1 \vec { i } + \vec { j } + \vec { k } Find a parametric equation for the plane through the point (1, 2, -1)and containing the vectors v1\vec { v } _ { 1 } and v2\vec { v } _ { 2 } Select all that apply.

A) x=1+2t+1s,y=21t+s,z=1+t+sx = 1 + 2 t + 1 s , y = 2 - 1 t + s , z = - 1 + t + s
B) x=1+2t1s,y=21ts,z=1+tsx = 1 + 2 t - 1 s , y = 2 - 1 t - s , z = - 1 + t - s
C) x=1+2t+1s,y=21t+s,z=1+t+sx = - 1 + 2 t + 1 s , y = - 2 - 1 t + s , z = 1 + t + s
D) x=12t+1s,y=2+1t+s,z=1t+sx = 1 - 2 t + 1 s , y = 2 + 1 t + s , z = - 1 - t + s
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
45
Suppose
Suppose   Find a function f(x, y, z) of three variables with the property that the vectors in   on a level surface of f (x, y, z) are perpendicular to the level surface of  f(x, y, z) at each point.
Find a function f(x, y, z) of three variables with the property that the vectors in Suppose   Find a function f(x, y, z) of three variables with the property that the vectors in   on a level surface of f (x, y, z) are perpendicular to the level surface of  f(x, y, z) at each point.  on a level surface of f (x, y, z) are perpendicular to the level surface of f(x, y, z) at each point.

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find the parametric equation of the plane through the point (5, 2, 2)and parallel to the lines r(t)=(12t)i+(5+2t)j+(34t)k\vec { r } ( t ) = ( 1 - 2 t ) \vec { i } + ( 5 + 2 t ) \vec { j } + ( 3 - 4 t ) \vec { k } and s(t)=(34t)i+4tj+(42t)k\vec { s } ( t ) = ( 3 - 4 t ) \vec { i } + 4 t \vec { j } + ( 4 - 2 t ) \vec { k }
Select all that apply.

A) x=52u4v,y=2+2u+4v,z=24u2vx = 5 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 2 - 4 u - 2 v
B) x=52u4v,y=2+2u+4v,z=2+4u2vx = 5 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 2 + 4 u - 2 v
C) x=52u+4v,y=2+2u4v,z=24u+2vx = 5 - 2 u + 4 v , y = 2 + 2 u - 4 v , z = 2 - 4 u + 2 v
D) x=2u4v,y=2u+4v,z=4u2vx = - 2 u - 4 v , y = 2 u + 4 v , z = - 4 u - 2 v
E) x=52u4v,y=2+2u+4v,z=24u2vx = 5 - 2 u - 4 v , y = 2 + 2 u + 4 v , z = 2 - 4 u - 2 v .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
47
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (5, 0, 4).
Find the xyz-equation of the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
48
Match the surface with its parameterization below.  <strong>Match the surface with its parameterization below.  </strong> A)  \cos t \vec { i } + ( s + t ) \vec { j } + \sin t \vec { k }  B)  s \vec { i } + ( s + t ) \vec { j } + t ^ { 2 } \vec { k }  C)  s \vec { i } + s \cos t \vec { j } + s \sin t \vec { k }  D)  s \vec { i } + \left( s + t ^ { 3 } \right) \vec { j } + ( s + t ) \vec { k }

A) costi+(s+t)j+sintk\cos t \vec { i } + ( s + t ) \vec { j } + \sin t \vec { k }
B) si+(s+t)j+t2ks \vec { i } + ( s + t ) \vec { j } + t ^ { 2 } \vec { k }
C) si+scostj+ssintks \vec { i } + s \cos t \vec { j } + s \sin t \vec { k }
D) si+(s+t3)j+(s+t)ks \vec { i } + \left( s + t ^ { 3 } \right) \vec { j } + ( s + t ) \vec { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find parametric equations for the cylinder y2+z2=16y ^ { 2 } + z ^ { 2 } = 16

