Deck 9: Sequences and Series

ملء الشاشة (f)
exit full mode
سؤال
Determine whether the sequence 6+2.5×(1)n6+2.5 \times(-1)^{n} converges or diverges.

A)It converges.
B)It diverges.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
A radioactive isotope is released into the air as an industrial by-product.This isotope is not very stable due to radioactive decay.Two-thirds of the original radioactive material loses its radioactivity after each month.If 13 grams of this isotope are released into the atmosphere at the end of the first and every subsequent month and the situation goes on ad infinitum, how many grams of radioactive material are in the atmosphere at the end of each month in the long run?
سؤال
Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007.Write a formula for   , the price of a share on the   day after December 24.<div style=padding-top: 35px> be the price of a share of stock on December 24, 2007.Write a formula for Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007.Write a formula for   , the price of a share on the   day after December 24.<div style=padding-top: 35px> , the price of a share on the Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007.Write a formula for   , the price of a share on the   day after December 24.<div style=padding-top: 35px> day after December 24.
سؤال
Let PnP_{n} be the number of people visiting an amusement park on the nth day after it opens.Suppose Pn=20004nP_{n}=2000-4 n .How many people visit the amusement park in its first week?

A)13888
B)13916
C)224
D)14000
سؤال
Let PnP_{n} be the number of people visiting a zoo on the nth day after it opens.Suppose Pn=20004nP_{n}=2000-4 n You find out that the museum must close if is has fewer than 300 visitors per day.How long will it remain open?

A)It will be closed on day 426.
B)It will be closed on day 501.
C)It will be closed on day 7.
D)It will close on day 1997.
سؤال
Find the value of Find the value of   to 2 decimal places.<div style=padding-top: 35px> to 2 decimal places.
سؤال
A radioactive isotope is released into the air as an industrial by-product.This isotope is not very stable due to radioactive decay.Two-thirds of the original radioactive material loses its radioactivity after each month.If 15 grams of this isotope are released into the atmosphere at the end of the first and every subsequent month, how many grams of radioactive material are in the atmosphere at the end of the twelfth month? Round to 2 decimal places.
سؤال
Let PnP_{n} be the number of people visiting an amusement park on the nth day after it opens.What does P10P_{10} represent?

A)The average number of people visiting the amusement park over the first 10 days it was open.
B)The number of days it takes for 10 people to visit the amusement park.
C)The number of people visiting the amusement park on the 10th day after it opens.
D)The total number of people who have visited the amusement park the first 10 days it was open.
سؤال
Let PnP_{n} be the number of people visiting a zoo on the nth day after it opens.What does n=125Pn\sum_{n=1}^{25} P_{n} represent?

A)The average number of people visiting the zoo over the first 25 days it was open.
B)The number of days it takes for 25 people to visit the zoo.
C)The number of people visiting the zoo on the 25th day it is open.
D)The total number of people who visited the zoo in the first 25 days after it opened.
سؤال
Find the value of the infinite product Find the value of the infinite product   to 2 decimal places.<div style=padding-top: 35px> to 2 decimal places.
سؤال
Find a formula for sns_{n} , n \ge 1, for the sequence 7,72,73,74,757,-\frac{7}{2}, \frac{7}{3},-\frac{7}{4}, \frac{7}{5}

A) sn=7(1)n+1ns_{n}=\frac{7(-1)^{n+1}}{n}
B) sn=7(1)nns_{n}=\frac{7(-1)^{n}}{n}
C) sn=7(1)n+1n+1s_{n}=\frac{7(-1)^{n+1}}{n+1}
D) sn=7(1)nn+1s_{n}=\frac{7(-1)^{n}}{n+1}
سؤال
Let PnP_{n} be the number of people visiting an aquarium on the nth day after it opens.What does it mean in terms of aquarium attendance if PnP_{n} > Pn+1P_{n+1} for all n?

A)The number of people visiting the aquarium goes down each day.
B)The number of people visiting the aquarium goes up each day.
C)The number of people visiting the aquarium goes up some days and down some days.
سؤال
Select the appropriate word to fill in the blank: A convergent sequence is ________________.

A)bounded
B)monotonic
C)finite
سؤال
A couple puts $500,000 for their retirement into an account paying 5% annual interest.They estimate that they will need to withdraw $60,000 each year to live on.Assume that the $60,000 is withdrawn on the last day of the year.Find a recursive formula for A couple puts $500,000 for their retirement into an account paying 5% annual interest.They estimate that they will need to withdraw $60,000 each year to live on.Assume that the $60,000 is withdrawn on the last day of the year.Find a recursive formula for   , the amount of money left in the account at the end of n years, and use it to determine how many years the money will last (how many years until there is less than $60,000 in the account).<div style=padding-top: 35px> , the amount of money left in the account at the end of n years, and use it to determine how many years the money will last (how many years until there is less than $60,000 in the account).
سؤال
A radioactive isotope is released into the air as an industrial by-product.This isotope is not very stable due to radioactive decay.Two-thirds of the original radioactive material loses its radioactivity after each month.If 12 grams of this isotope are released into the atmosphere at the end of the first and every subsequent month, identify the closed form sum that gives the amount of the isotope in the atmosphere at the end of the nth month.

