Deck 9: Analytic Geometry

ملء الشاشة (f)
exit full mode
سؤال
Match the equation to its graph.

- x2=12yx ^ { 2 } = - 12 y

A)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Graph the equation.

- x2=12yx^{2}=12 y
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Graph the equation.

- y2=16xy^{2}=16 x
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Match the equation to its graph.

- y2=10xy ^ { 2 } = - 10 x

A)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find an equation of the parabola described.

-Focus at (0, 21); directrix the line y = -21

A) x2=84yx ^ { 2 } = 84 y
B) y2=84xy ^ { 2 } = 84 x
C) y2=21xy ^ { 2 } = 21 x
D) x2=84yx ^ { 2 } = - 84 y
سؤال
Find the vertex, focus, and directrix of the parabola.

- x2=8yx^{2}=-8 y
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2    <div style=padding-top: 35px>

A) vertex: (0,0)( 0,0 )
focus: (0,2)( 0,2 )
directrix: y=2y = - 2
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2    <div style=padding-top: 35px>

B) vertex: (0,0)( 0,0 )
focus: (2,0)( - 2,0 )
directrix: x=2x = 2
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2    <div style=padding-top: 35px>

C) vertex: (0,0)( 0,0 )
focus: (0,2)( 0 , - 2 )
directrix: y=2y = 2

 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2    <div style=padding-top: 35px>

D) vertex: (0,0)( 0,0 )
focus: (2,0)( 2,0 )
directrix: x=2x = - 2
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2    <div style=padding-top: 35px>


سؤال
Match the equation to its graph.

- y2=13xy ^ { 2 } = 13 x

A)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find an equation of the parabola described.

-Focus at (5, 0); vertex at (0, 0)

A) y=20x2y = 20 x ^ { 2 }
B) x=20y2x = 20 y ^ { 2 }
C) x2=20yx ^ { 2 } = 20 y
D) y2=20xy ^ { 2 } = 20 x
سؤال
Find an equation of the parabola described.

-Directrix the line y = 3; vertex at (0, 0)

A) y=112x2y = - \frac { 1 } { 12 } x ^ { 2 }
B) y=12x2y = - 12 x ^ { 2 }
C) x=3y2x = 3 y ^ { 2 }
D) x=112y2x = - \frac { 1 } { 12 } y ^ { 2 }
سؤال
Find an equation of the parabola described.

-Focus at (-3, 0); directrix the line x = 3

A) y2=12xy ^ { 2 } = - 12 x
B) x2=12yx ^ { 2 } = - 12 y
C) y2=3xy ^ { 2 } = - 3 x
D) y2=12xy ^ { 2 } = 12 x
سؤال
Name the conic.
<strong>Name the conic.  </strong> A) circle B) hyperbola C) ellipse D) parabola <div style=padding-top: 35px>

A) circle
B) hyperbola
C) ellipse
D) parabola
سؤال
Name the conic.
<strong>Name the conic.  </strong> A) circle B) ellipse C) hyperbola D) parabola <div style=padding-top: 35px>

A) circle
B) ellipse
C) hyperbola
D) parabola
سؤال
Match the equation to its graph.

- x2=7yx ^ { 2 } = 7 y

A)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find an equation of the parabola described.

-Focus at (4,0);( 4,0 ) ; vertex at (0,0)( 0,0 )

A) y2=16xy ^ { 2 } = 16 x
B) x2=16yx ^ { 2 } = 16 y
C) x2=4yx ^ { 2 } = 4 y
D) y2=4xy ^ { 2 } = 4 x
سؤال
Name the conic.
<strong>Name the conic.  </strong> A) circle B) parabola C) hyperbola D) ellipse <div style=padding-top: 35px>

A) circle
B) parabola
C) hyperbola
D) ellipse
سؤال
Find an equation of the parabola described.

-Vertex at (0, 0); axis of symmetry the x-axis; containing the point (9, 5)

A) y2=2536xy ^ { 2 } = \frac { 25 } { 36 } x
B) y2=259xy ^ { 2 } = \frac { 25 } { 9 } x
C) x2=2536yx ^ { 2 } = \frac { 25 } { 36 } y
D) x2=259yx ^ { 2 } = \frac { 25 } { 9 } y
سؤال
Name the conic.
<strong>Name the conic.  </strong> A) parabola B) circle C) hyperbola D) ellipse <div style=padding-top: 35px>

A) parabola
B) circle
C) hyperbola
D) ellipse
سؤال
Find an equation of the parabola described and state the two points that define the latus rectum.

-Focus at (0, 4); directrix the line y = -4

A) y2=4xy ^ { 2 } = 4 x ; latus rectum: (9,2)( 9,2 ) and (9,2)( - 9,2 )
B) x2=4yx ^ { 2 } = 4 y ; latus rectum: (2,4)( 2,4 ) and (2,4)( - 2,4 )
C) x2=16yx ^ { 2 } = 16 y ; latus rectum: (8,4)( 8,4 ) and (8,4)( - 8,4 )
D) x2=16yx ^ { 2 } = 16 y ; latus rectum: (4,8)( 4,8 ) and (4,8)( - 4,8 )
سؤال
Graph the equation.

- y2=20xy^{2}=-20 x
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)   <div style=padding-top: 35px>
C)

 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola.

- y2=12xy^{2}=-12 x
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3    <div style=padding-top: 35px>

A)
 vertex: (0,0) focus: (3,0) directrix: x=3\begin{array}{l}\text { vertex: }(0,0) \\\text { focus: }(-3,0) \\\text { directrix: } x=3\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3    <div style=padding-top: 35px>


B)
 vertex: (0,0) focus: (3,0) directrix: x=3\begin{array}{l}\text { vertex: }(0,0) \\\text { focus: }(3,0) \\\text { directrix: } x=-3\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3    <div style=padding-top: 35px>
C) vertex: (0,0)( 0,0 )
focus: (0,3)( 0 , - 3 )
directrix: y=3y = 3
11ed81f4_181c_1451_a8e7_855e330b9a6b_TB7697_11

D) vertex: (0,0)( 0,0 )
focus: (0,3)( 0 , - 3 )
directrix: y=3y = 3
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3    <div style=padding-top: 35px>


سؤال
Match the equation to the graph.

- <strong>Match the equation to the graph.  -  </strong> A)  x ^ { 2 } = 4 y  B)  x ^ { 2 } = - 4 y  C)  y ^ { 2 } = 4 x  D)  y ^ { 2 } = - 4 x  <div style=padding-top: 35px>

A) x2=4yx ^ { 2 } = 4 y
B) x2=4yx ^ { 2 } = - 4 y
C) y2=4xy ^ { 2 } = 4 x
D) y2=4xy ^ { 2 } = - 4 x
سؤال
Write an equation for the parabola.

