Deck 9: Quadratic Equations and Inequalities

ملء الشاشة (f)
exit full mode
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
x2=25x ^ { 2 } = - 25

A) x=±5ix = \pm 5 i
B) x=5ix = 5 i
C) x=12.5x = - 12.5
D) x=±6ix = \pm 6 \mathrm { i }
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
x22+12x=8\frac { x ^ { 2 } } { 2 } + \frac { 1 } { 2 } x = 8

A) 1±654\frac { - 1 \pm \sqrt { 65 } } { 4 }
B) 1±652\frac { 1 \pm \sqrt { 65 } } { 2 }
C) 1±652\frac { - 1 \pm \sqrt { 65 } } { 2 }
D) 1±654\frac { 1 \pm \sqrt { 65 } } { 4 }
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
4x2=604 x ^ { 2 } = 60

A) x=16x = 16
B) x=±15x = \pm \sqrt { 15 }
C) x=±15x = \pm 15
D) x=30x = 30
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+6x19=0x ^ { 2 } + 6 x - 19 = 0
 A) x=27±3 B) x=3±214 C) x=3±27 D) x=±27\begin{array} { l l l l } \text { A) } x = 2 \sqrt { 7 } \pm 3 & \text { B) } x = - 3 \pm 2 \sqrt { 14 } & \text { C) } x = - 3 \pm 2 \sqrt { 7 } & \text { D) } x = \pm 2 \sqrt { 7 } \end{array}
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
3x2+8x+1=03 x ^ { 2 } + 8 x + 1 = 0

A) x=4±193x = \frac { - 4 \pm \sqrt { 19 } } { 3 }
B) x=4±136x = \frac { - 4 \pm \sqrt { 13 } } { 6 }
C) x=4±133x = \frac { - 4 \pm \sqrt { 13 } } { 3 }
D) x=8±133x = \frac { - 8 \pm \sqrt { 13 } } { 3 }
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
x2+9=0x ^ { 2 } + 9 = 0

A) x=4.5x = - 4.5
B) x=3ix = 3 i
C) x=±3ix = \pm 3 \mathrm { i }
D) x=±4ix = \pm 4 \mathrm { i }
سؤال
Solve.
The formula D = 16t2 is used to approximate the distance in feet an object falls in t seconds. A package is dropped from an airplane that is 1600 feet above the ground. How many seconds elapse before it hits the
Ground?

A)10 seconds
B)25,600 seconds
C)100 seconds
D)20 seconds
سؤال
Solve.
The time a basketball player spends in the air is called the "hang time." The vertical leap L measured in feet is related to the hang time t measured in seconds by the equation L = 4t2. Sam Bucketmaster, a spectacular
Basketball player, often displayed a leap of 3.3 feet. Find the hang time for that leap. Round your answer to the
Nearest hundredth of a second, if necessary.

A)approximately 0.825 seconds
B)approximately 0.91 seconds
C)approximately 1.65 seconds
D)approximately 43.56 seconds
سؤال
Solve.
What is the value of x if the volume of the box is 729 cubic feet?  <strong>Solve. What is the value of x if the volume of the box is 729 cubic feet?  </strong> A)   x=11   B)   x=144   C)   x=12   D)   x=96   <div style=padding-top: 35px>

A) x=11 x=11
B) x=144 x=144
C) x=12 x=12
D) x=96 x=96
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
(x+9)2=12( x + 9 ) ^ { 2 } = 12
B) x=9±23x = - 9 \pm 2 \sqrt { 3 }
C) x=9±26x = - 9 \pm 2 \sqrt { 6 }
D) x=23±9x = 2 \sqrt { 3 } \pm 9
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
(2x3)2=25( 2 x - 3 ) ^ { 2 } = 25

A) x=8,2x = 8 , - 2
B) x=1,4x = 1 , - 4
C) x=2,8x = 2 , - 8
D) x=4,1x = 4 , - 1
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
3x2+12x+3=23 x ^ { 2 } + 12 x + 3 = 2

A) x=6±393 x=\frac{-6 \pm \sqrt{39}}{3}
B) x=6±333x = \frac { - 6 \pm \sqrt { 33 } } { 3 }
C) x=6±336x = \frac { - 6 \pm \sqrt { 33 } } { 6 }
D) x=12±333x = \frac { - 12 \pm \sqrt { 33 } } { 3 }
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+8x=3x ^ { 2 } + 8 x = 3

A) x=4±219x = - 4 \pm 2 \sqrt { 19 }
B) x=4±19x = - 4 \pm \sqrt { 19 }
C) x=4+19x = 4 + \sqrt { 19 }
D) x=1±19x = - 1 \pm \sqrt { 19 }
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+12x=23x^{2}+12 x=-23
 Solve the equation by completing the square. Express any complex numbers using i notation.  x^{2}+12 x=-23   <div style=padding-top: 35px>
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
(3x+5)2=7( 3 x + 5 ) ^ { 2 } = 7

A) x=4,23x = - 4 , \frac { 2 } { 3 }
B) x=5±73x = \frac { - 5 \pm \sqrt { 7 } } { 3 }
C) x=5±73x = \frac { 5 \pm \sqrt { 7 } } { 3 }
D) x=7±53x = \frac { \sqrt { 7 } \pm 5 } { 3 }
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
5x24x=95 x ^ { 2 } - 4 x = 9

A) x=59,1x = \frac { 5 } { 9 } , - 1
B) x=59,1x = \frac { 5 } { 9 } , 1
C) x=95,1x = \frac { 9 } { 5 } , - 1
D) x=95,1x = \frac { 9 } { 5 } , 1
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+9=xx ^ { 2 } + 9 = - x

A) x=1±352x = \frac { 1 \pm \sqrt { 35 } } { 2 }
B) x=1±i352x = \frac { - 1 \pm i \sqrt { 35 } } { 2 }
C) x=1±i352x = \frac { 1 \pm i \sqrt { 35 } } { 2 }
D) x=1±352x = \frac { - 1 \pm \sqrt { 35 } } { 2 }
سؤال
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+6x=31x ^ { 2 } + 6 x = 31

A) x=3±210x = - 3 \pm 2 \sqrt { 10 }
B) x=3±220x = - 3 \pm 2 \sqrt { 20 }
C) x=210±3x = 2 \sqrt { 10 } \pm 3
D) x=±210x = \pm 2 \sqrt { 10 }
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
3x2+7=2x23 x ^ { 2 } + 7 = 2 x ^ { 2 }

A) x=i7x = i \sqrt { 7 }
B) x=49x = 49
C) x=±i7x = \pm i \sqrt { 7 }
D) x=3.5x = - 3.5
سؤال
Solve the equation by using the square root property. Express any complex numbers using i notation.
x2=196x ^ { 2 } = 196

A) x=98x = 98
B) x=14x = 14
C) x=±14x = \pm 14
D) x=±15x = \pm 15
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
5x24x9=05 x ^ { 2 } - 4 x - 9 = 0

A) x=95,1x = \frac { 9 } { 5 } , - 1
B) x=59,1x = \frac { 5 } { 9 } , 1
C) x=59,1x = \frac { 5 } { 9 } , - 1
D) x=95,1x = \frac { 9 } { 5 } , 1
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x212x+36=0x ^ { 2 } - 12 x + 36 = 0

A) one rational solution
B) two rational solutions
C) two nonreal complex solutions
D) two irrational solutions
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x22x+8=0x ^ { 2 } - 2 x + 8 = 0

A) two rational solutions
B) two irrational solutions
C) two nonreal complex solutions
D) one rational solution
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
7+2x2=3x7 + 2 x ^ { 2 } = 3 x

A) two irrational solutions
B) one rational solution
C) two nonreal complex solutions
D) two rational solutions
سؤال
Write a quadratic equation having the given solutions.
6,2- 6,2

A) x212x4=0x ^ { 2 } - 12 x - 4 = 0
B) x2+4x12=0x ^ { 2 } + 4 x - 12 = 0
C) x24x12=0x ^ { 2 } - 4 x - 12 = 0
D) x2+12x4=0x ^ { 2 } + 12 x - 4 = 0
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
15x2=7x31 - 5 x ^ { 2 } = - 7 x - 3

A) two irrational solutions
B) two rational solutions
C) one rational solution
D) two nonreal complex solutions
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2=24x154x ^ { 2 } = 24 x - 154

A) x=±10 x=\pm \sqrt{10}
B) x=±10i x=\pm 10 \mathrm{i}
C) x=12±i10 x=-12 \pm i \sqrt{10}
D) x=±i10 x=\pm \mathrm{i} \sqrt{10}
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
9x2+12x+4=09 x ^ { 2 } + 12 x + 4 = 0