A) Sn=12(13)n12113S_{n}=\frac{12-\left(\frac{1}{3}\right)^{n} \cdot 12}{1-\frac{1}{3}}
B) Sn=12+(13)n1213S_{n}=\frac{12+\left(\frac{1}{3}\right)^{n} \cdot 12}{\frac{1}{3}}
C) Sn=12(13)n113S_{n}=\frac{12 \cdot\left(\frac{1}{3}\right)^{n}}{1-\frac{1}{3}}
سؤال
Compute the first 8 terms of the sequence Compute the first 8 terms of the sequence   on plot them on a number line.To what number does it appear the sequence converges, if any?<div style=padding-top: 35px> on plot them on a number line.To what number does it appear the sequence converges, if any?
سؤال
Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula.<div style=padding-top: 35px> be the price of a share of stock on December 24, 2007 and Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula.<div style=padding-top: 35px> be the price of a share on the Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula.<div style=padding-top: 35px> day after December 24.Write a formula for Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula.<div style=padding-top: 35px> and then write a sentence to interpret the meaning of your formula.
سؤال
Consider the finite sequence AnA_{n} given in the graph below.Find n=153An\sum_{n=1}^{5} 3 A_{n} .  <strong>Consider the finite sequence  A_{n}  given in the graph below.Find  \sum_{n=1}^{5} 3 A_{n}  .  </strong> A)60 B)15 C)75 D)56 E)None of the above <div style=padding-top: 35px>

A)60
B)15
C)75
D)56
E)None of the above
سؤال
Which one of the following sequences diverges to positive infinity as n \rightarrow \infty ?

A) sn=1+1ns_{n}=1+\frac{1}{n}
B) sn=1n2ns_{n}=\frac{1-n^{2}}{n}
C) sn=cosnπns_{n}=\frac{\cos n \pi}{n}
D) sn=n+ncosnπs_{n}=n+n \cos n \pi
سؤال
Find a recursive formula for sns_{n} , n \ge 1, for the sequence 1, 6, 41, 286, 2001, ...

A) sn=7sn1s_{n}=7-s_{n-1} with s1=1s_{1}=1
B) sn=7sn11s_{n}=7 s_{n-1}-1 with s1=1s_{1}=1
C) sn=7sn1s_{n}=7-s_{n-1} with s1=7s_{1}=7
D) sn=7sn11s_{n}=7 s_{n-1}-1 with s1=7s_{1}=7
سؤال
Does the infinite series Does the infinite series   converge or diverge?<div style=padding-top: 35px> converge or diverge?
سؤال
Find the sum Find the sum   .Round to 2 decimal places.<div style=padding-top: 35px> .Round to 2 decimal places.
سؤال
Use the integral test to decide whether the series n=1(lnn)3n\sum_{n=1}^{\infty} \frac{(\ln n)^{3}}{n} converges or diverges.

A)It converges
B)It diverges
سؤال
Suppose the government spends $3.5 million on highways.Some of this money is earned by the highway workers who in turn spend $1,750,000 on food, travel, and entertainment.This causes $875,000 to be spent by the people who work in the food, travel, and entertainment industries.This $875,000 causes another $437,500 to be spent; the $437,500 causes another $218,750 to be spent, and so on.(Notice that each expenditure is half the previous one.)Assuming that this process continues forever, how many million dollars in total spending is generated by the original $3.5 million expenditure (including the original $3.5 million)?
سؤال
Is Is   a geometric series?<div style=padding-top: 35px> a geometric series?
سؤال
Jamie was born in May.In August, her grandparents started a "Go to College in France" fund with $2200, earning a fixed annual interest rate of 7%.They added an additional $2200 each year in August until the last deposit in the year Jamie turned 18.Jamie estimated that she needed $90,000 to go start college in France.How much did she have in her "Go to College in France" fund? Did she have enough?

A) n=0182200(1.07)n=$82233.72\sum_{n=0}^{18} 2200(1.07)^{n}=\$ 82233.72 , no
B) n=0182200(1.07)n=$74797.87\sum_{n=0}^{18} 2200(1.07)^{n}=\$ 74797.87 , no
C)$91533.97, yes
D)$87533.83, no
E) n=0182200(1.07)n+2=$74797.87\sum_{n=0}^{18} 2200(1.07)^{n+2}=\$ 74797.87 , no
سؤال
Does Does   converge or diverge?<div style=padding-top: 35px> converge or diverge?
سؤال
Which of the following series are geometric? (1) 5+5a+5a2+5a3+ 5+5 a+5 a^{2}+5 a^{3}+\ldots
(2) 5+7a+9a2+11a3+ 5+7 a+9 a^{2}+11 a^{3}+\ldots
(3) 5+5ak+5a2k2+5a3k3+ 5+5 a k+5 a^{2} k^{2}+5 a^{3} k^{3}+\ldots  <strong>Which of the following series are geometric? (1)   5+5 a+5 a^{2}+5 a^{3}+\ldots   (2)   5+7 a+9 a^{2}+11 a^{3}+\ldots   (3)   5+5 a k+5 a^{2} k^{2}+5 a^{3} k^{3}+\ldots    </strong> A)(1)and (2) B)(1)and (3) C)(2)and (3) D)(1)only E)(2)only <div style=padding-top: 35px>