A) r(s,θ)=4cosθi+4sinθj\vec { r } ( s , \theta ) = 4 \cos \overrightarrow { \theta i } + 4 \sin \theta \vec { j }
B) r(s,θ)=4cosθi+4sinθj+sk\vec { r } ( s , \theta ) = 4 \cos \theta \vec { i } + 4 \sin \theta \vec { j } + s \vec { k }
C) r(s,θ)=s+16cosθj+16sinθk\vec { r } ( s , \theta ) = \vec { s } + 16 \cos \theta \vec { j } + 16 \sin \theta \vec { k }
D) r(s,θ)=si+4cosθj+4sinθk\vec { r } ( s , \theta ) = \operatorname { si } + 4 \cos \theta \vec { j } + 4 \sin \theta \vec { k }
E) r(s,θ)=si+4cosθj+4cosθk\vec { r } ( s , \theta ) = \operatorname { si } + 4 \cos \theta \vec { j } + 4 \cos \theta \vec { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
50
Let Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  Find a vector which is perpendicular to Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  and Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form  .Express your answer in the form Let   and   Find a vector which is perpendicular to   and   to find an equation of the plane through the point (1, 2, -1)and with normal vector perpendicular to both   and   .Express your answer in the form
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find an equation for a vector field with all of the following properties.
• Defined at all points except (1, -5)
• All vectors have length 1.
• All vectors point away from the point (1, -5).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
52
Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7).
Find two unit vectors Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other. and Let S be a circular cylinder of radius 0.2, such that the center of one end is at the origin and the center of the other end is at the point (2, 0, 7). Find two unit vectors   and   in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other. in the plane, P, containing the base of the cylinder (i.e., the plane through the origin perpendicular to the axis of the cylinder)which are perpendicular to each other.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
53
The following equations represent a curve or a surface.Select the best geometric description. (Note: ρ\rho , φ\varphi , θ\theta are spherical coordinates; r, θ\theta , z are cylindrical coordinates.) x=t,y=2t,z=3t,0t10x = t , y = 2 t , z = 3 t , 0 \leq t \leq 10

A)Part of a line through the origin
B)Part of a cylinder.
C)Part of a cone.
D)Disk
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find parametric equations for the cylinder 49x2+11y2=539,7z1149 x ^ { 2 } + 11 y ^ { 2 } = 539 , - 7 \leq z \leq 11

A) x=11cost,y=7sint,z=s,0t2π,7s11x = 11 \cos t , y = 7 \sin t , z = s , 0 \leq t \leq 2 \pi , - 7 \leq s \leq 11
B) x=11cost1y=7sint1z=t10t2π17s11x = \sqrt { 11 } \cos t _ { 1 } y = 7 \sin t _ { 1 } \quad z = t _ { 1 } \quad 0 \leq t \leq 2 \pi _ { 1 } - 7 \leq s \leq 11
C) x=7cost1y=11sint1z=s,0t2π,7s11x = \sqrt { 7 } \cos t _ { 1 } y = 11 \sin t _ { 1 } \quad z = s , \quad 0 \leq t \leq 2 \pi , - 7 \leq s \leq 11
D) x=11cost,y=7sint,z=s,0tπ,7s11x=\sqrt{11} \cos t, y=7 \sin t, \quad z=s, \quad 0 \leq t \leq \pi,-7 \leq s \leq 11
E) x=11cost,y=7sint,z=s,0t2π7s11x=\sqrt{11} \cos t, y=7 \sin t, \quad z=s, \quad 0 \leq t \leq 2 \pi\,-7 \leq s \leq 11
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
55
Using cylindrical coordinates, find parametric equations for the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 Select all that apply.