A) two nonreal complex solutions
B) two rational solutions
C) two irrational solutions
D) one rational solution
سؤال
Write a quadratic equation having the given solutions.
9,10

A) x2+19x+90=0x ^ { 2 } + 19 x + 90 = 0
B) x290x+19=0x ^ { 2 } - 90 x + 19 = 0
C) x219x+90=0x ^ { 2 } - 19 x + 90 = 0
D) x2+90x+19=0x ^ { 2 } + 90 x + 19 = 0
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
2x2+10x+7=02 x ^ { 2 } + 10 x + 7 = 0

A) x=5±114x = \frac { - 5 \pm \sqrt { 11 } } { 4 }
B) x=5±392x = \frac { - 5 \pm \sqrt { 39 } } { 2 }
C) x=5±112x = \frac { - 5 \pm \sqrt { 11 } } { 2 }
D) x=10±112x = \frac { - 10 \pm \sqrt { 11 } } { 2 }
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
4x2=604 x ^ { 2 } = 60

A) x=±15x = \pm \sqrt { 15 }
B) x=±15x = \pm 15
C) x=30x = 30
D) x=16x = 16
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2+6x+34=0x ^ { 2 } + 6 x + 34 = 0

A) x=,8 x= ,-8
B) x=3±5i x=-3 \pm 5 i
C) x=3+5i x=-3+5 i
D) x=3±25i x=-3 \pm 25 i
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x2+5x+1=0x ^ { 2 } + 5 x + 1 = 0

A) two nonreal complex solutions
B) one rational solution
C) two rational solutions
D) two irrational solutions
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
8x2=5x38 x ^ { 2 } = - 5 x - 3

A) two nonreal complex solutions
B) one rational solution
C) two rational solutions
D) two irrational solutions
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
3x2=12x3 x ^ { 2 } = - 12 x

A) x=4,x=0x = 4 , x = 0
B) x=0x = 0
C) x=4,x=0x = - 4 , x = 0
D) x=±4x = \pm 4
سؤال
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x2+3x4=0x ^ { 2 } + 3 x - 4 = 0

A) two irrational solutions
B) two nonreal complex solutions
C) one rational solution
D) two rational solutions
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2+x+6=0\begin{array} { l } x ^ { 2 } + x + 6 = 0 \\\end{array}

A) x=1±232x = \frac { 1 \pm \sqrt { 23 } } { 2 }
B) x=1±i232x = \frac { 1 \pm i \sqrt { 23 } } { 2 }
C) x=1±232x = \frac { - 1 \pm \sqrt { 23 } } { 2 }
D) x=1±i232x = \frac { - 1 \pm i \sqrt { 23 } } { 2 }
سؤال
Write a quadratic equation having the given solutions.
8,4- 8 , - 4

A) x232x12=0x ^ { 2 } - 32 x - 12 = 0
B) x212x+32=0x ^ { 2 } - 12 x + 32 = 0
C) x2+32x12=0x ^ { 2 } + 32 x - 12 = 0
D) x2+12x+32=0x ^ { 2 } + 12 x + 32 = 0
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2+7x+3=0x ^ { 2 } + 7 x + 3 = 0

A) x=7±3714x = \frac { - 7 \pm \sqrt { 37 } } { 14 }
B) x=7±372x = \frac { 7 \pm \sqrt { 37 } } { 2 }
C) x=7±372x = \frac { - 7 \pm \sqrt { 37 } } { 2 }
D) x=7±612x = \frac { - 7 \pm \sqrt { 61 } } { 2 }
سؤال
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
1x+15+1x=110\frac { 1 } { x + 15 } + \frac { 1 } { x } = \frac { 1 } { 10 }

A) x=5±252x = \frac { - 5 \pm 25 } { 2 }
B) x=5±252x = \frac { 5 \pm 25 } { 2 }
C) x=35±252x = \frac { 35 \pm 25 } { 2 }
D) x=35±252x = \frac { - 35 \pm 25 } { 2 }
سؤال
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
2x12x1/280=02 x - 12 x ^ { 1 / 2 } - 80 = 0

A) x=10x = 10
B) x=100x = 100
C) x=16,100x = 16,100
D) x=4,10x = 4,10
سؤال
Solve. Express any nonreal complex numbers with i notation.
x46x227=0x ^ { 4 } - 6 x ^ { 2 } - 27 = 0

A) x=±3,±i3x = \pm 3 , \pm i \sqrt { 3 }
B) x=3,i3x = 3 , i \sqrt { 3 }
C) x=9,3x = - 9,3
D) x=±3,±3ix = \pm \sqrt { 3 } , \pm 3 \mathrm { i }
سؤال
Solve. Express any nonreal complex numbers with i notation.
x422x2+96=0x ^ { 4 } - 22 x ^ { 2 } + 96 = 0

A) x=4,6x = 4 , \sqrt { 6 }
B) x=16,6x = 16,6
C) x=±4,±6x = \pm 4 , \pm \sqrt { 6 }
D) x=±4,±i6x = \pm 4 , \pm i \sqrt { 6 }
سؤال
Solve for real roots.
x1/213x1/4=42x ^ { 1 / 2 } - 13 x ^ { 1 / 4 } = - 42

A) x=49,36x = 49,36
B) x=2401,1296x = 2401,1296
C) x=7,6x = 7,6
D) x=7,6x = - 7 , - 6
سؤال
Solve for real roots.
3x2/38x1/335=03 x ^ { 2 / 3 } - 8 x ^ { 1 / 3 } - 35 = 0

A) x=125x = 125
B) x=125,x=34327x = 125 , x = \frac { 343 } { 27 }
C) x=125,x=34327x = 125 , x = - \frac { 343 } { 27 }
D) x=34327x = - \frac { 343 } { 27 }
سؤال
Solve.
A company that manufactures outdoor rocking chairs makes a daily profit pp according to the equation p=100x2+4300x45,669p = - 100 x ^ { 2 } + 4300 x - 45,669 , where pp is measured in dollars and xx is the number of rocking chairs made per day. Find the number of rocking chairs that must be made each day to produce a zero profit for the company. Round your answer to the nearest whole number.

A) 19 rocking chairs or 24 rocking chairs per day
B) 1914 rocking chairs or 2386 rocking chairs per day
C) 24 rocking chairs per day
D) 44 rocking chairs or 49 rocking chairs per day
سؤال
Write a quadratic equation having the given solutions.
7i,7i7 \mathbf { i } , - 7 \mathbf { i }

A) x2+49=0x ^ { 2 } + 49 = 0
B) x214ix+49=0x ^ { 2 } - 14 i x + 49 = 0
C) x249=0x ^ { 2 } - 49 = 0
D) (x7)2=0( x - 7 ) ^ { 2 } = 0
سؤال
Write a quadratic equation having the given solutions.
12,34\frac { 1 } { 2 } , \frac { 3 } { 4 }

A) 8x210x+3=08 x ^ { 2 } - 10 x + 3 = 0
B) 8x2+10x+3=08 x ^ { 2 } + 10 x + 3 = 0
C) 8x2+3x+10=08 x ^ { 2 } + 3 x + 10 = 0
D) 8x23x+10=08 x ^ { 2 } - 3 x + 10 = 0
سؤال
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
x10x1/2+24=0x-10 x^{1 / 2}+24=0

A) x=±6,±2x = \pm \sqrt { 6 } , \pm 2
B) x=6,4x = 6,4
C) x=36,16x = 36,16
D) x=±6,±4x = \pm 6 , \pm 4
سؤال
Solve for real roots.
2x1/211x1/421=02 x ^ { 1 / 2 } - 11 x ^ { 1 / 4 } - 21 = 0

A) x=2401x = 2401
B) x=7,32x = 7 , - \frac { 3 } { 2 }
C) x=2401,8116x = 2401 , \frac { 81 } { 16 }
D) x=7,3x = - 7 , - 3
سؤال
Find all valid real roots for the equation.
x6+56x3512=0x ^ { 6 } + 56 x ^ { 3 } - 512 = 0

A) x=2,x=4x = 2 , x = - 4
B) x=2,x=4x = - 2 , x = 4
C) x=2,x=4x = 2 , x = 4
D) x=2,x=4x = - 2 , x = - 4
سؤال
Find all valid real roots for the equation.
x6+4x345=0x ^ { 6 } + 4 x ^ { 3 } - 45 = 0