- <strong>Write an equation for the parabola.  -  </strong> A)  y ^ { 2 } = 8 x  B)  x ^ { 2 } = - 8 y  C)  x ^ { 2 } = 8 y  D)  y ^ { 2 } = - 8 x  <div style=padding-top: 35px>

A) y2=8xy ^ { 2 } = 8 x
B) x2=8yx ^ { 2 } = - 8 y
C) x2=8yx ^ { 2 } = 8 y
D) y2=8xy ^ { 2 } = - 8 x
سؤال
Graph the equation.

- (y+1)2=8(x1)(y+1)^{2}=8(x-1)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Match the equation to the graph.

- (y+2)2=7(x1)( y + 2 ) ^ { 2 } = - 7 ( x - 1 )

A)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- (x3)2=(y3)(x-3)^{2}=(y-3)
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25     <div style=padding-top: 35px>

A)
 vertex: (3,3) focus: (3,3.25) directrix: y=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3,3.25) \\\text { directrix: } y=2.75\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25     <div style=padding-top: 35px>

B)
 vertex: (3,3) focus: (2.75,3) directrix: x=3.25\begin{array}{l}\text { vertex: }(-3,-3) \\\text { focus: }(-2.75,-3) \\\text { directrix: } x=-3.25\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25     <div style=padding-top: 35px>

C)
 vertex: (3,3) focus: (3.25,3) directrix: x=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3.25,3) \\\text { directrix: } x=2.75\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25     <div style=padding-top: 35px>


D)
vertex: (3,3) (-3,-3)
focus: (3,2.75) (-3,-2.75)
directrix: y=3.25 y=-3.25
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25     <div style=padding-top: 35px>

سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- x28x=12y76x^{2}-8 x=12 y-76
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2     <div style=padding-top: 35px>

A)
vertex: (4,5) (4,5)
focus: (4,2) (4,2)
directrix: y=8 y=8
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2     <div style=padding-top: 35px>

B)
vertex: (4,5) (4,5)
focus: (7,5) (7,5)
directrix: x=1 x=1
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2     <div style=padding-top: 35px>

C)
vertex: (4,5) (4,5)
focus: (1,5) (1,5)
directrix: x=7 x=7
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2     <div style=padding-top: 35px>

D)
vertex: (4,5) (4,5)
focus: (4,8) (4,8)
directrix: y=2 y=2
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2     <div style=padding-top: 35px>


سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- y2+12y=4x16y^{2}+12 y=4 x-16
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7    <div style=padding-top: 35px>

A) vertex: (5,6)( - 5 , - 6 )
focus: (4,6)( - 4 , - 6 )
directrix: x=6x = - 6
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7    <div style=padding-top: 35px>

B) vertex: (5,6)( - 5 , - 6 )
focus: (6,6)( - 6 , - 6 )
directrix: x=4x = - 4
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7    <div style=padding-top: 35px>


C) vertex: (5,6)( - 5 , - 6 )
focus: (5,7)( - 5 , - 7 )
directrix: y=5y = - 5
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7    <div style=padding-top: 35px>

D) vertex: (5,6)( - 5 , - 6 )
focus: (5,5)( - 5 , - 5 )
directrix: y=7y = - 7
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7    <div style=padding-top: 35px>


سؤال
Match the equation to the graph.

- (x2)2=7(y1)( x - 2 ) ^ { 2 } = 7 ( y - 1 )

A)

 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.

- (x+1)2=12(y4)( x + 1 ) ^ { 2 } = 12 ( y - 4 )

A) vertex: (1,4)( 1 , - 4 )
focus: (1,1)( 1 , - 1 )
 directrix: y=7\text { directrix: } y=-7

B) vertex: (4,1)( 4 , - 1 )
focus: (4,2)( 4,2 )
 directrix: y=7\text { directrix: } y=-7

C) vertex: (1,4)( - 1,4 )
focus: (1,1)( - 1,1 )
 directrix: y=7\text { directrix: } y=-7

D) vertex: (1,4)( - 1,4 )
focus: (1,7)( - 1,7 )
 directrix: y=7\text { directrix: } y=-7


سؤال
Find an equation for the parabola described.

-Vertex at (6, 1); focus at (6, 3)

A) (y1)2=12(x6)( y - 1 ) ^ { 2 } = - 12 ( x - 6 )
B) (y1)2=12(x6)( y - 1 ) ^ { 2 } = 12 ( x - 6 )
C) (x6)2=8(y1)( x - 6 ) ^ { 2 } = 8 ( y - 1 )
D) (x6)2=8(y1)( x - 6 ) ^ { 2 } = - 8 ( y - 1 )
سؤال
Find an equation for the parabola described.

-Vertex at (3, -4); focus at (3, -6)

A) (x3)2=8(y+4)( x - 3 ) ^ { 2 } = 8 ( y + 4 )
B) (x3)2=8(y+4)( x - 3 ) ^ { 2 } = - 8 ( y + 4 )
C) (y4)2=12(x+3)( y - 4 ) ^ { 2 } = - 12 ( x + 3 )
D) (y4)2=12(x+3)( y - 4 ) ^ { 2 } = 12 ( x + 3 )
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- (y+2)2=8(x+3)(y+2)^{2}=8(x+3)
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}    <div style=padding-top: 35px>

A)
vertex: (2,3) (2,3)
focus: (4,3) (4,3)
directrix: x=0 x=0
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}    <div style=padding-top: 35px>


B)
 vertex: (3,2) focus: (1,2) directrix: x=5\begin{array}{l}\text { vertex: }(-3,-2) \\\text { focus: }(-1,-2) \\\text { directrix: } x=-5\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}    <div style=padding-top: 35px>

C)
vertex: (3,2) (3,2)
focus: (3,4) (3,4)
directrix: y=0 y=0
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}    <div style=padding-top: 35px>

D)
 vertex: (3,2) focus: (3,0) directrix: y=4\begin{array}{l}\text { vertex: }(-3,-2) \\\text { focus: }(-3,0) \\\text { directrix: } y=-4\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}    <div style=padding-top: 35px>


سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.

- (y+1)2=16(x+3)( y + 1 ) ^ { 2 } = 16 ( x + 3 )

A) vertex: (3,1)( - 3 , - 1 )
focus: (7,1)( - 7 , - 1 )
 directrix: x=1\text { directrix: } x=1

B) vertex: (1,3)( - 1 , - 3 )
focus: (3,3)( 3 , - 3 )
 directrix: x=5\text { directrix: } x=-5

C) vertex: (3,1)( - 3 , - 1 )
focus: (1,1)( 1 , - 1 )
 directrix: x=7\text { directrix: } x=-7

D) vertex: (3,1)( 3,1 )
focus: (7,1)( 7,1 )
 directrix: x=1\text { directrix: } x=-1

سؤال
Find an equation for the parabola described.