A)(1)and (2)
B)(1)and (3)
C)(2)and (3)
D)(1)only
E)(2)only
سؤال
Does the series Does the series   converge or diverge?<div style=padding-top: 35px> converge or diverge?
سؤال
Find the 6th partial sum of the series i=0(53)i\sum_{i=0}^{\infty}\left(\frac{5}{3}\right)^{i} (to two decimal places).

A)26.12
B) \infty
C)83.28
D)248.66
سؤال
A ball is dropped from a height of 18 feet and bounces.Each bounce is A ball is dropped from a height of 18 feet and bounces.Each bounce is   of the height of the bounce before.Find the total vertical feet the ball has traveled when it hits the floor for the 4<sup>th</sup> time.Round to 1 decimal place.<div style=padding-top: 35px> of the height of the bounce before.Find the total vertical feet the ball has traveled when it hits the floor for the 4th time.Round to 1 decimal place.
سؤال
A tennis ball is dropped from a height of 15 feet and bounces.Each bounce is 12\frac{1}{2} the height of the bounce before.A superball has a bounce 34\frac{3}{4} the height of the bounce before, and is dropped from a height of 5 feet.Which ball bounces a greater total vertical distance?

A)The tennis ball
B)The superball
سؤال
Find the sum of the first 6 terms of the series Find the sum of the first 6 terms of the series   .Round to 2 decimal places.<div style=padding-top: 35px> .Round to 2 decimal places.
سؤال
Find the sum of the series Find the sum of the series   to 2 decimal places.<div style=padding-top: 35px> to 2 decimal places.
سؤال
Does the series Does the series   converge or diverge?<div style=padding-top: 35px> converge or diverge?
سؤال
A ball is dropped from a height of 11 feet and bounces.Each bounce is 23\frac{2}{3} of the height of the bounce before.Find an expression for the height to which the ball rises after it hits the floor for the nth time.

A) 11(23)n11\left(\frac{2}{3}\right) \cdot n
B) 11(23)n11\left(\frac{2}{3}\right)^{n}
C) 11(1(23)n)11\left(1-\left(\frac{2}{3}\right)^{n}\right)
D) 11(1(23)n)123\frac{11\left(1-\left(\frac{2}{3}\right)^{n}\right)}{1-\frac{2}{3}}
سؤال
Use the integral test, if applicable, to determine whether the series n=1n+2n2+n\sum_{n=1}^{\infty} \frac{n+2}{n^{2}+n} converges or diverges.

A)It converges.
B)It diverges.
C)The integral test does not apply.
سؤال
Use the integral test to decide whether the series Use the integral test to decide whether the series   converges or diverges.<div style=padding-top: 35px> converges or diverges.
سؤال
Does the series Does the series   converge or diverge.Explain.<div style=padding-top: 35px> converge or diverge.Explain.
سؤال
Consider the series: Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges?<div style=padding-top: 35px>
(a)Find a formula for the general term Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges?<div style=padding-top: 35px> .
(b)Find the partial sums Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges?<div style=padding-top: 35px> .
(c)Use your result from part (b)to predict the limit of the partial sums, Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges?<div style=padding-top: 35px> .Does this indicate that the series converges or diverges?
سؤال
If n=1an\sum_{n=1}^{\infty} a_{n} converges then n=1kan\sum_{n=1}^{\infty} k a_{n} converges (k \neq 0).
سؤال
Determine whether the following series converge or diverge:
a) n=112n12\sum_{n=1}^{\infty} \frac{12}{n^{12}}
b) n=1n12n\sum_{n=1}^{\infty} \frac{\sqrt{n}}{12 n}

A)(a)converges and (b)diverges
B)(a)diverges and (b)converges
C)both series diverge
D)both series converge
سؤال
Find the interval of convergence for n=0xnn+7\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n+7}} .

A) 7<-7<x<1x<1
B) 1x<1-1 \leq x<1
C) 1x<7-1 \leq x<7
D) 7<-7<x<7x<7
سؤال
If a power series akxk\sum a_{k} x^{k} converges at x = c then it also converges at x = -c.
سؤال
Use the alternating series test to decide if n=1(1)n18n4\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{8 n^{4}} converges.