A) x=4cosθ,y=4sinθ,z=z,0θ2π,<z<x = 4 \cos \theta , y = 4 \sin \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
B) x=4cosθ,y=4sinθ,0θ2π,<z<x = 4 \cos \theta , y = 4 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
C) x=16cosθ,y=16sinθ,z=z,0θ2π,<z<x = 16 \cos \theta , y = 16 \sin \theta , z = z , \quad 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
D) x=4sinθ,y=4cosθ,z=z,0θ2π,<z<x = 4 \sin \theta , y = 4 \cos \theta , z = z , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
E) x=16cosθ,y=16sinθ,0θ2π,<z<x = 16 \cos \theta , y = 16 \sin \theta , 0 \leq \theta \leq 2 \pi , - \infty < z < \infty
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
56
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+4tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 4 t \vec { k } Does it contain the y-axis?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
57
The vector field The vector field   represents an ocean current.An iceberg is at the point (1, 2)at t = 0. Determine the position of the iceberg at time t = 2. represents an ocean current.An iceberg is at the point (1, 2)at t = 0.
Determine the position of the iceberg at time t = 2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
58
Consider the parametric surface r(s,t)=ssin(π2)i+scos(π2)j+2tk\vec { r } ( s , t ) = s \sin \left( \frac { \pi } { 2 } \right) \vec { i } + s \cos \left( \frac { \pi } { 2 } \right) \vec { j } + 2 t \vec { k } Does it contain the point (0, -3, -4)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
59
Consider the plane r(s,t)=(4+s5t)i+(5s+5t)j+(210t+s)k\vec { r } ( s , t ) = ( - 4 + s - 5 t ) \vec { i } + ( 5 - s + 5 t ) \vec { j } + ( 2 - 10 t + s ) \vec { k } Find a normal vector to the plane.

A) 12(i+k)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { k } )
B) 13(i+jk)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } - \vec { k } )
C) 12(i+j)\frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { j } )
D) 13(i+j+k)\frac { 1 } { \sqrt { 3 } } ( \vec { i } + \vec { j } + \vec { k } )
E) 12(ij)\frac { 1 } { \sqrt { 2 } } ( \vec { i } - \vec { j } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find parametric equations for the sphere Find parametric equations for the sphere
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
61
Consider the curve r(t)=(2t2+1)i+(t22)j+tk\vec { r } ( t ) = \left( 2 t ^ { 2 } + 1 \right) \vec { i } + \left( t ^ { 2 } - 2 \right) \vec { j } + t \vec { k } Does it pass through the point (1, -2, 0)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
62
Parameterize the circle x2+y2=25,z=15x ^ { 2 } + y ^ { 2 } = 25 , z = 15 Select all that apply.