-Vertex at (7, 8); focus at (3, 8)

A) (y8)2=16(x7)( y - 8 ) ^ { 2 } = - 16 ( x - 7 )
B) (y8)2=16(x7)( y - 8 ) ^ { 2 } = 16 ( x - 7 )
C) (x8)2=20(y8)( x - 8 ) ^ { 2 } = 20 ( y - 8 )
D) (x8)2=20(y8)( x - 8 ) ^ { 2 } = - 20 ( y - 8 )
سؤال
Find an equation for the parabola described.

-Vertex at (7, -9); focus at (3, -9)

A) (x+8)2=4(y4)( x + 8 ) ^ { 2 } = - 4 ( y - 4 )
B) (x+8)2=4(y4)( x + 8 ) ^ { 2 } = 4 ( y - 4 )
C) (y+4)2=12(x8)( y + 4 ) ^ { 2 } = - 12 ( x - 8 )
D) (y+9)2=16(x7)( y + 9 ) ^ { 2 } = 16 ( x - 7 )
سؤال
Graph the equation.

- x2=18yx^{2}=-18 y
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.

- (y4)2=8(x+2)(y-4)^{2}=-8(x+2)

A)
vertex: (2,4) (-2,4)
focus: (0,4) (0,4)
directrix: x=4 x=-4

B)
 vertex: (4,2) focus: (2,2) directrix: x=6\begin{array}{l}\text { vertex: }(4,-2) \\\text { focus: }(2,-2) \\\text { directrix: } x=6\end{array}

C)
vertex: (2,4) (2,-4)
focus: (0,4) (0,-4)
directrix: x=4 x=4

D)
vertex: (2,4) (-2,4)
focus: (4,4) (-4,4)
directrix: x=0 x=0

سؤال
Match the equation to the graph.

- (y2)2=6(x2)( y - 2 ) ^ { 2 } = 6 ( x - 2 )

A)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Match the equation to the graph.

- (x+2)2=6(y+2)( x + 2 ) ^ { 2 } = - 6 ( y + 2 )

A)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.

- (x2)2=20(y3)( x - 2 ) ^ { 2 } = - 20 ( y - 3 )

A) vertex: (2,3)( 2,3 )
focus: (2,2)( 2 , - 2 )
 directrix: y=8\text { directrix: } y=8

B) vertex: (2,3)( - 2 , - 3 )
focus: (2,8)( - 2 , - 8 )
 directrix: y=2\text { directrix: } y=2

C) vertex: (2,3)( 2,3 )
focus: (2,8)( 2,8 )
 directrix: x=2\text { directrix: } x=-2

D) vertex: (3,2)( 3,2 )
focus: (3,3)( 3 , - 3 )
 directrix: y=7\text { directrix: } y=7




directrix: y=8y = 8 \quad directrix: y=2y = 2 \quad directrix: x=2x = - 2 \quad directrix: y=7y = 7
سؤال
Solve the problem.
A satellite dish is shaped like a paraboloid of revolution. The signals that emanate from a satellite strike the
surface of the dish and are reflected to a single point, where the receiver is located. If the dish is 8 feet across at
its opening and is 2 feet deep at its center, at what position should the receiver be placed?
سؤال
Solve the problem.
A spotlight has a parabolic cross section that is 6 ft wide at the opening and 2.5 ft deep at the vertex. How far from the vertex is the focus? Round answer to two decimal places.

A) 0.21 ft
B) 0.52 ft
C) 0.26 ft
D) 0.90 ft
سؤال
Graph the equation.

- (x+2)2=8(y1)(x+2)^{2}=8(y-1)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the center, foci, and vertices of the ellipse.

- x281+y29=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 9 } = 1

A) center at (0,0)( 0,0 )
foci at (62,0)( - 6 \sqrt { 2 } , 0 ) and (62,0)( 6 \sqrt { 2 } , 0 )
vertices at (9,0),(9,0)( - 9,0 ) , ( 9,0 )

B) center at (0,0)( 0,0 )
foci at (0,3)( 0 , - 3 ) and (0,3)( 0,3 )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )

C) center at (0,0)( 0,0 )
foci at (0,62)( 0 , - 6 \sqrt { 2 } ) and (0,62)( 0,6 \sqrt { 2 } )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )

D) center at (0,0)( 0,0 )
foci at (9,0)( - 9,0 ) and (9,0)( 9,0 )
vertice at (81,0),(81,0)( - 81,0 ) , ( 81,0 )
سؤال
Find the center, foci, and vertices of the ellipse.

- 9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36

A) center at (0,0)( 0,0 )
foci at (0,3)( 0,3 ) and (2,0)( 2,0 )
vertices at (0,9)( 0,9 ) and (4,0)( 4,0 )

B) center at (0,0)( 0,0 )
foci at (0,5)( 0 , - \sqrt { 5 } ) and (0,5)( 0 , \sqrt { 5 } )
vertices at (0,3),(0,3)( 0 , - 3 ) , ( 0,3 )

C) center at (0,0)( 0,0 )
foci at (0,3)( 0 , - 3 ) and (0,3)( 0,3 )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )

D) center at (0,0)( 0,0 )
foci at (5,0)( - \sqrt { 5 } , 0 ) and (5,0)( \sqrt { 5 } , 0 )
vertices at (3,0),(3,0)( - 3,0 ) , ( 3,0 )
سؤال
Match the graph to its equation.

- <strong>Match the graph to its equation.  -  </strong> A)  \frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1   B)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1   C)  \frac { y ^ { 2 } } { 49 } - \frac { x ^ { 2 } } { 4 } = 1   D)  - \frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1  <div style=padding-top: 35px>

A) y249+x24=1\frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1

B) x249+y24=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1

C) y249x24=1\frac { y ^ { 2 } } { 49 } - \frac { x ^ { 2 } } { 4 } = 1

D) y249+x24=1- \frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1
سؤال
Solve the problem.
A sealed-beam headlight is in the shape of a paraboloid of revolution. The bulb, which is placed at the focus, is
3 centimeters from the vertex. If the depth is to be 6 centimeters, what is the diameter of the headlight at its
opening?
سؤال
Find the center, foci, and vertices of the ellipse.

- x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1

A) center at (0,0)( 0,0 )
foci at (0,8)( 0,8 ) and (4,0)( 4,0 )
vertices at (0,64),(16,0)( 0,64 ) , ( 16,0 )

B) center at (0,0)( 0,0 )
foci at (0,8)( 0 , - 8 ) and (0,8)( 0,8 )
vertices at (0,64),(0,64)( 0 , - 64 ) , ( 0,64 )

C) center at (0,0)( 0,0 )
foci at (43,0)( - 4 \sqrt { 3 } , 0 ) and (43,0)( 4 \sqrt { 3 } , 0 )
vertices at (8,0),(8,0)( - 8,0 ) , ( 8,0 )

D) center at (0,0)( 0,0 )
foci at (0,43)( 0 , - 4 \sqrt { 3 } ) and (0,43)( 0,4 \sqrt { 3 } )
vertices at (0,8),(0,8)( 0 , - 8 ) , ( 0,8 )
سؤال
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (5,0)( 5,0 ) ; vertex at (7,0)( 7,0 )

A) x249+y224=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 24 } = 1

B) x225+y224=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 24 } = 1

C) x225+y249=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 49 } = 1

D) x224+y249=1\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1
سؤال
Solve the problem.
A reflecting telescope contains a mirror shaped like a paraboloid of revolution. If the mirror is 24 inches across at its opening and is 4 feet deep, where will the light be concentrated?