A) x=53,x=93x = - \sqrt [ 3 ] { 5 } , x = - \sqrt [ 3 ] { 9 }
B) x=53,x=93x = \sqrt [ 3 ] { 5 } , x = \sqrt [ 3 ] { 9 }
C) x=53,x=93x = \sqrt [ 3 ] { 5 } , x = - \sqrt [ 3 ] { 9 }
D) x=53,x=93x = - \sqrt [ 3 ] { 5 } , x = \sqrt [ 3 ] { 9 }
سؤال
Solve. Express any nonreal complex numbers with i notation.
x440x2+144=0x ^ { 4 } - 40 x ^ { 2 } + 144 = 0

A) x=2,6x = 2,6
B) x=±2i,±6ix = \pm 2 i , \pm 6 \mathrm { i }
C) x=±2,±6x = \pm 2 , \pm 6
D) x=4,36x = 4,36
سؤال
Write a quadratic equation having the given solutions.
13,16\frac { 1 } { 3 } , \frac { 1 } { 6 }

A) x2118x+12=0x ^ { 2 } - \frac { 1 } { 18 } x + \frac { 1 } { 2 } = 0
B) x2+12x+118=0x ^ { 2 } + \frac { 1 } { 2 } x + \frac { 1 } { 18 } = 0
C) x212x+118=0x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 1 } { 18 } = 0
D) x2+118x+12=0x ^ { 2 } + \frac { 1 } { 18 } x + \frac { 1 } { 2 } = 0
سؤال
Solve for real roots.
x2/38x1/3+15=0x ^ { 2 / 3 } - 8 x ^ { 1 / 3 } + 15 = 0

A) x=27,125x = 27,125
B) x=5,3x = - 5 , - 3
C) x=3,5x = 3,5
D) x=125,27x = - 125 , - 27
سؤال
Solve for real roots.
x4x1/232=0x - 4 x ^ { 1 / 2 } - 32 = 0

A) x=64x = 64
B) x=128x = 128
C) x=32x = 32
D) x=48x = 48
سؤال
Find all valid real roots for the equation.
3x8+4x4=323 x ^ { 8 } + 4 x ^ { 4 } = 32

A) no real roots
B) x=44x = \sqrt [ 4 ] { 4 }
C) x=±21643,x=44x = \pm \frac { \sqrt [ 4 ] { 216 } } { 3 } , x = \sqrt [ 4 ] { 4 }
D) x=±21643x = \pm \frac { \sqrt [ 4 ] { 216 } } { 3 }
سؤال
Find all valid real roots for the equation.
x8=5x44x ^ { 8 } = 5 x ^ { 4 } - 4

A) x=±14,x=±44x = \pm \sqrt [ 4 ] { 1 } , x = \pm \sqrt [ 4 ] { 4 }
B) x=1,x=4x = 1 , x = 4
C) x=±1,x=±44x = \pm 1 , x = \pm \sqrt [ 4 ] { 4 }
D) x=±14,x=4x = \pm \sqrt [ 4 ] { 1 } , x = 4
سؤال
Solve for real roots.
x2/5x1/56=0x ^ { 2 / 5 } - x ^ { 1 / 5 } - 6 = 0

A) x=243,32x = 243 , - 32
B) x=3,2x = 3 , - 2
C) x=3,2x = - 3,2
D) x=243,32x = - 243,32
سؤال
Solve. Express any nonreal complex numbers with i notation.
2x4=65x2+2522 x ^ { 4 } = 65 x ^ { 2 } + 252

A) x=±6x = \pm 6
B) x=±142,±6x = \pm \frac { \sqrt { 14 } } { 2 } , \pm 6
C) x=±i142x = \pm \frac { i \sqrt { 14 } } { 2 }
D) x=±i142,x=±6x = \pm \frac { \mathrm { i } \sqrt { 14 } } { 2 } , x = \pm 6
سؤال
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
(x22x)25(x22x)=36\left( x ^ { 2 } - 2 x \right) ^ { 2 } - 5 \left( x ^ { 2 } - 2 x \right) = 36

A) x=1±10,x=1±i5x = 1 \pm \sqrt { 10 } , x = 1 \pm i \sqrt { 5 }
B) x=1±22,x=1±i3x = 1 \pm 2 \sqrt { 2 } , x = 1 \pm i \sqrt { 3 }
C) x=1±10,x=1±i3x = 1 \pm \sqrt { 10 } , x = 1 \pm i \sqrt { 3 }
D) x=1±22,x=1±i5x = 1 \pm 2 \sqrt { 2 } , x = 1 \pm i \sqrt { 5 }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
Ve=12mv2;\mathrm { Ve } = \frac { 1 } { 2 } \mathrm { mv } ^ { 2 } ; for v\mathrm { v }

A) v=±2Vev = \pm \sqrt { 2 \mathrm { Ve } }
B) v=±Ve2mv = \pm \sqrt { \frac { V e } { 2 m } }
C) v=±2mVemv = \frac { \pm \sqrt { 2 m V e } } { m }
D) v=±2Vemv = \frac { \pm 2 \sqrt { \mathrm { Ve } } } { m }
سؤال
Use the Pythagorean theorem to find the missing side(s).
 <strong>Use the Pythagorean theorem to find the missing side(s).    c = 5 , b = 4 a ; find  b  and  a </strong> A)  \mathrm { a } = \frac { 5 \sqrt { 17 } } { 17 } , \mathrm {~b} = \frac { 20 \sqrt { 17 } } { 17 }  B)  a = \frac { \sqrt { 85 } } { 17 } , b = \frac { \sqrt { 85 } } { 68 }  C)  a = \frac { 5 \sqrt { 17 } } { 17 } , b = \frac { 5 \sqrt { 17 } } { 68 }  D)  a = \frac { \sqrt { 85 } } { 17 } , b = \frac { 2 \sqrt { 85 } } { 17 }  <div style=padding-top: 35px>
c=5,b=4ac = 5 , b = 4 a ; find bb and aa

A) a=51717, b=201717\mathrm { a } = \frac { 5 \sqrt { 17 } } { 17 } , \mathrm {~b} = \frac { 20 \sqrt { 17 } } { 17 }
B) a=8517,b=8568a = \frac { \sqrt { 85 } } { 17 } , b = \frac { \sqrt { 85 } } { 68 }
C) a=51717,b=51768a = \frac { 5 \sqrt { 17 } } { 17 } , b = \frac { 5 \sqrt { 17 } } { 68 }
D) a=8517,b=28517a = \frac { \sqrt { 85 } } { 17 } , b = \frac { 2 \sqrt { 85 } } { 17 }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
A=3πa2;A = 3 \pi a ^ { 2 } ; for aa

A) a=3πAa = \sqrt { 3 \pi \mathrm { A } }
B) a=±3πA3πa = \frac { \pm \sqrt { 3 \pi \mathrm { A } } } { 3 \pi }
C) a=±Aπ3a = \frac { \pm \sqrt { \mathrm { A } \pi } } { 3 }
D) a=±A3π3πa = \frac { \pm A \sqrt { 3 \pi } } { 3 \pi }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
81(a2b)+11=7F; for a81 \left( a ^ { 2 } - b \right) + 11 = 7 F ; \text { for } a

A) a=±7 F+81 b119a = \pm \frac { \sqrt { 7 \mathrm {~F} + 81 \mathrm {~b} - 11 } } { 9 }
B) a=±7F119+ba = \pm \frac { \sqrt { 7 F - 11 } } { 9 } + b
C)a=±7F+b119C ) a = \pm \frac { \sqrt { 7 F + b - 11 } } { 9 }
D) a=±7Fb+119a = \pm \frac { \sqrt { 7 F - b + 11 } } { 9 }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
P=7stQQ25R; for Q\mathrm { P } = \frac { 7 \mathrm { stQ } \mathrm { Q } ^ { 2 } } { 5 \mathrm { R } } ; \text { for } \mathrm { Q }

A) Q=25P2R249 s2t2\mathrm { Q } = \frac { 25 \mathrm { P } ^ { 2 } \mathrm { R } ^ { 2 } } { 49 \mathrm {~s} ^ { 2 } \mathrm { t } ^ { 2 } }
B) Q=49 s2t225P2R2\mathrm { Q } = \frac { 49 \mathrm {~s} ^ { 2 } \mathrm { t } ^ { 2 } } { 25 \mathrm { P } ^ { 2 } \mathrm { R } ^ { 2 } }
C) Q=±7Pst5R\mathrm { Q } = \pm \sqrt { \frac { 7 \mathrm { Pst } } { 5 \mathrm { R } } }
D) Q=±5PR7st\mathrm { Q } = \pm \sqrt { \frac { 5 \mathrm { PR } } { 7 \mathrm { st } } }
سؤال
Solve.
The area of a rectangular wall in a classroom is 105 square feet. Its length is 6 feet shorter than three times its width. Find the length and width of the wall of the classroom.