A)It converges.
B)It diverges.
سؤال
If a power series akxk\sum a_{k} x^{k} converges at x = 6 and x = 7 then it converges at x = -6.
سؤال
Use the comparison test to determine whether n=115n2+en\sum_{n=1}^{\infty} \frac{1}{5 n^{2}+e^{n}} converges.

A)It converges.
B)It diverges.
سؤال
The harmonic series 1n\sum \frac{1}{n} diverges.We can form a new series from the difference between consecutive terms of the harmonic series obtaining [1n+11n]\sum\left[\frac{1}{n+1}-\frac{1}{n}\right] . This series also diverges.
سؤال
Use the limit comparison test to determine whether n=17n5n6+n2+2\sum_{n=1}^{\infty} \frac{7 n^{5}}{n^{6}+n^{2}+2} converges.

A)The series diverges.
B)The series converges.
سؤال
What does the ratio test tell us about the series n=11n3\sum_{n=1}^{\infty} \frac{1}{n^{3}} ?

A)The series converges.
B)The series diverges.
C)The ratio test doesn't tell us anything about the convergence of the series.
سؤال
Estimate the error in approximating the sum of the alternating series S=n=1(1)n11+2nS=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{1+2^{n}} by the sum of the first 11 terms.

A)0.000024
B)0.00024
C)0.0024
D)0.024
سؤال
If the series If the series   has a radius of convergence of 4 and   has a radius of convergence of 6, what is the radius of convergence of   ?<div style=padding-top: 35px> has a radius of convergence of 4 and If the series   has a radius of convergence of 4 and   has a radius of convergence of 6, what is the radius of convergence of   ?<div style=padding-top: 35px> has a radius of convergence of 6, what is the radius of convergence of If the series   has a radius of convergence of 4 and   has a radius of convergence of 6, what is the radius of convergence of   ?<div style=padding-top: 35px> ?
سؤال
If a series of constants If a series of constants   diverges, then must   diverge?<div style=padding-top: 35px> diverges, then must If a series of constants   diverges, then must   diverge?<div style=padding-top: 35px> diverge?
سؤال
Leonard Euler found the following series to be noteworthy because it is part of a process that can be used to approximate Leonard Euler found the following series to be noteworthy because it is part of a process that can be used to approximate   :   (a)Re-write this series in summation notation. (b)Use an appropriate test to show that the series converges.<div style=padding-top: 35px> : Leonard Euler found the following series to be noteworthy because it is part of a process that can be used to approximate   :   (a)Re-write this series in summation notation. (b)Use an appropriate test to show that the series converges.<div style=padding-top: 35px>
(a)Re-write this series in summation notation.
(b)Use an appropriate test to show that the series converges.
سؤال
If ak\sum a_{k} is the sum of a series of numbers and limkαk=0\lim _{k \rightarrow \infty} \alpha_{k}=0 , then the series converges.
سؤال
Find an expression for the general term of the series x5+x212+x331+x468+\frac{x}{5}+\frac{x^{2}}{12}+\frac{x^{3}}{31}+\frac{x^{4}}{68}+\cdots

A) xnn+4\frac{x^{n}}{n+4} for n1n \geq 1 .
B) xn7n2\frac{x^{n}}{7 n-2} for n1n \geq 1 .
C) xnn3+4\frac{x^{n}}{n^{3}+4} for n1n \geq 1 .
D) xnn2+12\frac{x^{n}}{n^{2}+12} for n1n \geq 1 .
سؤال
What does the ratio test tell us about the series n=1n2n\sum_{n=1}^{\infty} \frac{n}{2^{n}} ?

A)The series converges.
B)The series diverges.
C)The ratio test doesn't tell us anything about the convergence of the series.
سؤال
Use the ratio test to find the radius of convergence of Use the ratio test to find the radius of convergence of   .<div style=padding-top: 35px> .
سؤال
If limnan\lim _{n \rightarrow \infty} a_{n} is not zero, then n=1an\sum_{n=1}^{\infty} a_{n} does not converge.
سؤال
What does the ratio test tell us about the series n=1(0.125)n1n\sum_{n=1}^{\infty} \frac{(-0.125)^{n-1}}{\sqrt{n}} ?

A)The series diverges.
B)The series converges.
C)The ratio test doesn't tell us anything about the convergence of the series.
سؤال
If the power series Cnxn\sum C_{n} x^{n} converges for x=a,a>0x=a, a>0 , then it converges for x=a2x=\frac{a}{2} .
سؤال
Find the radius of convergence of Find the radius of convergence of   .<div style=padding-top: 35px> .
سؤال
Does Does   converge?<div style=padding-top: 35px> converge?
سؤال
If Cn6n\sum C_{n} 6^{n} is convergent, then Cn(6)n\sum C_{n}(-6)^{n} is also convergent.
سؤال
Find the radius of convergence of Find the radius of convergence of  <div style=padding-top: 35px>
سؤال
The ratio test can be used to determine whether n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges.
سؤال
Find the interval of convergence of the series Find the interval of convergence of the series  <div style=padding-top: 35px>
سؤال
Does Does   converge?<div style=padding-top: 35px> converge?
سؤال
For what values of p does the series 1+9p+(9p)2+(9p)3++(9p)n+1+9 p+(9 p)^{2}+(9 p)^{3}+\ldots+(9 p)^{n}+ converge, if any?