A) 0.1 in. from the vertex
B) 10.1 in. from the vertex
C) 0.2 in. from the vertex
D) 0.8 in. from the vertex
سؤال
Match the graph to its equation.

- <strong>Match the graph to its equation.  - </strong> A)  \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 9 } = 1   B)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1   C)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1   D)  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) y216+x29=1\frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 9 } = 1

B) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

C) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1

D) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
سؤال
Find the center, foci, and vertices of the ellipse.

- 4x2+64y2=2564 x ^ { 2 } + 64 y ^ { 2 } = 256

A) center at (0,0)( 0,0 )
foci at (0,2)( 0 , - 2 ) and (0,2)( 0,2 )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

B) center at (0,0)( 0,0 )
foci at (0,215)( 0 , - 2 \sqrt { 15 } ) and (0,215)( 0,2 \sqrt { 15 } )
vertices at (0,8),(0,8)( 0 , - 8 ) , ( 0,8 )

C) center at (0,0)( 0,0 )
foci at (215,0)( - 2 \sqrt { 15 } , 0 ) and (215,0)( 2 \sqrt { 15 } , 0 )
vertices at (8,0),(8,0)( - 8,0 ) , ( 8,0 )

D) center at (0,0)( 0,0 )
foci at (8,0)( - 8,0 ) and (8,0)( 8,0 )
vertices at (64,0),(64,0)( - 64,0 ) , ( 64,0 )
سؤال
Solve the problem.
A searchlight is shaped like a paraboloid of revolution. If the light source is located 5 feet from the base along the axis of symmetry and the opening is 8 feet across, how deep should the searchlight be?

A) 4 ft
B) 0.8 ft
C) 1.6 ft
D) 3.2 ft
سؤال
Graph the equation.

- (y1)2=7(x+2)(y-1)^{2}=-7(x+2)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Solve the problem.
An experimental model for a suspension bridge is built in the shape of a parabolic arch. In one section, cable runs from the top of one tower down to the roadway, just touching it there, and up again to the top of a second
Tower. The towers stand 50 inches apart. At a point between the towers and 15 inches along the road from the
Base of one tower, the cable is 1 inches above the roadway. Find the height of the towers.

A) 6.75 in.
B) 5.75 in.
C) 6.25 in.
D) 8.25 in.
سؤال
Solve the problem.
An experimental model for a suspension bridge is built in the shape of a parabolic arch. In one section, cable runs from the top of one tower down to the roadway, just touching it there, and up again to the top of a second
Tower. The towers are both 12.25 inches tall and stand 70 inches apart. Find the vertical distance from the
Roadway to the cable at a point on the road 14 inches from the lowest point of the cable.

A) 2.16 in.
B) 1.76 in.
C) 7.84 in.
D) 1.96 in.
سؤال
Solve the problem.
A bridge is built in the shape of a parabolic arch. The bridge arch has a span of 174 feet and a maximum height of 30 feet. Find the height of the arch at 15 feet from its center.

A) 3.6 ft
B) 21.8 ft
C) 0.2 ft
D) 29.1 ft
سؤال
Solve the problem.

-A reflecting telescope has a mirror shaped like a paraboloid of revolution. If the distance of the vertex to the focus is 31 feet and the distance across the top of the mirror is 66 inches, how deep is the mirror in the center?

A) 1211984\frac { 121 } { 1984 } in.

B) 363496\frac { 363 } { 496 } in.

C) 961132\frac { 961 } { 132 } in.

D) 1089124in\frac { 1089 } { 124 } \mathrm { in } .
سؤال
Graph the equation.

- (x+1)2=8(y2)(x+1)^{2}=-8(y-2)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Solve the problem.
An experimental model for a suspension bridge is built in the shape of a parabolic arch. In one section, cable runs from the top of one tower down to the roadway, just touching it there, and up again to the top of a second
Tower. The towers are both 12.25 inches tall and stand 70 inches apart. At some point along the road from the
Lowest point of the cable, the cable is 1.96 inches above the roadway. Find the distance between that point and
The base of the nearest tower.

A) 21 in.
B) 13.8 in.
C) 14.2 in.
D) 21.2 in.
سؤال
Find the center, foci, and vertices of the ellipse.

- (x1)236+(y+2)29=1\frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1

A) center at (1,2)( 1 , - 2 )
foci at (1+33,1),(133,1)( 1 + 3 \sqrt { 3 } , 1 ) , ( 1 - 3 \sqrt { 3 } , 1 )
vertices at (6,2),(6,2)( 6 , - 2 ) , ( - 6 , - 2 )

B) center at (2,1)( - 2,1 )
foci at (2+33,1),(233,1)( - 2 + 3 \sqrt { 3 } , 1 ) , ( - 2 - 3 \sqrt { 3 } , 1 )
vertices at (5,2),(7,2)( - 5 , - 2 ) , ( 7 , - 2 )

C) center at (1,2)( 1 , - 2 )
foci at (33,2),(33,2)( - 3 \sqrt { 3 } , - 2 ) , ( 3 \sqrt { 3 } , - 2 )
vertices at (6,2),(6,2)( 6 , - 2 ) , ( - 6 , - 2 )

D) center at (1,2)( 1 , - 2 )
foci at (1+33,2),(133,2)( 1 + 3 \sqrt { 3 } , - 2 ) , ( 1 - 3 \sqrt { 3 } , - 2 )
vertices at (5,2),(7,2)( - 5 , - 2 ) , ( 7 , - 2 )
سؤال
Find an equation for the ellipse described.

-Center (0,0)( 0,0 ) ; major axis horizontal with length 10 ; length of minor axis is 4

A) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1

B) x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1

C) x26+y24=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 4 } = 1

D) x2100+y216=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 16 } = 1
سؤال
Graph the ellipse and locate the foci.

- 4x2+16y2=644 x^{2}+16 y^{2}=64
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

A) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

B) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

C) foci at (4,0)( 4,0 ) and (4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

D) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>
سؤال
Find the center, foci, and vertices of the ellipse.