A)width = 7 ft; length = 25 ft
B)width = 7 ft; length = 27 ft
C)width = 7 ft; length = 13 ft
D)width = 7 ft; length = 15 ft
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
(b7)y211y+8z=0( b - 7 ) y ^ { 2 } - 11 y + 8 z = 0 ; for yy

A) y=11±121+32bz224zb7y = \frac { 11 \pm \sqrt { 121 + 32 b z - 224 z } } { b - 7 }
B) y=11±12132bz+224z2b14y = \frac { 11 \pm \sqrt { 121 - 32 b z + 224 z } } { 2 b - 14 }
C) y=11±12132bz+224zb7y = \frac { 11 \pm \sqrt { 121 - 32 b z + 224 z } } { b - 7 }
D) y=11±121+32bz224z2b14y = \frac { 11 \pm \sqrt { 121 + 32 b z - 224 z } } { 2 b - 14 }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
L=2πrh+2πr2; for r\mathrm { L } = 2 \pi \mathrm { rh } + 2 \pi \mathrm { r } ^ { 2 } \text {; for } \mathrm { r }

A) r=πh±π2 h2+2πL2π\mathrm { r } = \frac { \pi \mathrm { h } \pm \sqrt { \pi ^ { 2 } \mathrm {~h} ^ { 2 } + 2 \pi \mathrm { L } } } { 2 \pi }
B) r=πh±π2h22πL2πr = \frac { - \pi h \pm \sqrt { \pi ^ { 2 } h ^ { 2 } - 2 \pi L } } { 2 \pi }
C) r=πh±π2h2+2πLπr = \frac { - \pi h \pm \sqrt { \pi ^ { 2 } h ^ { 2 } + 2 \pi L } } { \pi }
D) r=πh±π2h2+2πL2πr = \frac { - \pi h \pm \sqrt { \pi ^ { 2 } h ^ { 2 } + 2 \pi L } } { 2 \pi }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
M=πr2hd\mathrm { M } = \pi \mathrm { r } ^ { 2 } \mathrm { hd } ; for r\mathrm { r }

A) r=±Mπhdπhd\mathrm { r } = \frac { \pm \sqrt { \mathrm { M } \pi h d } } { \pi \mathrm { hd } }
B) r=±πMhd hd r = \frac { \pm \sqrt { \pi \mathrm { Mhd } } } { \text { hd } }
C) r=±Mπhdπhdr = \frac { \pm M \sqrt { \pi h d } } { \pi h d }
D) r=±πMhdr = \pm \sqrt { \pi M h d }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
S=λ(b2+B2)w; for b\mathrm { S } = \lambda \left( \mathrm { b } ^ { 2 } + \mathrm { B } ^ { 2 } \right) \mathrm { w } ; \text { for } \mathrm { b }

A) b=±SλwB2λwb = \pm \sqrt { \frac { S - \lambda w B ^ { 2 } } { \lambda w } }
B) b=±SB2λwb = \pm \sqrt { \frac { S - B ^ { 2 } } { \lambda w } }
C) b=±SλwB2b = \pm \sqrt { \frac { S } { \lambda w } } - B ^ { 2 }
D) b=±SλwBb = \pm \sqrt { \frac { S } { \lambda w } } - B
سؤال
Solve.
A boat sailed a distance of 22 kilometers due south. It then banked to the left and sailed the second leg of the journey. Finally, it banked left again and sailed back to the starting point. The entire course was shaped like a
Right triangle with the 22-kilometer distance serving as the hypotenuse. The second leg of the journey was 5
Kilometers longer than the final leg. How long were the second and third legs of the journey? Round your
Answers to the nearest hundredth of a kilometer, if necessary.

A)The second leg was 18.26 kilometers. The third leg was 13.26 kilometers.
B)The second leg was 17.85 kilometers. The third leg was 12.85 kilometers.
C)The second leg was 20.35 kilometers. The third leg was 10.35 kilometers.
D)The second leg was 9.13 kilometers. The third leg was 6.63 kilometers.
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
x22cx8c2=0x ^ { 2 } - 2 c x - 8 c ^ { 2 } = 0 ; for xx

A) x=2c,4c\mathrm { x } = 2 \mathrm { c } , - 4 \mathrm { c }
B) x=2c,4cx = - 2 c , 4 c
C) x=±8c22cxx = \pm \sqrt { 8 c ^ { 2 } - 2 c x }
D) x=±8c2+2cxx = \pm \sqrt { 8 \mathrm { c } ^ { 2 } + 2 \mathrm { cx } }
سؤال
Use the Pythagorean theorem to find the missing side(s).
 <strong>Use the Pythagorean theorem to find the missing side(s).    b = 8 , a = \sqrt { 7 } ; find  c </strong> A)  \sqrt { 15 }  B) 57 C)  \sqrt { 57 }  D)  \sqrt { 71 }  <div style=padding-top: 35px>
b=8,a=7b = 8 , a = \sqrt { 7 } ; find cc

A) 15\sqrt { 15 }
B) 57
C) 57\sqrt { 57 }
D) 71\sqrt { 71 }
سؤال
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
6x2x11=06 x ^ { - 2 } - x ^ { - 1 } - 1 = 0

A) x=13,12x = \frac { 1 } { 3 } , - \frac { 1 } { 2 }
B) x=3,2x = 3 , - 2
C) x=3x = - 3 ,
D) x=13,x = - \frac { 1 } { 3 } , -
سؤال
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
(x22x)211(x22x)+24=0\left( x ^ { 2 } - 2 x \right) ^ { 2 } - 11 \left( x ^ { 2 } - 2 x \right) + 24 = 0

A) x=2,1,8,3,4,3x = - 2 , - 1,8,3,4,3
B) x=4,3x = 4,3
C) x=8,3x = 8,3
D) x=2,1,4,3x = - 2 , - 1,4,3
سؤال
Solve.
A tour bus is traveling along a triangular path. The three straight lines form a right triangle. One leg of the triangle represents a distance of 144 miles. The other leg of the triangle is 96 miles shorter than the hypotenuse.
What is the length of the hypotenuse of this triangle? Of the other leg?

A)The hypotenuse is 159 miles long. The shorter leg is 62 miles long.
B)The hypotenuse is 155 miles long. The shorter leg is 58 miles long.
C)The hypotenuse is 156 miles long. The shorter leg is 60 miles long.
D)The hypotenuse is 158 miles long. The shorter leg is 59 miles long.
سؤال
Solve. Find all valid real roots for the equation.
2+55x1=2(5x1)22 + \frac { 5 } { 5 x - 1 } = \frac { - 2 } { ( 5 x - 1 ) ^ { 2 } }

A) x=15,x=0x = - \frac { 1 } { 5 } , x = 0
B) x=15,x=110x = - \frac { 1 } { 5 } , x = \frac { 1 } { 10 }
C) x=2,x=12x = - 2 , x = - \frac { 1 } { 2 }
D) x=15,x=110x = - \frac { 1 } { 5 } , x = - \frac { 1 } { 10 }
سؤال
Solve for the specified variable. Assume that all other variables are nonzero
rm=t2mtr m = t ^ { 2 } - m t ; for tt

A) t=m±m24mr4t = \frac { m \pm \sqrt { m ^ { 2 } - 4 m r } } { 4 }
B) t=m±m2+4mr2mt = \frac { m \pm \sqrt { m ^ { 2 } + 4 m r } } { 2 m }
C) t=m±m2+4rm2t = \frac { m \pm \sqrt { m ^ { 2 } + 4 \mathrm { rm } } } { 2 }
D) t=mrmt = \sqrt { m r - m }
سؤال
Solve.
The area of a triangular poster is 1480 square centimeters. Its altitude is 6 feet shorter than twice its base. Find the lengths of the altitude and base.