A) 19\frac{-1}{9}<<p<p<19\frac{1}{9}
B) 118\frac{-1}{18} <<p<p<118\frac{1}{18}
C)-1 < p < 1
D) 1p1-1 \leq p \leq 1
E)The series diverges for all values of p.
سؤال
If an>an+1>0a_{n}>a_{n+1}>0 (for all n)and an\sum a_{n} converges, then (1)nan\sum(-1)^{n} a_{n} converges.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/70
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Sequences and Series
1
Determine whether the sequence 6+2.5×(1)n6+2.5 \times(-1)^{n} converges or diverges.

A)It converges.
B)It diverges.
It diverges.
2
A radioactive isotope is released into the air as an industrial by-product.This isotope is not very stable due to radioactive decay.Two-thirds of the original radioactive material loses its radioactivity after each month.If 13 grams of this isotope are released into the atmosphere at the end of the first and every subsequent month and the situation goes on ad infinitum, how many grams of radioactive material are in the atmosphere at the end of each month in the long run?
19.5
3
Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007.Write a formula for   , the price of a share on the   day after December 24. be the price of a share of stock on December 24, 2007.Write a formula for Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007.Write a formula for   , the price of a share on the   day after December 24. , the price of a share on the Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007.Write a formula for   , the price of a share on the   day after December 24. day after December 24.
4
Let PnP_{n} be the number of people visiting an amusement park on the nth day after it opens.Suppose Pn=20004nP_{n}=2000-4 n .How many people visit the amusement park in its first week?

A)13888
B)13916
C)224
D)14000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
5
Let PnP_{n} be the number of people visiting a zoo on the nth day after it opens.Suppose Pn=20004nP_{n}=2000-4 n You find out that the museum must close if is has fewer than 300 visitors per day.How long will it remain open?

A)It will be closed on day 426.
B)It will be closed on day 501.
C)It will be closed on day 7.
D)It will close on day 1997.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the value of Find the value of   to 2 decimal places. to 2 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
7
A radioactive isotope is released into the air as an industrial by-product.This isotope is not very stable due to radioactive decay.Two-thirds of the original radioactive material loses its radioactivity after each month.If 15 grams of this isotope are released into the atmosphere at the end of the first and every subsequent month, how many grams of radioactive material are in the atmosphere at the end of the twelfth month? Round to 2 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
8
Let PnP_{n} be the number of people visiting an amusement park on the nth day after it opens.What does P10P_{10} represent?

A)The average number of people visiting the amusement park over the first 10 days it was open.
B)The number of days it takes for 10 people to visit the amusement park.
C)The number of people visiting the amusement park on the 10th day after it opens.
D)The total number of people who have visited the amusement park the first 10 days it was open.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
9
Let PnP_{n} be the number of people visiting a zoo on the nth day after it opens.What does n=125Pn\sum_{n=1}^{25} P_{n} represent?

A)The average number of people visiting the zoo over the first 25 days it was open.
B)The number of days it takes for 25 people to visit the zoo.
C)The number of people visiting the zoo on the 25th day it is open.
D)The total number of people who visited the zoo in the first 25 days after it opened.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the value of the infinite product Find the value of the infinite product   to 2 decimal places. to 2 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find a formula for sns_{n} , n \ge 1, for the sequence 7,72,73,74,757,-\frac{7}{2}, \frac{7}{3},-\frac{7}{4}, \frac{7}{5}

A) sn=7(1)n+1ns_{n}=\frac{7(-1)^{n+1}}{n}
B) sn=7(1)nns_{n}=\frac{7(-1)^{n}}{n}
C) sn=7(1)n+1n+1s_{n}=\frac{7(-1)^{n+1}}{n+1}
D) sn=7(1)nn+1s_{n}=\frac{7(-1)^{n}}{n+1}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
12
Let PnP_{n} be the number of people visiting an aquarium on the nth day after it opens.What does it mean in terms of aquarium attendance if PnP_{n} > Pn+1P_{n+1} for all n?

A)The number of people visiting the aquarium goes down each day.
B)The number of people visiting the aquarium goes up each day.
C)The number of people visiting the aquarium goes up some days and down some days.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
13
Select the appropriate word to fill in the blank: A convergent sequence is ________________.