- 16x2+y2256x+1,008=016 x ^ { 2 } + y ^ { 2 } - 256 x + 1,008 = 0

A) (x2)2+y264=1( x - 2 ) ^ { 2 } + \frac { y ^ { 2 } } { 64 } = 1
center: (2,0)( 2,0 ) ; foci: (2,37),(2,37)( 2,3 \sqrt { 7 } ) , ( 2 , - 3 \sqrt { 7 } ) ; vertices:( 2, 8),(2,8)8 ), ( 2 , - 8 )

B) (x8)2+y24=1( x - 8 ) ^ { 2 } + \frac { y ^ { 2 } } { 4 } = 1
center: (8,0)( 8,0 ) ; foci: (8,3),(8,3)( 8 , \sqrt { 3 } ) , ( 8 , - \sqrt { 3 } ) ; vertices: (8,2),(8,2)( 8,2 ) , ( 8 , - 2 )

C) x264+(y2)2=1\frac { x ^ { 2 } } { 64 } + ( y - 2 ) ^ { 2 } = 1
center: (2,0)( 2,0 ) ; foci: (2,37),(2,37)( 2,3 \sqrt { 7 } ) , ( 2 , - 3 \sqrt { 7 } ) ; vertices: (2,8),(2,8)( 2,8 ) , ( 2 , - 8 )

D) x24+(y8)2=1\frac { x ^ { 2 } } { 4 } + ( y - 8 ) ^ { 2 } = 1
center: (8,0)( 8,0 ) ; foci: (8,3),(8,37)( 8 , \sqrt { 3 } ) , ( 8 , - 3 \sqrt { 7 } ) ; vertices: (8,2)( 8,2 ) , (8,2)( 8 , - 2 )
سؤال
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (0,2)( 0,2 ) ; vertex at (0,3)( 0,3 )

A) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1

B) x236+y228=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 28 } = 1

C) x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1

D) x25+y29=1\frac { x ^ { 2 } } { 5 } + \frac { y ^ { 2 } } { 9 } = 1
سؤال
Find an equation for the ellipse described.

-Foci at (0,±5);y( 0 , \pm 5 ) ; \quad \mathrm { y } -intercepts are ±8\pm 8

A) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1

B) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1

C) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1

D) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (3,0)( - 3,0 ) ; vertex at (4,0)( 4,0 )

A) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1

B) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1

C) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1

D) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1
سؤال
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (5,0);( - 5,0 ) ; vertex at (8,0)( 8,0 )

A) x264+y260=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 60 } = 1

B) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1

C) x24+y260=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 60 } = 1

D) x260+y264=1\frac { x ^ { 2 } } { 60 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Find an equation for the ellipse described.

-Center at (0,0);( 0,0 ) ; focus at (0,2)( 0 , - 2 ) ; vertex at (0,6)( 0,6 )

A) x24+y232=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 32 } = 1

B) x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1

C) x232+y236=1\frac { x ^ { 2 } } { 32 } + \frac { y ^ { 2 } } { 36 } = 1

D) x236+y232=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 32 } = 1
سؤال
Find an equation for the ellipse described.

-Foci at (±2,0);x( \pm 2,0 ) ; \quad x -intercepts are ±7\pm 7

A) x245+y249=1\frac { x ^ { 2 } } { 45 } + \frac { y ^ { 2 } } { 49 } = 1

B) x24+y249=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 49 } = 1

C) x24+y245=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 45 } = 1

D) x249+y245=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 45 } = 1
سؤال
Graph the ellipse and locate the foci.

- x29+y216=1\frac{x^{2}}{9}+\frac{y^{2}}{16}=1
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    <div style=padding-top: 35px>

A) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    <div style=padding-top: 35px>

B) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    <div style=padding-top: 35px>

C) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    <div style=padding-top: 35px>

D) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    <div style=padding-top: 35px>
سؤال
Write an equation for the graph.

- <strong>Write an equation for the graph.  -  </strong> A)  \frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1   B)  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   C)  \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1   D)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1  <div style=padding-top: 35px>

A) (x2)24+(y1)29=1\frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

B) (x+2)29+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1

C) (x1)29+(y2)24=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1

D) (x2)29+(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
سؤال
Graph the ellipse and locate the foci.

- x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})    <div style=padding-top: 35px>

A) foci at (21,0)( \sqrt { 21 } , 0 ) and (21,0)( - \sqrt { 21 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})    <div style=padding-top: 35px>

B) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})    <div style=padding-top: 35px>

C)  foci at (23,0) and (23,0)\text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})    <div style=padding-top: 35px>

D)  foci at (0,23) and (0,23)\text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})    <div style=padding-top: 35px>



سؤال
Find an equation for the ellipse described.

-Focus at (3,0)( - 3,0 ) ; vertices at (±5,0)( \pm 5,0 )

A) x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1

B) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1

C) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1

D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
سؤال
Find an equation for the ellipse described.

-Focus at (0,4)( 0 , - 4 ) ; vertices at (0,±8)( 0 , \pm 8 )

A) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1

B) x264+y248=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1

C) x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1

D) x248+y264=1\frac { x ^ { 2 } } { 48 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Graph the ellipse and locate the foci.

- 16x2+9y2=14416 x^{2}+9 y^{2}=144
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

A) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

B)  foci at (4,0) and (4,0)\text { foci at }(4,0) \text { and }(-4,0)
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

C) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>

D) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )    <div style=padding-top: 35px>
سؤال
Graph the equation.

- (x1)29+(y+1)24=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

B)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

C)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>

D)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)   <div style=padding-top: 35px>
سؤال
Find the center, foci, and vertices of the ellipse.

- 2x2+5y212x+60y+188=02 x ^ { 2 } + 5 y ^ { 2 } - 12 x + 60 y + 188 = 0

A) (x3)22+(y+6)25=1\frac { ( x - 3 ) ^ { 2 } } { 2 } + \frac { ( y + 6 ) ^ { 2 } } { 5 } = 1
center: (3,6)( - 3,6 ) ; foci: (1.3,6),(4.7,6)( - 1.3,6 ) , ( - 4.7,6 ) ; vertices: (5.2,6),(0.8,6)( - 5.2,6 ) , ( - 0.8,6 )

B) (x3)25+(y+6)22=1\frac { ( x - 3 ) ^ { 2 } } { 5 } + \frac { ( y + 6 ) ^ { 2 } } { 2 } = 1
center: (3,6)( 3 , - 6 ) ; foci: (4.7,6),(1.3,6)( 4.7 , - 6 ) , ( 1.3 , - 6 ) ; vertices: (5.2,6),(0.8,6)( 5.2 , - 6 ) , ( 0.8 , - 6 )

C) (x3)25+(y+6)22=1\frac { ( x - 3 ) ^ { 2 } } { 5 } + \frac { ( y + 6 ) ^ { 2 } } { 2 } = 1
center: (3,6)( - 3,6 ) ; foci: (1.3,6),(4.7,6)( - 1.3,6 ) , ( - 4.7,6 ) ; vertices: (5.2,6),(0.8,6)( - 5.2,6 ) , ( - 0.8,6 )

D) (x3)22+(y+6)25=1\frac { ( x - 3 ) ^ { 2 } } { 2 } + \frac { ( y + 6 ) ^ { 2 } } { 5 } = 1
center: (3,6)( 3 , - 6 ) ; foci: (4.7,6),(1.3,6)( 4.7 , - 6 ) , ( 1.3 , - 6 ) ; vertices: (5.2,6),(0.8,6)( 5.2 , - 6 ) , ( 0.8 , - 6 )
سؤال
Find an equation for the ellipse described.