A)base = 40 cm; altitude = 37 cm
B)base = 20 cm; altitude = 74 cm
C)base = 40 cm; altitude = 74 cm
D)base = 80 cm; altitude = 18.5 cm
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/124
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Quadratic Equations and Inequalities
1
Solve the equation by using the square root property. Express any complex numbers using i notation.
x2=25x ^ { 2 } = - 25

A) x=±5ix = \pm 5 i
B) x=5ix = 5 i
C) x=12.5x = - 12.5
D) x=±6ix = \pm 6 \mathrm { i }
A
2
Solve the equation by completing the square. Express any complex numbers using i notation.
x22+12x=8\frac { x ^ { 2 } } { 2 } + \frac { 1 } { 2 } x = 8

A) 1±654\frac { - 1 \pm \sqrt { 65 } } { 4 }
B) 1±652\frac { 1 \pm \sqrt { 65 } } { 2 }
C) 1±652\frac { - 1 \pm \sqrt { 65 } } { 2 }
D) 1±654\frac { 1 \pm \sqrt { 65 } } { 4 }
C
3
Solve the equation by using the square root property. Express any complex numbers using i notation.
4x2=604 x ^ { 2 } = 60

A) x=16x = 16
B) x=±15x = \pm \sqrt { 15 }
C) x=±15x = \pm 15
D) x=30x = 30
B
4
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+6x19=0x ^ { 2 } + 6 x - 19 = 0
 A) x=27±3 B) x=3±214 C) x=3±27 D) x=±27\begin{array} { l l l l } \text { A) } x = 2 \sqrt { 7 } \pm 3 & \text { B) } x = - 3 \pm 2 \sqrt { 14 } & \text { C) } x = - 3 \pm 2 \sqrt { 7 } & \text { D) } x = \pm 2 \sqrt { 7 } \end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
5
Solve the equation by completing the square. Express any complex numbers using i notation.
3x2+8x+1=03 x ^ { 2 } + 8 x + 1 = 0

A) x=4±193x = \frac { - 4 \pm \sqrt { 19 } } { 3 }
B) x=4±136x = \frac { - 4 \pm \sqrt { 13 } } { 6 }
C) x=4±133x = \frac { - 4 \pm \sqrt { 13 } } { 3 }
D) x=8±133x = \frac { - 8 \pm \sqrt { 13 } } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
6
Solve the equation by using the square root property. Express any complex numbers using i notation.
x2+9=0x ^ { 2 } + 9 = 0

A) x=4.5x = - 4.5
B) x=3ix = 3 i
C) x=±3ix = \pm 3 \mathrm { i }
D) x=±4ix = \pm 4 \mathrm { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
7
Solve.
The formula D = 16t2 is used to approximate the distance in feet an object falls in t seconds. A package is dropped from an airplane that is 1600 feet above the ground. How many seconds elapse before it hits the
Ground?

A)10 seconds
B)25,600 seconds
C)100 seconds
D)20 seconds
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
8
Solve.
The time a basketball player spends in the air is called the "hang time." The vertical leap L measured in feet is related to the hang time t measured in seconds by the equation L = 4t2. Sam Bucketmaster, a spectacular
Basketball player, often displayed a leap of 3.3 feet. Find the hang time for that leap. Round your answer to the
Nearest hundredth of a second, if necessary.

A)approximately 0.825 seconds
B)approximately 0.91 seconds
C)approximately 1.65 seconds
D)approximately 43.56 seconds
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
9
Solve.
What is the value of x if the volume of the box is 729 cubic feet?  <strong>Solve. What is the value of x if the volume of the box is 729 cubic feet?  </strong> A)   x=11   B)   x=144   C)   x=12   D)   x=96

A) x=11 x=11
B) x=144 x=144
C) x=12 x=12
D) x=96 x=96
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
10
Solve the equation by using the square root property. Express any complex numbers using i notation.
(x+9)2=12( x + 9 ) ^ { 2 } = 12
B) x=9±23x = - 9 \pm 2 \sqrt { 3 }
C) x=9±26x = - 9 \pm 2 \sqrt { 6 }
D) x=23±9x = 2 \sqrt { 3 } \pm 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
11
Solve the equation by using the square root property. Express any complex numbers using i notation.
(2x3)2=25( 2 x - 3 ) ^ { 2 } = 25

A) x=8,2x = 8 , - 2
B) x=1,4x = 1 , - 4
C) x=2,8x = 2 , - 8
D) x=4,1x = 4 , - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
12
Solve the equation by completing the square. Express any complex numbers using i notation.
3x2+12x+3=23 x ^ { 2 } + 12 x + 3 = 2

A) x=6±393 x=\frac{-6 \pm \sqrt{39}}{3}
B) x=6±333x = \frac { - 6 \pm \sqrt { 33 } } { 3 }
C) x=6±336x = \frac { - 6 \pm \sqrt { 33 } } { 6 }
D) x=12±333x = \frac { - 12 \pm \sqrt { 33 } } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
13
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+8x=3x ^ { 2 } + 8 x = 3

A) x=4±219x = - 4 \pm 2 \sqrt { 19 }
B) x=4±19x = - 4 \pm \sqrt { 19 }
C) x=4+19x = 4 + \sqrt { 19 }
D) x=1±19x = - 1 \pm \sqrt { 19 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
14
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+12x=23x^{2}+12 x=-23
 Solve the equation by completing the square. Express any complex numbers using i notation.  x^{2}+12 x=-23
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
15
Solve the equation by using the square root property. Express any complex numbers using i notation.
(3x+5)2=7( 3 x + 5 ) ^ { 2 } = 7

A) x=4,23x = - 4 , \frac { 2 } { 3 }
B) x=5±73x = \frac { - 5 \pm \sqrt { 7 } } { 3 }
C) x=5±73x = \frac { 5 \pm \sqrt { 7 } } { 3 }
D) x=7±53x = \frac { \sqrt { 7 } \pm 5 } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
16
Solve the equation by completing the square. Express any complex numbers using i notation.
5x24x=95 x ^ { 2 } - 4 x = 9

A) x=59,1x = \frac { 5 } { 9 } , - 1
B) x=59,1x = \frac { 5 } { 9 } , 1
C) x=95,1x = \frac { 9 } { 5 } , - 1
D) x=95,1x = \frac { 9 } { 5 } , 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
17
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+9=xx ^ { 2 } + 9 = - x

A) x=1±352x = \frac { 1 \pm \sqrt { 35 } } { 2 }
B) x=1±i352x = \frac { - 1 \pm i \sqrt { 35 } } { 2 }
C) x=1±i352x = \frac { 1 \pm i \sqrt { 35 } } { 2 }
D) x=1±352x = \frac { - 1 \pm \sqrt { 35 } } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
18
Solve the equation by completing the square. Express any complex numbers using i notation.
x2+6x=31x ^ { 2 } + 6 x = 31

A) x=3±210x = - 3 \pm 2 \sqrt { 10 }
B) x=3±220x = - 3 \pm 2 \sqrt { 20 }
C) x=210±3x = 2 \sqrt { 10 } \pm 3
D) x=±210x = \pm 2 \sqrt { 10 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
19
Solve the equation by using the square root property. Express any complex numbers using i notation.
3x2+7=2x23 x ^ { 2 } + 7 = 2 x ^ { 2 }

A) x=i7x = i \sqrt { 7 }
B) x=49x = 49
C) x=±i7x = \pm i \sqrt { 7 }
D) x=3.5x = - 3.5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
20
Solve the equation by using the square root property. Express any complex numbers using i notation.
x2=196x ^ { 2 } = 196

A) x=98x = 98
B) x=14x = 14
C) x=±14x = \pm 14
D) x=±15x = \pm 15
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
21
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
5x24x9=05 x ^ { 2 } - 4 x - 9 = 0

A) x=95,1x = \frac { 9 } { 5 } , - 1
B) x=59,1x = \frac { 5 } { 9 } , 1
C) x=59,1x = \frac { 5 } { 9 } , - 1
D) x=95,1x = \frac { 9 } { 5 } , 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
22
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x212x+36=0x ^ { 2 } - 12 x + 36 = 0

A) one rational solution
B) two rational solutions
C) two nonreal complex solutions
D) two irrational solutions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
23
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x22x+8=0x ^ { 2 } - 2 x + 8 = 0

A) two rational solutions
B) two irrational solutions
C) two nonreal complex solutions
D) one rational solution
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
24
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
7+2x2=3x7 + 2 x ^ { 2 } = 3 x

A) two irrational solutions
B) one rational solution
C) two nonreal complex solutions
D) two rational solutions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
25
Write a quadratic equation having the given solutions.
6,2- 6,2

A) x212x4=0x ^ { 2 } - 12 x - 4 = 0
B) x2+4x12=0x ^ { 2 } + 4 x - 12 = 0
C) x24x12=0x ^ { 2 } - 4 x - 12 = 0
D) x2+12x4=0x ^ { 2 } + 12 x - 4 = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
26
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
15x2=7x31 - 5 x ^ { 2 } = - 7 x - 3

A) two irrational solutions
B) two rational solutions
C) one rational solution
D) two nonreal complex solutions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
27
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2=24x154x ^ { 2 } = 24 x - 154

A) x=±10 x=\pm \sqrt{10}
B) x=±10i x=\pm 10 \mathrm{i}
C) x=12±i10 x=-12 \pm i \sqrt{10}
D) x=±i10 x=\pm \mathrm{i} \sqrt{10}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
28
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
9x2+12x+4=09 x ^ { 2 } + 12 x + 4 = 0