A) x=5cost,y=5sint,z=15x = 5 \cos t , y = 5 \sin t , z = 15
B) x=5sint,y=5cost,z=15x = 5 \sin t , y = 5 \cos t , z = 15
C) x=5cost,y=5sint,z=15x = - 5 \cos t , y = - 5 \sin t , z = 15
D) x=5cos2t,y=5sin2t,z=15x = 5 \cos 2 t , y = 5 \sin 2 t , z = 15
E) x=25cost,y=25sint,z=15x = 25 \cos t , y = 25 \sin t , z = 15
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
63
Find the parametric equations for the line of the intersection of the planes Find the parametric equations for the line of the intersection of the planes   and   . and Find the parametric equations for the line of the intersection of the planes   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
64
Use cylindrical coordinates to parameterize the part of the plane x + y - z = 10 inside the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
65
If a particle is moving along a parameterized curve r(t)\vec { r } ( t ) , then the acceleration vector at any point cannot be parallel to the velocity vector at that point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
66
Are the lines parallel? l1:x=2t+5,y=3t+3,z=4t2l _ { 1 } : x = 2 t + 5 , y = 3 t + 3 , z = - 4 t - 2 l2:x=5t+1,y=2t4,z=11t+7l _ { 2 } : x = 5 t + 1 , y = 2 t - 4 , z = 11 t + 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
67
The lines The lines   and   are perpendicular.Find a. and The lines   and   are perpendicular.Find a. are perpendicular.Find a.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
68
Consider the curve r(t)=(2t2+1)i+(t2+1)j+tk\vec { r } ( t ) = \left( 2 t ^ { 2 } + 1 \right) \vec { i } + \left( t ^ { 2 } + 1 \right) \vec { j } + t \vec { k } Does the curve lie on the parametric surface x=s2+t2,y=s2,z=t?x = s ^ { 2 } + t ^ { 2 } , y = s ^ { 2 } , z = t ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
69
Let S be the parametric surface Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3). for Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3). , Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3). .
(a)What does the projection of S onto the xy-plane look like?
(b)Show that S is part of the surface Let S be the parametric surface   for   ,   . (a)What does the projection of S onto the xy-plane look like? (b)Show that S is part of the surface   . (c)Find a unit vector that is normal to the surface at the point (1,2,3). .
(c)Find a unit vector that is normal to the surface at the point (1,2,3).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
70
The curve The curve   passes through the point (-12, 1, 51).Find a and b. passes through the point (-12, 1, 51).Find a and b.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
71
Consider the curve Consider the curve   . (a)Find a unit vector tangent to the curve at the point (1,2,3). (b)Show that the curve lies on the surface   . .
(a)Find a unit vector tangent to the curve at the point (1,2,3).
(b)Show that the curve lies on the surface Consider the curve   . (a)Find a unit vector tangent to the curve at the point (1,2,3). (b)Show that the curve lies on the surface   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
72
Do the lines intersect? l1:x=5t+1,y=7t+1,z=3tl _ { 1 } : x = - 5 t + 1 , y = - 7 t + 1 , z = 3 t l2:x=12t+3,y=7,z=11t6l _ { 2 } : x = 12 t + 3 , y = 7 , z = - 11 t - 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
73
A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building. is parallel to A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building. , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building. is parallel to A surveyor wants to measure the height of a building.At point A = ( 733, -369, 0)on the ground, she observes that the vector   is parallel to   , where C is the highest point of the building.At point B = (418, 471, 0)she observes that the vector   is parallel to   .Given that ground level is the plane z = 0 and the units are feet, find the height of the building. .Given that ground level is the plane z = 0 and the units are feet, find the height of the building.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
74
If a particle moves with constant speed, the path of the particle must be a line.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
75
Parameterize the curve which lies on the plane 5x - 10y + z = 6 above the circle x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

A) r(t)=5sinti+5costj+(65sint+10cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 5 \sin t + 10 \cos t ) \vec { k }
B) r(t)=5sinti+5costj+(625sint50cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 25 \sin t - 50 \cos t ) \vec { k }
C) r(t)=5sinti+5costj+(6+25sint+25cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 + 25 \sin t + 25 \cos t ) \vec { k }
D) r(t)=5sinti+5costj+(625sint+50cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 25 \sin t + 50 \cos t ) \vec { k }
E) r(t)=5sinti+5costj+(65sint+25cost)k\vec { r } ( t ) = 5 \sin t \vec { i } + 5 \cos t \vec { j } + ( 6 - 5 \sin t + 25 \cos t ) \vec { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
76
Consider the curve Consider the curve   Find the equation of the tangent line at the point where t = 2. Find the equation of the tangent line at the point where t = 2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
77
Use spherical coordinates to parameterize the part of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 above the plane z = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
78
The two planes are parallel.
Plane 1: x=2+s+t,y=4+st,z=1+2sx = 2 + s + t , y = 4 + s - t , z = 1 + 2 s
Plane 2: x=2+s+2t,y=t,z=stx = 2 + s + 2 t , y = t , z = s - t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
79
Suppose the vector field F(x,y)\vec { F } ( x , y ) represents an ocean current and that r(t)=8costi+9tsintj\vec { r } ( t ) = 8 \cos t \vec { i } + 9 t \sin t \vec { j } is a flow line of F\vec{F} Find the acceleration vector of the flow line at (0, 9 π\pi /2).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
80
How many parameters are needed to parameterize a surface in 3-space?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 86 في هذه المجموعة.