-Center at (0,0);( 0,0 ) ; focus at (0,5)( 0,5 ) ; vertex at (0,7)( 0 , - 7 )

A) x224+y249=1\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1

B) x225+y224=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 24 } = 1

C) x225+y249=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 49 } = 1

D) x249+y224=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 24 } = 1
سؤال
Find the center, foci, and vertices of the ellipse.

- 16(x+2)2+9(y1)2=14416 ( \mathrm { x } + 2 ) ^ { 2 } + 9 ( \mathrm { y } - 1 ) ^ { 2 } = 144

A) center at (1,1)( - 1,1 )
foci at (1,17),(1,1+7)( - 1,1 - \sqrt { 7 } ) , ( - 1,1 + \sqrt { 7 } )
vertices at (1,5),(1,3)( - 1,5 ) , ( - 1 , - 3 )

B) center at (1,2)( 1 , - 2 )
foci at (1,27),(1,2+7)( 1 , - 2 - \sqrt { 7 } ) , ( 1 , - 2 + \sqrt { 7 } )
vertices at (1,5),(1,3)( 1,5 ) , ( 1 , - 3 )

C) center at (2,1)( 2,1 )
foci at (2,17),(2,1+7)( 2,1 - \sqrt { 7 } ) , ( 2,1 + \sqrt { 7 } )
vertices at (2,5),(2,3)( 2,5 ) , ( 2 , - 3 )

D) center at (2,1)( - 2,1 )
foci at (2,17),(2,1+7)( - 2,1 - \sqrt { 7 } ) , ( - 2,1 + \sqrt { 7 } )
vertices at (2,5),(2,3)( - 2,5 ) , ( - 2 , - 3 )
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/197
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Analytic Geometry
1
Match the equation to its graph.

- x2=12yx ^ { 2 } = - 12 y

A)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)

B)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)

C)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)

D)
 <strong>Match the equation to its graph.  - x ^ { 2 } = - 12 y </strong> A)    B)    C)    D)

2
Graph the equation.

- x2=12yx^{2}=12 y
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)

A)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)

B)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)
C)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)

D)
 <strong>Graph the equation.  - x^{2}=12 y   </strong> A)    B)   C)    D)

3
Graph the equation.

- y2=16xy^{2}=16 x
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)

A)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)

B)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)
C)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)

D)
 <strong>Graph the equation.  - y^{2}=16 x   </strong> A)    B)   C)    D)

4
Match the equation to its graph.

- y2=10xy ^ { 2 } = - 10 x

A)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)

B)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)

C)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)

D)
 <strong>Match the equation to its graph.  - y ^ { 2 } = - 10 x </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find an equation of the parabola described.

-Focus at (0, 21); directrix the line y = -21

A) x2=84yx ^ { 2 } = 84 y
B) y2=84xy ^ { 2 } = 84 x
C) y2=21xy ^ { 2 } = 21 x
D) x2=84yx ^ { 2 } = - 84 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the vertex, focus, and directrix of the parabola.

- x2=8yx^{2}=-8 y
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2

A) vertex: (0,0)( 0,0 )
focus: (0,2)( 0,2 )
directrix: y=2y = - 2
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2

B) vertex: (0,0)( 0,0 )
focus: (2,0)( - 2,0 )
directrix: x=2x = 2
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2

C) vertex: (0,0)( 0,0 )
focus: (0,2)( 0 , - 2 )
directrix: y=2y = 2

 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2

D) vertex: (0,0)( 0,0 )
focus: (2,0)( 2,0 )
directrix: x=2x = - 2
 <strong>Find the vertex, focus, and directrix of the parabola.  - x^{2}=-8 y   </strong> A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2     C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
7
Match the equation to its graph.

- y2=13xy ^ { 2 } = 13 x

A)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)

B)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)

C)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)

D)
 <strong>Match the equation to its graph.  - y ^ { 2 } = 13 x </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find an equation of the parabola described.

-Focus at (5, 0); vertex at (0, 0)

A) y=20x2y = 20 x ^ { 2 }
B) x=20y2x = 20 y ^ { 2 }
C) x2=20yx ^ { 2 } = 20 y
D) y2=20xy ^ { 2 } = 20 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find an equation of the parabola described.

-Directrix the line y = 3; vertex at (0, 0)

A) y=112x2y = - \frac { 1 } { 12 } x ^ { 2 }
B) y=12x2y = - 12 x ^ { 2 }
C) x=3y2x = 3 y ^ { 2 }
D) x=112y2x = - \frac { 1 } { 12 } y ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find an equation of the parabola described.

-Focus at (-3, 0); directrix the line x = 3

A) y2=12xy ^ { 2 } = - 12 x
B) x2=12yx ^ { 2 } = - 12 y
C) y2=3xy ^ { 2 } = - 3 x
D) y2=12xy ^ { 2 } = 12 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
11
Name the conic.
<strong>Name the conic.  </strong> A) circle B) hyperbola C) ellipse D) parabola

A) circle
B) hyperbola
C) ellipse
D) parabola
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
12
Name the conic.
<strong>Name the conic.  </strong> A) circle B) ellipse C) hyperbola D) parabola

A) circle
B) ellipse
C) hyperbola
D) parabola
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
13
Match the equation to its graph.

- x2=7yx ^ { 2 } = 7 y

A)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)

B)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)

C)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)

D)
 <strong>Match the equation to its graph.  - x ^ { 2 } = 7 y </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find an equation of the parabola described.

-Focus at (4,0);( 4,0 ) ; vertex at (0,0)( 0,0 )

A) y2=16xy ^ { 2 } = 16 x
B) x2=16yx ^ { 2 } = 16 y
C) x2=4yx ^ { 2 } = 4 y
D) y2=4xy ^ { 2 } = 4 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
15
Name the conic.
<strong>Name the conic.  </strong> A) circle B) parabola C) hyperbola D) ellipse

A) circle
B) parabola
C) hyperbola
D) ellipse
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find an equation of the parabola described.

-Vertex at (0, 0); axis of symmetry the x-axis; containing the point (9, 5)

A) y2=2536xy ^ { 2 } = \frac { 25 } { 36 } x
B) y2=259xy ^ { 2 } = \frac { 25 } { 9 } x
C) x2=2536yx ^ { 2 } = \frac { 25 } { 36 } y
D) x2=259yx ^ { 2 } = \frac { 25 } { 9 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
17
Name the conic.
<strong>Name the conic.  </strong> A) parabola B) circle C) hyperbola D) ellipse

A) parabola
B) circle
C) hyperbola
D) ellipse
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find an equation of the parabola described and state the two points that define the latus rectum.