A) two nonreal complex solutions
B) two rational solutions
C) two irrational solutions
D) one rational solution
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
29
Write a quadratic equation having the given solutions.
9,10

A) x2+19x+90=0x ^ { 2 } + 19 x + 90 = 0
B) x290x+19=0x ^ { 2 } - 90 x + 19 = 0
C) x219x+90=0x ^ { 2 } - 19 x + 90 = 0
D) x2+90x+19=0x ^ { 2 } + 90 x + 19 = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
30
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
2x2+10x+7=02 x ^ { 2 } + 10 x + 7 = 0

A) x=5±114x = \frac { - 5 \pm \sqrt { 11 } } { 4 }
B) x=5±392x = \frac { - 5 \pm \sqrt { 39 } } { 2 }
C) x=5±112x = \frac { - 5 \pm \sqrt { 11 } } { 2 }
D) x=10±112x = \frac { - 10 \pm \sqrt { 11 } } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
31
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
4x2=604 x ^ { 2 } = 60

A) x=±15x = \pm \sqrt { 15 }
B) x=±15x = \pm 15
C) x=30x = 30
D) x=16x = 16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
32
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2+6x+34=0x ^ { 2 } + 6 x + 34 = 0

A) x=,8 x= ,-8
B) x=3±5i x=-3 \pm 5 i
C) x=3+5i x=-3+5 i
D) x=3±25i x=-3 \pm 25 i
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
33
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x2+5x+1=0x ^ { 2 } + 5 x + 1 = 0

A) two nonreal complex solutions
B) one rational solution
C) two rational solutions
D) two irrational solutions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
34
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
8x2=5x38 x ^ { 2 } = - 5 x - 3

A) two nonreal complex solutions
B) one rational solution
C) two rational solutions
D) two irrational solutions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
35
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
3x2=12x3 x ^ { 2 } = - 12 x

A) x=4,x=0x = 4 , x = 0
B) x=0x = 0
C) x=4,x=0x = - 4 , x = 0
D) x=±4x = \pm 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use the discriminant to find what type of solutions (two rational, two irrational, one rational, or two nonreal complex)
each of the following equations has. Do not solve the equation.
x2+3x4=0x ^ { 2 } + 3 x - 4 = 0

A) two irrational solutions
B) two nonreal complex solutions
C) one rational solution
D) two rational solutions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
37
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2+x+6=0\begin{array} { l } x ^ { 2 } + x + 6 = 0 \\\end{array}

A) x=1±232x = \frac { 1 \pm \sqrt { 23 } } { 2 }
B) x=1±i232x = \frac { 1 \pm i \sqrt { 23 } } { 2 }
C) x=1±232x = \frac { - 1 \pm \sqrt { 23 } } { 2 }
D) x=1±i232x = \frac { - 1 \pm i \sqrt { 23 } } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
38
Write a quadratic equation having the given solutions.
8,4- 8 , - 4

A) x232x12=0x ^ { 2 } - 32 x - 12 = 0
B) x212x+32=0x ^ { 2 } - 12 x + 32 = 0
C) x2+32x12=0x ^ { 2 } + 32 x - 12 = 0
D) x2+12x+32=0x ^ { 2 } + 12 x + 32 = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
39
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
x2+7x+3=0x ^ { 2 } + 7 x + 3 = 0

A) x=7±3714x = \frac { - 7 \pm \sqrt { 37 } } { 14 }
B) x=7±372x = \frac { 7 \pm \sqrt { 37 } } { 2 }
C) x=7±372x = \frac { - 7 \pm \sqrt { 37 } } { 2 }
D) x=7±612x = \frac { - 7 \pm \sqrt { 61 } } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
40
Solve by the quadratic formula. Simplify answers. Use i notation for nonreal complex numbers.
1x+15+1x=110\frac { 1 } { x + 15 } + \frac { 1 } { x } = \frac { 1 } { 10 }

A) x=5±252x = \frac { - 5 \pm 25 } { 2 }
B) x=5±252x = \frac { 5 \pm 25 } { 2 }
C) x=35±252x = \frac { 35 \pm 25 } { 2 }
D) x=35±252x = \frac { - 35 \pm 25 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
41
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
2x12x1/280=02 x - 12 x ^ { 1 / 2 } - 80 = 0

A) x=10x = 10
B) x=100x = 100
C) x=16,100x = 16,100
D) x=4,10x = 4,10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
42
Solve. Express any nonreal complex numbers with i notation.
x46x227=0x ^ { 4 } - 6 x ^ { 2 } - 27 = 0

A) x=±3,±i3x = \pm 3 , \pm i \sqrt { 3 }
B) x=3,i3x = 3 , i \sqrt { 3 }
C) x=9,3x = - 9,3
D) x=±3,±3ix = \pm \sqrt { 3 } , \pm 3 \mathrm { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
43
Solve. Express any nonreal complex numbers with i notation.
x422x2+96=0x ^ { 4 } - 22 x ^ { 2 } + 96 = 0

A) x=4,6x = 4 , \sqrt { 6 }
B) x=16,6x = 16,6
C) x=±4,±6x = \pm 4 , \pm \sqrt { 6 }
D) x=±4,±i6x = \pm 4 , \pm i \sqrt { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
44
Solve for real roots.
x1/213x1/4=42x ^ { 1 / 2 } - 13 x ^ { 1 / 4 } = - 42

A) x=49,36x = 49,36
B) x=2401,1296x = 2401,1296
C) x=7,6x = 7,6
D) x=7,6x = - 7 , - 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
45
Solve for real roots.
3x2/38x1/335=03 x ^ { 2 / 3 } - 8 x ^ { 1 / 3 } - 35 = 0

A) x=125x = 125
B) x=125,x=34327x = 125 , x = \frac { 343 } { 27 }
C) x=125,x=34327x = 125 , x = - \frac { 343 } { 27 }
D) x=34327x = - \frac { 343 } { 27 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
46
Solve.
A company that manufactures outdoor rocking chairs makes a daily profit pp according to the equation p=100x2+4300x45,669p = - 100 x ^ { 2 } + 4300 x - 45,669 , where pp is measured in dollars and xx is the number of rocking chairs made per day. Find the number of rocking chairs that must be made each day to produce a zero profit for the company. Round your answer to the nearest whole number.

A) 19 rocking chairs or 24 rocking chairs per day
B) 1914 rocking chairs or 2386 rocking chairs per day
C) 24 rocking chairs per day
D) 44 rocking chairs or 49 rocking chairs per day
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
47
Write a quadratic equation having the given solutions.
7i,7i7 \mathbf { i } , - 7 \mathbf { i }

A) x2+49=0x ^ { 2 } + 49 = 0
B) x214ix+49=0x ^ { 2 } - 14 i x + 49 = 0
C) x249=0x ^ { 2 } - 49 = 0
D) (x7)2=0( x - 7 ) ^ { 2 } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
48
Write a quadratic equation having the given solutions.
12,34\frac { 1 } { 2 } , \frac { 3 } { 4 }

A) 8x210x+3=08 x ^ { 2 } - 10 x + 3 = 0
B) 8x2+10x+3=08 x ^ { 2 } + 10 x + 3 = 0
C) 8x2+3x+10=08 x ^ { 2 } + 3 x + 10 = 0
D) 8x23x+10=08 x ^ { 2 } - 3 x + 10 = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
49
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
x10x1/2+24=0x-10 x^{1 / 2}+24=0

A) x=±6,±2x = \pm \sqrt { 6 } , \pm 2
B) x=6,4x = 6,4
C) x=36,16x = 36,16
D) x=±6,±4x = \pm 6 , \pm 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
50
Solve for real roots.
2x1/211x1/421=02 x ^ { 1 / 2 } - 11 x ^ { 1 / 4 } - 21 = 0

A) x=2401x = 2401
B) x=7,32x = 7 , - \frac { 3 } { 2 }
C) x=2401,8116x = 2401 , \frac { 81 } { 16 }
D) x=7,3x = - 7 , - 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find all valid real roots for the equation.
x6+56x3512=0x ^ { 6 } + 56 x ^ { 3 } - 512 = 0

A) x=2,x=4x = 2 , x = - 4
B) x=2,x=4x = - 2 , x = 4
C) x=2,x=4x = 2 , x = 4
D) x=2,x=4x = - 2 , x = - 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find all valid real roots for the equation.
x6+4x345=0x ^ { 6 } + 4 x ^ { 3 } - 45 = 0