A)bounded
B)monotonic
C)finite
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
14
A couple puts $500,000 for their retirement into an account paying 5% annual interest.They estimate that they will need to withdraw $60,000 each year to live on.Assume that the $60,000 is withdrawn on the last day of the year.Find a recursive formula for A couple puts $500,000 for their retirement into an account paying 5% annual interest.They estimate that they will need to withdraw $60,000 each year to live on.Assume that the $60,000 is withdrawn on the last day of the year.Find a recursive formula for   , the amount of money left in the account at the end of n years, and use it to determine how many years the money will last (how many years until there is less than $60,000 in the account). , the amount of money left in the account at the end of n years, and use it to determine how many years the money will last (how many years until there is less than $60,000 in the account).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
15
A radioactive isotope is released into the air as an industrial by-product.This isotope is not very stable due to radioactive decay.Two-thirds of the original radioactive material loses its radioactivity after each month.If 12 grams of this isotope are released into the atmosphere at the end of the first and every subsequent month, identify the closed form sum that gives the amount of the isotope in the atmosphere at the end of the nth month.

A) Sn=12(13)n12113S_{n}=\frac{12-\left(\frac{1}{3}\right)^{n} \cdot 12}{1-\frac{1}{3}}
B) Sn=12+(13)n1213S_{n}=\frac{12+\left(\frac{1}{3}\right)^{n} \cdot 12}{\frac{1}{3}}
C) Sn=12(13)n113S_{n}=\frac{12 \cdot\left(\frac{1}{3}\right)^{n}}{1-\frac{1}{3}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
16
Compute the first 8 terms of the sequence Compute the first 8 terms of the sequence   on plot them on a number line.To what number does it appear the sequence converges, if any? on plot them on a number line.To what number does it appear the sequence converges, if any?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
17
Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula. be the price of a share of stock on December 24, 2007 and Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula. be the price of a share on the Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula. day after December 24.Write a formula for Stock prices for Abercrombie and Fitch fell steadily by an average of $0.94 per day from a high of $83.67 per share on December 24, 2007 to $70.05 on January 15, 2008.Let   be the price of a share of stock on December 24, 2007 and   be the price of a share on the   day after December 24.Write a formula for   and then write a sentence to interpret the meaning of your formula. and then write a sentence to interpret the meaning of your formula.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
18
Consider the finite sequence AnA_{n} given in the graph below.Find n=153An\sum_{n=1}^{5} 3 A_{n} .  <strong>Consider the finite sequence  A_{n}  given in the graph below.Find  \sum_{n=1}^{5} 3 A_{n}  .  </strong> A)60 B)15 C)75 D)56 E)None of the above

A)60
B)15
C)75
D)56
E)None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
19
Which one of the following sequences diverges to positive infinity as n \rightarrow \infty ?

A) sn=1+1ns_{n}=1+\frac{1}{n}
B) sn=1n2ns_{n}=\frac{1-n^{2}}{n}
C) sn=cosnπns_{n}=\frac{\cos n \pi}{n}
D) sn=n+ncosnπs_{n}=n+n \cos n \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find a recursive formula for sns_{n} , n \ge 1, for the sequence 1, 6, 41, 286, 2001, ...

A) sn=7sn1s_{n}=7-s_{n-1} with s1=1s_{1}=1
B) sn=7sn11s_{n}=7 s_{n-1}-1 with s1=1s_{1}=1
C) sn=7sn1s_{n}=7-s_{n-1} with s1=7s_{1}=7
D) sn=7sn11s_{n}=7 s_{n-1}-1 with s1=7s_{1}=7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
21
Does the infinite series Does the infinite series   converge or diverge? converge or diverge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the sum Find the sum   .Round to 2 decimal places. .Round to 2 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
23
Use the integral test to decide whether the series n=1(lnn)3n\sum_{n=1}^{\infty} \frac{(\ln n)^{3}}{n} converges or diverges.

A)It converges
B)It diverges
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
24
Suppose the government spends $3.5 million on highways.Some of this money is earned by the highway workers who in turn spend $1,750,000 on food, travel, and entertainment.This causes $875,000 to be spent by the people who work in the food, travel, and entertainment industries.This $875,000 causes another $437,500 to be spent; the $437,500 causes another $218,750 to be spent, and so on.(Notice that each expenditure is half the previous one.)Assuming that this process continues forever, how many million dollars in total spending is generated by the original $3.5 million expenditure (including the original $3.5 million)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
25
Is Is   a geometric series? a geometric series?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
26
Jamie was born in May.In August, her grandparents started a "Go to College in France" fund with $2200, earning a fixed annual interest rate of 7%.They added an additional $2200 each year in August until the last deposit in the year Jamie turned 18.Jamie estimated that she needed $90,000 to go start college in France.How much did she have in her "Go to College in France" fund? Did she have enough?