-Focus at (0, 4); directrix the line y = -4

A) y2=4xy ^ { 2 } = 4 x ; latus rectum: (9,2)( 9,2 ) and (9,2)( - 9,2 )
B) x2=4yx ^ { 2 } = 4 y ; latus rectum: (2,4)( 2,4 ) and (2,4)( - 2,4 )
C) x2=16yx ^ { 2 } = 16 y ; latus rectum: (8,4)( 8,4 ) and (8,4)( - 8,4 )
D) x2=16yx ^ { 2 } = 16 y ; latus rectum: (4,8)( 4,8 ) and (4,8)( - 4,8 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
19
Graph the equation.

- y2=20xy^{2}=-20 x
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)

A)
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)

B)
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)
C)

 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)

D)
 <strong>Graph the equation.  - y^{2}=-20 x   </strong> A)    B)   C)     D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the vertex, focus, and directrix of the parabola.

- y2=12xy^{2}=-12 x
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3

A)
 vertex: (0,0) focus: (3,0) directrix: x=3\begin{array}{l}\text { vertex: }(0,0) \\\text { focus: }(-3,0) \\\text { directrix: } x=3\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3


B)
 vertex: (0,0) focus: (3,0) directrix: x=3\begin{array}{l}\text { vertex: }(0,0) \\\text { focus: }(3,0) \\\text { directrix: } x=-3\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3
C) vertex: (0,0)( 0,0 )
focus: (0,3)( 0 , - 3 )
directrix: y=3y = 3
11ed81f4_181c_1451_a8e7_855e330b9a6b_TB7697_11

D) vertex: (0,0)( 0,0 )
focus: (0,3)( 0 , - 3 )
directrix: y=3y = 3
 <strong>Find the vertex, focus, and directrix of the parabola.  - y^{2}=-12 x   </strong> A)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(-3,0) \\ \text { directrix: } x=3 \end{array}      B)  \begin{array}{l} \text { vertex: }(0,0) \\ \text { focus: }(3,0) \\ \text { directrix: } x=-3 \end{array}    C) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3     D) vertex:  ( 0,0 )  focus:  ( 0 , - 3 )  directrix:  y = 3


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
21
Match the equation to the graph.

- <strong>Match the equation to the graph.  -  </strong> A)  x ^ { 2 } = 4 y  B)  x ^ { 2 } = - 4 y  C)  y ^ { 2 } = 4 x  D)  y ^ { 2 } = - 4 x

A) x2=4yx ^ { 2 } = 4 y
B) x2=4yx ^ { 2 } = - 4 y
C) y2=4xy ^ { 2 } = 4 x
D) y2=4xy ^ { 2 } = - 4 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
22
Write an equation for the parabola.

- <strong>Write an equation for the parabola.  -  </strong> A)  y ^ { 2 } = 8 x  B)  x ^ { 2 } = - 8 y  C)  x ^ { 2 } = 8 y  D)  y ^ { 2 } = - 8 x

A) y2=8xy ^ { 2 } = 8 x
B) x2=8yx ^ { 2 } = - 8 y
C) x2=8yx ^ { 2 } = 8 y
D) y2=8xy ^ { 2 } = - 8 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
23
Graph the equation.

- (y+1)2=8(x1)(y+1)^{2}=8(x-1)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)

A)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)

B)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)

C)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)

D)
 <strong>Graph the equation.  - (y+1)^{2}=8(x-1)    </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
24
Match the equation to the graph.

- (y+2)2=7(x1)( y + 2 ) ^ { 2 } = - 7 ( x - 1 )

A)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)

B)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)

C)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)

D)
 <strong>Match the equation to the graph.  - ( y + 2 ) ^ { 2 } = - 7 ( x - 1 ) </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
25
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- (x3)2=(y3)(x-3)^{2}=(y-3)
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25

A)
 vertex: (3,3) focus: (3,3.25) directrix: y=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3,3.25) \\\text { directrix: } y=2.75\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25

B)
 vertex: (3,3) focus: (2.75,3) directrix: x=3.25\begin{array}{l}\text { vertex: }(-3,-3) \\\text { focus: }(-2.75,-3) \\\text { directrix: } x=-3.25\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25

C)
 vertex: (3,3) focus: (3.25,3) directrix: x=2.75\begin{array}{l}\text { vertex: }(3,3) \\\text { focus: }(3.25,3) \\\text { directrix: } x=2.75\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25


D)
vertex: (3,3) (-3,-3)
focus: (3,2.75) (-3,-2.75)
directrix: y=3.25 y=-3.25
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (x-3)^{2}=(y-3)   </strong> A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- x28x=12y76x^{2}-8 x=12 y-76
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2

A)
vertex: (4,5) (4,5)
focus: (4,2) (4,2)
directrix: y=8 y=8
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2

B)
vertex: (4,5) (4,5)
focus: (7,5) (7,5)
directrix: x=1 x=1
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2

C)
vertex: (4,5) (4,5)
focus: (1,5) (1,5)
directrix: x=7 x=7
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2

D)
vertex: (4,5) (4,5)
focus: (4,8) (4,8)
directrix: y=2 y=2
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - x^{2}-8 x=12 y-76   </strong> A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
27
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- y2+12y=4x16y^{2}+12 y=4 x-16
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7

A) vertex: (5,6)( - 5 , - 6 )
focus: (4,6)( - 4 , - 6 )
directrix: x=6x = - 6
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7

B) vertex: (5,6)( - 5 , - 6 )
focus: (6,6)( - 6 , - 6 )
directrix: x=4x = - 4
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7


C) vertex: (5,6)( - 5 , - 6 )
focus: (5,7)( - 5 , - 7 )
directrix: y=5y = - 5
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7

D) vertex: (5,6)( - 5 , - 6 )
focus: (5,5)( - 5 , - 5 )
directrix: y=7y = - 7
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - y^{2}+12 y=4 x-16   </strong> A) vertex:  ( - 5 , - 6 )  focus:  ( - 4 , - 6 )  directrix:  x = - 6     B) vertex:  ( - 5 , - 6 )  focus:  ( - 6 , - 6 )  directrix:  x = - 4      C) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 7 )  directrix:  y = - 5     D) vertex:  ( - 5 , - 6 )  focus:  ( - 5 , - 5 )  directrix:  y = - 7


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
28
Match the equation to the graph.

- (x2)2=7(y1)( x - 2 ) ^ { 2 } = 7 ( y - 1 )

A)

 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)

B)
 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)

C)
 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)

D)
 <strong>Match the equation to the graph.  - ( x - 2 ) ^ { 2 } = 7 ( y - 1 ) </strong> A)     B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the vertex, focus, and directrix of the parabola with the given equation.