A) x=53,x=93x = - \sqrt [ 3 ] { 5 } , x = - \sqrt [ 3 ] { 9 }
B) x=53,x=93x = \sqrt [ 3 ] { 5 } , x = \sqrt [ 3 ] { 9 }
C) x=53,x=93x = \sqrt [ 3 ] { 5 } , x = - \sqrt [ 3 ] { 9 }
D) x=53,x=93x = - \sqrt [ 3 ] { 5 } , x = \sqrt [ 3 ] { 9 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
53
Solve. Express any nonreal complex numbers with i notation.
x440x2+144=0x ^ { 4 } - 40 x ^ { 2 } + 144 = 0

A) x=2,6x = 2,6
B) x=±2i,±6ix = \pm 2 i , \pm 6 \mathrm { i }
C) x=±2,±6x = \pm 2 , \pm 6
D) x=4,36x = 4,36
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
54
Write a quadratic equation having the given solutions.
13,16\frac { 1 } { 3 } , \frac { 1 } { 6 }

A) x2118x+12=0x ^ { 2 } - \frac { 1 } { 18 } x + \frac { 1 } { 2 } = 0
B) x2+12x+118=0x ^ { 2 } + \frac { 1 } { 2 } x + \frac { 1 } { 18 } = 0
C) x212x+118=0x ^ { 2 } - \frac { 1 } { 2 } x + \frac { 1 } { 18 } = 0
D) x2+118x+12=0x ^ { 2 } + \frac { 1 } { 18 } x + \frac { 1 } { 2 } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
55
Solve for real roots.
x2/38x1/3+15=0x ^ { 2 / 3 } - 8 x ^ { 1 / 3 } + 15 = 0

A) x=27,125x = 27,125
B) x=5,3x = - 5 , - 3
C) x=3,5x = 3,5
D) x=125,27x = - 125 , - 27
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
56
Solve for real roots.
x4x1/232=0x - 4 x ^ { 1 / 2 } - 32 = 0

A) x=64x = 64
B) x=128x = 128
C) x=32x = 32
D) x=48x = 48
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find all valid real roots for the equation.
3x8+4x4=323 x ^ { 8 } + 4 x ^ { 4 } = 32

A) no real roots
B) x=44x = \sqrt [ 4 ] { 4 }
C) x=±21643,x=44x = \pm \frac { \sqrt [ 4 ] { 216 } } { 3 } , x = \sqrt [ 4 ] { 4 }
D) x=±21643x = \pm \frac { \sqrt [ 4 ] { 216 } } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find all valid real roots for the equation.
x8=5x44x ^ { 8 } = 5 x ^ { 4 } - 4

A) x=±14,x=±44x = \pm \sqrt [ 4 ] { 1 } , x = \pm \sqrt [ 4 ] { 4 }
B) x=1,x=4x = 1 , x = 4
C) x=±1,x=±44x = \pm 1 , x = \pm \sqrt [ 4 ] { 4 }
D) x=±14,x=4x = \pm \sqrt [ 4 ] { 1 } , x = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
59
Solve for real roots.
x2/5x1/56=0x ^ { 2 / 5 } - x ^ { 1 / 5 } - 6 = 0

A) x=243,32x = 243 , - 32
B) x=3,2x = 3 , - 2
C) x=3,2x = - 3,2
D) x=243,32x = - 243,32
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
60
Solve. Express any nonreal complex numbers with i notation.
2x4=65x2+2522 x ^ { 4 } = 65 x ^ { 2 } + 252

A) x=±6x = \pm 6
B) x=±142,±6x = \pm \frac { \sqrt { 14 } } { 2 } , \pm 6
C) x=±i142x = \pm \frac { i \sqrt { 14 } } { 2 }
D) x=±i142,x=±6x = \pm \frac { \mathrm { i } \sqrt { 14 } } { 2 } , x = \pm 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
61
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
(x22x)25(x22x)=36\left( x ^ { 2 } - 2 x \right) ^ { 2 } - 5 \left( x ^ { 2 } - 2 x \right) = 36

A) x=1±10,x=1±i5x = 1 \pm \sqrt { 10 } , x = 1 \pm i \sqrt { 5 }
B) x=1±22,x=1±i3x = 1 \pm 2 \sqrt { 2 } , x = 1 \pm i \sqrt { 3 }
C) x=1±10,x=1±i3x = 1 \pm \sqrt { 10 } , x = 1 \pm i \sqrt { 3 }
D) x=1±22,x=1±i5x = 1 \pm 2 \sqrt { 2 } , x = 1 \pm i \sqrt { 5 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
62
Solve for the specified variable. Assume that all other variables are nonzero
Ve=12mv2;\mathrm { Ve } = \frac { 1 } { 2 } \mathrm { mv } ^ { 2 } ; for v\mathrm { v }

A) v=±2Vev = \pm \sqrt { 2 \mathrm { Ve } }
B) v=±Ve2mv = \pm \sqrt { \frac { V e } { 2 m } }
C) v=±2mVemv = \frac { \pm \sqrt { 2 m V e } } { m }
D) v=±2Vemv = \frac { \pm 2 \sqrt { \mathrm { Ve } } } { m }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
63
Use the Pythagorean theorem to find the missing side(s).
 <strong>Use the Pythagorean theorem to find the missing side(s).    c = 5 , b = 4 a ; find  b  and  a </strong> A)  \mathrm { a } = \frac { 5 \sqrt { 17 } } { 17 } , \mathrm {~b} = \frac { 20 \sqrt { 17 } } { 17 }  B)  a = \frac { \sqrt { 85 } } { 17 } , b = \frac { \sqrt { 85 } } { 68 }  C)  a = \frac { 5 \sqrt { 17 } } { 17 } , b = \frac { 5 \sqrt { 17 } } { 68 }  D)  a = \frac { \sqrt { 85 } } { 17 } , b = \frac { 2 \sqrt { 85 } } { 17 }
c=5,b=4ac = 5 , b = 4 a ; find bb and aa

A) a=51717, b=201717\mathrm { a } = \frac { 5 \sqrt { 17 } } { 17 } , \mathrm {~b} = \frac { 20 \sqrt { 17 } } { 17 }
B) a=8517,b=8568a = \frac { \sqrt { 85 } } { 17 } , b = \frac { \sqrt { 85 } } { 68 }
C) a=51717,b=51768a = \frac { 5 \sqrt { 17 } } { 17 } , b = \frac { 5 \sqrt { 17 } } { 68 }
D) a=8517,b=28517a = \frac { \sqrt { 85 } } { 17 } , b = \frac { 2 \sqrt { 85 } } { 17 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
64
Solve for the specified variable. Assume that all other variables are nonzero
A=3πa2;A = 3 \pi a ^ { 2 } ; for aa

A) a=3πAa = \sqrt { 3 \pi \mathrm { A } }
B) a=±3πA3πa = \frac { \pm \sqrt { 3 \pi \mathrm { A } } } { 3 \pi }
C) a=±Aπ3a = \frac { \pm \sqrt { \mathrm { A } \pi } } { 3 }
D) a=±A3π3πa = \frac { \pm A \sqrt { 3 \pi } } { 3 \pi }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
65
Solve for the specified variable. Assume that all other variables are nonzero
81(a2b)+11=7F; for a81 \left( a ^ { 2 } - b \right) + 11 = 7 F ; \text { for } a

A) a=±7 F+81 b119a = \pm \frac { \sqrt { 7 \mathrm {~F} + 81 \mathrm {~b} - 11 } } { 9 }
B) a=±7F119+ba = \pm \frac { \sqrt { 7 F - 11 } } { 9 } + b
C)a=±7F+b119C ) a = \pm \frac { \sqrt { 7 F + b - 11 } } { 9 }
D) a=±7Fb+119a = \pm \frac { \sqrt { 7 F - b + 11 } } { 9 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
66
Solve for the specified variable. Assume that all other variables are nonzero
P=7stQQ25R; for Q\mathrm { P } = \frac { 7 \mathrm { stQ } \mathrm { Q } ^ { 2 } } { 5 \mathrm { R } } ; \text { for } \mathrm { Q }

A) Q=25P2R249 s2t2\mathrm { Q } = \frac { 25 \mathrm { P } ^ { 2 } \mathrm { R } ^ { 2 } } { 49 \mathrm {~s} ^ { 2 } \mathrm { t } ^ { 2 } }
B) Q=49 s2t225P2R2\mathrm { Q } = \frac { 49 \mathrm {~s} ^ { 2 } \mathrm { t } ^ { 2 } } { 25 \mathrm { P } ^ { 2 } \mathrm { R } ^ { 2 } }
C) Q=±7Pst5R\mathrm { Q } = \pm \sqrt { \frac { 7 \mathrm { Pst } } { 5 \mathrm { R } } }
D) Q=±5PR7st\mathrm { Q } = \pm \sqrt { \frac { 5 \mathrm { PR } } { 7 \mathrm { st } } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
67
Solve.
The area of a rectangular wall in a classroom is 105 square feet. Its length is 6 feet shorter than three times its width. Find the length and width of the wall of the classroom.