A) n=0182200(1.07)n=$82233.72\sum_{n=0}^{18} 2200(1.07)^{n}=\$ 82233.72 , no
B) n=0182200(1.07)n=$74797.87\sum_{n=0}^{18} 2200(1.07)^{n}=\$ 74797.87 , no
C)$91533.97, yes
D)$87533.83, no
E) n=0182200(1.07)n+2=$74797.87\sum_{n=0}^{18} 2200(1.07)^{n+2}=\$ 74797.87 , no
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
27
Does Does   converge or diverge? converge or diverge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
28
Which of the following series are geometric? (1) 5+5a+5a2+5a3+ 5+5 a+5 a^{2}+5 a^{3}+\ldots
(2) 5+7a+9a2+11a3+ 5+7 a+9 a^{2}+11 a^{3}+\ldots
(3) 5+5ak+5a2k2+5a3k3+ 5+5 a k+5 a^{2} k^{2}+5 a^{3} k^{3}+\ldots  <strong>Which of the following series are geometric? (1)   5+5 a+5 a^{2}+5 a^{3}+\ldots   (2)   5+7 a+9 a^{2}+11 a^{3}+\ldots   (3)   5+5 a k+5 a^{2} k^{2}+5 a^{3} k^{3}+\ldots    </strong> A)(1)and (2) B)(1)and (3) C)(2)and (3) D)(1)only E)(2)only

A)(1)and (2)
B)(1)and (3)
C)(2)and (3)
D)(1)only
E)(2)only
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
29
Does the series Does the series   converge or diverge? converge or diverge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the 6th partial sum of the series i=0(53)i\sum_{i=0}^{\infty}\left(\frac{5}{3}\right)^{i} (to two decimal places).

A)26.12
B) \infty
C)83.28
D)248.66
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
31
A ball is dropped from a height of 18 feet and bounces.Each bounce is A ball is dropped from a height of 18 feet and bounces.Each bounce is   of the height of the bounce before.Find the total vertical feet the ball has traveled when it hits the floor for the 4<sup>th</sup> time.Round to 1 decimal place. of the height of the bounce before.Find the total vertical feet the ball has traveled when it hits the floor for the 4th time.Round to 1 decimal place.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
32
A tennis ball is dropped from a height of 15 feet and bounces.Each bounce is 12\frac{1}{2} the height of the bounce before.A superball has a bounce 34\frac{3}{4} the height of the bounce before, and is dropped from a height of 5 feet.Which ball bounces a greater total vertical distance?

A)The tennis ball
B)The superball
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the sum of the first 6 terms of the series Find the sum of the first 6 terms of the series   .Round to 2 decimal places. .Round to 2 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find the sum of the series Find the sum of the series   to 2 decimal places. to 2 decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
35
Does the series Does the series   converge or diverge? converge or diverge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
36
A ball is dropped from a height of 11 feet and bounces.Each bounce is 23\frac{2}{3} of the height of the bounce before.Find an expression for the height to which the ball rises after it hits the floor for the nth time.

A) 11(23)n11\left(\frac{2}{3}\right) \cdot n
B) 11(23)n11\left(\frac{2}{3}\right)^{n}
C) 11(1(23)n)11\left(1-\left(\frac{2}{3}\right)^{n}\right)
D) 11(1(23)n)123\frac{11\left(1-\left(\frac{2}{3}\right)^{n}\right)}{1-\frac{2}{3}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
37
Use the integral test, if applicable, to determine whether the series n=1n+2n2+n\sum_{n=1}^{\infty} \frac{n+2}{n^{2}+n} converges or diverges.

A)It converges.
B)It diverges.
C)The integral test does not apply.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
38
Use the integral test to decide whether the series Use the integral test to decide whether the series   converges or diverges. converges or diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
39
Does the series Does the series   converge or diverge.Explain. converge or diverge.Explain.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
40
Consider the series: Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges?
(a)Find a formula for the general term Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges? .
(b)Find the partial sums Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges? .
(c)Use your result from part (b)to predict the limit of the partial sums, Consider the series:   (a)Find a formula for the general term   . (b)Find the partial sums   . (c)Use your result from part (b)to predict the limit of the partial sums,   .Does this indicate that the series converges or diverges? .Does this indicate that the series converges or diverges?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
41
If n=1an\sum_{n=1}^{\infty} a_{n} converges then n=1kan\sum_{n=1}^{\infty} k a_{n} converges (k \neq 0).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
42
Determine whether the following series converge or diverge:
a) n=112n12\sum_{n=1}^{\infty} \frac{12}{n^{12}}
b) n=1n12n\sum_{n=1}^{\infty} \frac{\sqrt{n}}{12 n}

A)(a)converges and (b)diverges
B)(a)diverges and (b)converges
C)both series diverge
D)both series converge
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find the interval of convergence for n=0xnn+7\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n+7}} .

A) 7<-7<x<1x<1
B) 1x<1-1 \leq x<1
C) 1x<7-1 \leq x<7
D) 7<-7<x<7x<7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
44
If a power series akxk\sum a_{k} x^{k} converges at x = c then it also converges at x = -c.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
45
Use the alternating series test to decide if n=1(1)n18n4\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{8 n^{4}} converges.

A)It converges.
B)It diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
46
If a power series akxk\sum a_{k} x^{k} converges at x = 6 and x = 7 then it converges at x = -6.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
47
Use the comparison test to determine whether n=115n2+en\sum_{n=1}^{\infty} \frac{1}{5 n^{2}+e^{n}} converges.

A)It converges.
B)It diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
48
The harmonic series 1n\sum \frac{1}{n} diverges.We can form a new series from the difference between consecutive terms of the harmonic series obtaining [1n+11n]\sum\left[\frac{1}{n+1}-\frac{1}{n}\right] . This series also diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
49
Use the limit comparison test to determine whether n=17n5n6+n2+2\sum_{n=1}^{\infty} \frac{7 n^{5}}{n^{6}+n^{2}+2} converges.

A)The series diverges.
B)The series converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
50
What does the ratio test tell us about the series n=11n3\sum_{n=1}^{\infty} \frac{1}{n^{3}} ?

A)The series converges.
B)The series diverges.
C)The ratio test doesn't tell us anything about the convergence of the series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
51
Estimate the error in approximating the sum of the alternating series S=n=1(1)n11+2nS=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{1+2^{n}} by the sum of the first 11 terms.

A)0.000024
B)0.00024
C)0.0024
D)0.024
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
52
If the series If the series   has a radius of convergence of 4 and   has a radius of convergence of 6, what is the radius of convergence of   ? has a radius of convergence of 4 and If the series   has a radius of convergence of 4 and   has a radius of convergence of 6, what is the radius of convergence of   ? has a radius of convergence of 6, what is the radius of convergence of If the series   has a radius of convergence of 4 and   has a radius of convergence of 6, what is the radius of convergence of   ? ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
53
If a series of constants If a series of constants   diverges, then must   diverge? diverges, then must If a series of constants   diverges, then must   diverge? diverge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
54
Leonard Euler found the following series to be noteworthy because it is part of a process that can be used to approximate Leonard Euler found the following series to be noteworthy because it is part of a process that can be used to approximate   :   (a)Re-write this series in summation notation. (b)Use an appropriate test to show that the series converges. : Leonard Euler found the following series to be noteworthy because it is part of a process that can be used to approximate   :   (a)Re-write this series in summation notation. (b)Use an appropriate test to show that the series converges.
(a)Re-write this series in summation notation.
(b)Use an appropriate test to show that the series converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
55
If ak\sum a_{k} is the sum of a series of numbers and limkαk=0\lim _{k \rightarrow \infty} \alpha_{k}=0 , then the series converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find an expression for the general term of the series x5+x212+x331+x468+\frac{x}{5}+\frac{x^{2}}{12}+\frac{x^{3}}{31}+\frac{x^{4}}{68}+\cdots

A) xnn+4\frac{x^{n}}{n+4} for n1n \geq 1 .
B) xn7n2\frac{x^{n}}{7 n-2} for n1n \geq 1 .
C) xnn3+4\frac{x^{n}}{n^{3}+4} for n1n \geq 1 .
D) xnn2+12\frac{x^{n}}{n^{2}+12} for n1n \geq 1 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
57
What does the ratio test tell us about the series n=1n2n\sum_{n=1}^{\infty} \frac{n}{2^{n}} ?

A)The series converges.
B)The series diverges.
C)The ratio test doesn't tell us anything about the convergence of the series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
58
Use the ratio test to find the radius of convergence of Use the ratio test to find the radius of convergence of   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
59
If limnan\lim _{n \rightarrow \infty} a_{n} is not zero, then n=1an\sum_{n=1}^{\infty} a_{n} does not converge.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
60
What does the ratio test tell us about the series n=1(0.125)n1n\sum_{n=1}^{\infty} \frac{(-0.125)^{n-1}}{\sqrt{n}} ?

A)The series diverges.
B)The series converges.
C)The ratio test doesn't tell us anything about the convergence of the series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
61
If the power series Cnxn\sum C_{n} x^{n} converges for x=a,a>0x=a, a>0 , then it converges for x=a2x=\frac{a}{2} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
62
Find the radius of convergence of Find the radius of convergence of   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
63
Does Does   converge? converge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
64
If Cn6n\sum C_{n} 6^{n} is convergent, then Cn(6)n\sum C_{n}(-6)^{n} is also convergent.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the radius of convergence of Find the radius of convergence of
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
66
The ratio test can be used to determine whether n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find the interval of convergence of the series Find the interval of convergence of the series
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
68
Does Does   converge? converge?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
69
For what values of p does the series 1+9p+(9p)2+(9p)3++(9p)n+1+9 p+(9 p)^{2}+(9 p)^{3}+\ldots+(9 p)^{n}+ converge, if any?

A) 19\frac{-1}{9}<<p<p<19\frac{1}{9}
B) 118\frac{-1}{18} <<p<p<118\frac{1}{18}
C)-1 < p < 1
D) 1p1-1 \leq p \leq 1
E)The series diverges for all values of p.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
70
If an>an+1>0a_{n}>a_{n+1}>0 (for all n)and an\sum a_{n} converges, then (1)nan\sum(-1)^{n} a_{n} converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 70 في هذه المجموعة.