A)width = 7 ft; length = 25 ft
B)width = 7 ft; length = 27 ft
C)width = 7 ft; length = 13 ft
D)width = 7 ft; length = 15 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
68
Solve for the specified variable. Assume that all other variables are nonzero
(b7)y211y+8z=0( b - 7 ) y ^ { 2 } - 11 y + 8 z = 0 ; for yy

A) y=11±121+32bz224zb7y = \frac { 11 \pm \sqrt { 121 + 32 b z - 224 z } } { b - 7 }
B) y=11±12132bz+224z2b14y = \frac { 11 \pm \sqrt { 121 - 32 b z + 224 z } } { 2 b - 14 }
C) y=11±12132bz+224zb7y = \frac { 11 \pm \sqrt { 121 - 32 b z + 224 z } } { b - 7 }
D) y=11±121+32bz224z2b14y = \frac { 11 \pm \sqrt { 121 + 32 b z - 224 z } } { 2 b - 14 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
69
Solve for the specified variable. Assume that all other variables are nonzero
L=2πrh+2πr2; for r\mathrm { L } = 2 \pi \mathrm { rh } + 2 \pi \mathrm { r } ^ { 2 } \text {; for } \mathrm { r }

A) r=πh±π2 h2+2πL2π\mathrm { r } = \frac { \pi \mathrm { h } \pm \sqrt { \pi ^ { 2 } \mathrm {~h} ^ { 2 } + 2 \pi \mathrm { L } } } { 2 \pi }
B) r=πh±π2h22πL2πr = \frac { - \pi h \pm \sqrt { \pi ^ { 2 } h ^ { 2 } - 2 \pi L } } { 2 \pi }
C) r=πh±π2h2+2πLπr = \frac { - \pi h \pm \sqrt { \pi ^ { 2 } h ^ { 2 } + 2 \pi L } } { \pi }
D) r=πh±π2h2+2πL2πr = \frac { - \pi h \pm \sqrt { \pi ^ { 2 } h ^ { 2 } + 2 \pi L } } { 2 \pi }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
70
Solve for the specified variable. Assume that all other variables are nonzero
M=πr2hd\mathrm { M } = \pi \mathrm { r } ^ { 2 } \mathrm { hd } ; for r\mathrm { r }

A) r=±Mπhdπhd\mathrm { r } = \frac { \pm \sqrt { \mathrm { M } \pi h d } } { \pi \mathrm { hd } }
B) r=±πMhd hd r = \frac { \pm \sqrt { \pi \mathrm { Mhd } } } { \text { hd } }
C) r=±Mπhdπhdr = \frac { \pm M \sqrt { \pi h d } } { \pi h d }
D) r=±πMhdr = \pm \sqrt { \pi M h d }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
71
Solve for the specified variable. Assume that all other variables are nonzero
S=λ(b2+B2)w; for b\mathrm { S } = \lambda \left( \mathrm { b } ^ { 2 } + \mathrm { B } ^ { 2 } \right) \mathrm { w } ; \text { for } \mathrm { b }

A) b=±SλwB2λwb = \pm \sqrt { \frac { S - \lambda w B ^ { 2 } } { \lambda w } }
B) b=±SB2λwb = \pm \sqrt { \frac { S - B ^ { 2 } } { \lambda w } }
C) b=±SλwB2b = \pm \sqrt { \frac { S } { \lambda w } } - B ^ { 2 }
D) b=±SλwBb = \pm \sqrt { \frac { S } { \lambda w } } - B
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
72
Solve.
A boat sailed a distance of 22 kilometers due south. It then banked to the left and sailed the second leg of the journey. Finally, it banked left again and sailed back to the starting point. The entire course was shaped like a
Right triangle with the 22-kilometer distance serving as the hypotenuse. The second leg of the journey was 5
Kilometers longer than the final leg. How long were the second and third legs of the journey? Round your
Answers to the nearest hundredth of a kilometer, if necessary.

A)The second leg was 18.26 kilometers. The third leg was 13.26 kilometers.
B)The second leg was 17.85 kilometers. The third leg was 12.85 kilometers.
C)The second leg was 20.35 kilometers. The third leg was 10.35 kilometers.
D)The second leg was 9.13 kilometers. The third leg was 6.63 kilometers.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
73
Solve for the specified variable. Assume that all other variables are nonzero
x22cx8c2=0x ^ { 2 } - 2 c x - 8 c ^ { 2 } = 0 ; for xx

A) x=2c,4c\mathrm { x } = 2 \mathrm { c } , - 4 \mathrm { c }
B) x=2c,4cx = - 2 c , 4 c
C) x=±8c22cxx = \pm \sqrt { 8 c ^ { 2 } - 2 c x }
D) x=±8c2+2cxx = \pm \sqrt { 8 \mathrm { c } ^ { 2 } + 2 \mathrm { cx } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
74
Use the Pythagorean theorem to find the missing side(s).
 <strong>Use the Pythagorean theorem to find the missing side(s).    b = 8 , a = \sqrt { 7 } ; find  c </strong> A)  \sqrt { 15 }  B) 57 C)  \sqrt { 57 }  D)  \sqrt { 71 }
b=8,a=7b = 8 , a = \sqrt { 7 } ; find cc

A) 15\sqrt { 15 }
B) 57
C) 57\sqrt { 57 }
D) 71\sqrt { 71 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
75
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
6x2x11=06 x ^ { - 2 } - x ^ { - 1 } - 1 = 0

A) x=13,12x = \frac { 1 } { 3 } , - \frac { 1 } { 2 }
B) x=3,2x = 3 , - 2
C) x=3x = - 3 ,
D) x=13,x = - \frac { 1 } { 3 } , -
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
76
Make an appropriate substitution in order to obtain a quadratic equation. Find all complex values for x.
(x22x)211(x22x)+24=0\left( x ^ { 2 } - 2 x \right) ^ { 2 } - 11 \left( x ^ { 2 } - 2 x \right) + 24 = 0

A) x=2,1,8,3,4,3x = - 2 , - 1,8,3,4,3
B) x=4,3x = 4,3
C) x=8,3x = 8,3
D) x=2,1,4,3x = - 2 , - 1,4,3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
77
Solve.
A tour bus is traveling along a triangular path. The three straight lines form a right triangle. One leg of the triangle represents a distance of 144 miles. The other leg of the triangle is 96 miles shorter than the hypotenuse.
What is the length of the hypotenuse of this triangle? Of the other leg?

A)The hypotenuse is 159 miles long. The shorter leg is 62 miles long.
B)The hypotenuse is 155 miles long. The shorter leg is 58 miles long.
C)The hypotenuse is 156 miles long. The shorter leg is 60 miles long.
D)The hypotenuse is 158 miles long. The shorter leg is 59 miles long.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
78
Solve. Find all valid real roots for the equation.
2+55x1=2(5x1)22 + \frac { 5 } { 5 x - 1 } = \frac { - 2 } { ( 5 x - 1 ) ^ { 2 } }

A) x=15,x=0x = - \frac { 1 } { 5 } , x = 0
B) x=15,x=110x = - \frac { 1 } { 5 } , x = \frac { 1 } { 10 }
C) x=2,x=12x = - 2 , x = - \frac { 1 } { 2 }
D) x=15,x=110x = - \frac { 1 } { 5 } , x = - \frac { 1 } { 10 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
79
Solve for the specified variable. Assume that all other variables are nonzero
rm=t2mtr m = t ^ { 2 } - m t ; for tt

A) t=m±m24mr4t = \frac { m \pm \sqrt { m ^ { 2 } - 4 m r } } { 4 }
B) t=m±m2+4mr2mt = \frac { m \pm \sqrt { m ^ { 2 } + 4 m r } } { 2 m }
C) t=m±m2+4rm2t = \frac { m \pm \sqrt { m ^ { 2 } + 4 \mathrm { rm } } } { 2 }
D) t=mrmt = \sqrt { m r - m }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
80
Solve.
The area of a triangular poster is 1480 square centimeters. Its altitude is 6 feet shorter than twice its base. Find the lengths of the altitude and base.

A)base = 40 cm; altitude = 37 cm
B)base = 20 cm; altitude = 74 cm
C)base = 40 cm; altitude = 74 cm
D)base = 80 cm; altitude = 18.5 cm
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.