- (x+1)2=12(y4)( x + 1 ) ^ { 2 } = 12 ( y - 4 )

A) vertex: (1,4)( 1 , - 4 )
focus: (1,1)( 1 , - 1 )
 directrix: y=7\text { directrix: } y=-7

B) vertex: (4,1)( 4 , - 1 )
focus: (4,2)( 4,2 )
 directrix: y=7\text { directrix: } y=-7

C) vertex: (1,4)( - 1,4 )
focus: (1,1)( - 1,1 )
 directrix: y=7\text { directrix: } y=-7

D) vertex: (1,4)( - 1,4 )
focus: (1,7)( - 1,7 )
 directrix: y=7\text { directrix: } y=-7


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find an equation for the parabola described.

-Vertex at (6, 1); focus at (6, 3)

A) (y1)2=12(x6)( y - 1 ) ^ { 2 } = - 12 ( x - 6 )
B) (y1)2=12(x6)( y - 1 ) ^ { 2 } = 12 ( x - 6 )
C) (x6)2=8(y1)( x - 6 ) ^ { 2 } = 8 ( y - 1 )
D) (x6)2=8(y1)( x - 6 ) ^ { 2 } = - 8 ( y - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find an equation for the parabola described.

-Vertex at (3, -4); focus at (3, -6)

A) (x3)2=8(y+4)( x - 3 ) ^ { 2 } = 8 ( y + 4 )
B) (x3)2=8(y+4)( x - 3 ) ^ { 2 } = - 8 ( y + 4 )
C) (y4)2=12(x+3)( y - 4 ) ^ { 2 } = - 12 ( x + 3 )
D) (y4)2=12(x+3)( y - 4 ) ^ { 2 } = 12 ( x + 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the vertex, focus, and directrix of the parabola. Graph the equation.

- (y+2)2=8(x+3)(y+2)^{2}=8(x+3)
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}

A)
vertex: (2,3) (2,3)
focus: (4,3) (4,3)
directrix: x=0 x=0
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}


B)
 vertex: (3,2) focus: (1,2) directrix: x=5\begin{array}{l}\text { vertex: }(-3,-2) \\\text { focus: }(-1,-2) \\\text { directrix: } x=-5\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}

C)
vertex: (3,2) (3,2)
focus: (3,4) (3,4)
directrix: y=0 y=0
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}

D)
 vertex: (3,2) focus: (3,0) directrix: y=4\begin{array}{l}\text { vertex: }(-3,-2) \\\text { focus: }(-3,0) \\\text { directrix: } y=-4\end{array}
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  - (y+2)^{2}=8(x+3)   </strong> A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}


فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the vertex, focus, and directrix of the parabola with the given equation.

- (y+1)2=16(x+3)( y + 1 ) ^ { 2 } = 16 ( x + 3 )

A) vertex: (3,1)( - 3 , - 1 )
focus: (7,1)( - 7 , - 1 )
 directrix: x=1\text { directrix: } x=1

B) vertex: (1,3)( - 1 , - 3 )
focus: (3,3)( 3 , - 3 )
 directrix: x=5\text { directrix: } x=-5

C) vertex: (3,1)( - 3 , - 1 )
focus: (1,1)( 1 , - 1 )
 directrix: x=7\text { directrix: } x=-7

D) vertex: (3,1)( 3,1 )
focus: (7,1)( 7,1 )
 directrix: x=1\text { directrix: } x=-1

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find an equation for the parabola described.

-Vertex at (7, 8); focus at (3, 8)

A) (y8)2=16(x7)( y - 8 ) ^ { 2 } = - 16 ( x - 7 )
B) (y8)2=16(x7)( y - 8 ) ^ { 2 } = 16 ( x - 7 )
C) (x8)2=20(y8)( x - 8 ) ^ { 2 } = 20 ( y - 8 )
D) (x8)2=20(y8)( x - 8 ) ^ { 2 } = - 20 ( y - 8 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find an equation for the parabola described.

-Vertex at (7, -9); focus at (3, -9)

A) (x+8)2=4(y4)( x + 8 ) ^ { 2 } = - 4 ( y - 4 )
B) (x+8)2=4(y4)( x + 8 ) ^ { 2 } = 4 ( y - 4 )
C) (y+4)2=12(x8)( y + 4 ) ^ { 2 } = - 12 ( x - 8 )
D) (y+9)2=16(x7)( y + 9 ) ^ { 2 } = 16 ( x - 7 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
36
Graph the equation.

- x2=18yx^{2}=-18 y
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)

A)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)

B)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)

C)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)

D)
 <strong>Graph the equation.  - x^{2}=-18 y   </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the vertex, focus, and directrix of the parabola with the given equation.

- (y4)2=8(x+2)(y-4)^{2}=-8(x+2)

A)
vertex: (2,4) (-2,4)
focus: (0,4) (0,4)
directrix: x=4 x=-4

B)
 vertex: (4,2) focus: (2,2) directrix: x=6\begin{array}{l}\text { vertex: }(4,-2) \\\text { focus: }(2,-2) \\\text { directrix: } x=6\end{array}

C)
vertex: (2,4) (2,-4)
focus: (0,4) (0,-4)
directrix: x=4 x=4

D)
vertex: (2,4) (-2,4)
focus: (4,4) (-4,4)
directrix: x=0 x=0

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
38
Match the equation to the graph.

- (y2)2=6(x2)( y - 2 ) ^ { 2 } = 6 ( x - 2 )

A)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)

B)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)
C)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)

D)
 <strong>Match the equation to the graph.  - ( y - 2 ) ^ { 2 } = 6 ( x - 2 ) </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
39
Match the equation to the graph.

- (x+2)2=6(y+2)( x + 2 ) ^ { 2 } = - 6 ( y + 2 )

A)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)

B)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)

C)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)

D)
 <strong>Match the equation to the graph.  - ( x + 2 ) ^ { 2 } = - 6 ( y + 2 ) </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the vertex, focus, and directrix of the parabola with the given equation.

- (x2)2=20(y3)( x - 2 ) ^ { 2 } = - 20 ( y - 3 )

A) vertex: (2,3)( 2,3 )
focus: (2,2)( 2 , - 2 )
 directrix: y=8\text { directrix: } y=8

B) vertex: (2,3)( - 2 , - 3 )
focus: (2,8)( - 2 , - 8 )
 directrix: y=2\text { directrix: } y=2

C) vertex: (2,3)( 2,3 )
focus: (2,8)( 2,8 )
 directrix: x=2\text { directrix: } x=-2

D) vertex: (3,2)( 3,2 )
focus: (3,3)( 3 , - 3 )
 directrix: y=7\text { directrix: } y=7




directrix: y=8y = 8 \quad directrix: y=2y = 2 \quad directrix: x=2x = - 2 \quad directrix: y=7y = 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
41
Solve the problem.
A satellite dish is shaped like a paraboloid of revolution. The signals that emanate from a satellite strike the
surface of the dish and are reflected to a single point, where the receiver is located. If the dish is 8 feet across at
its opening and is 2 feet deep at its center, at what position should the receiver be placed?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
42
Solve the problem.
A spotlight has a parabolic cross section that is 6 ft wide at the opening and 2.5 ft deep at the vertex. How far from the vertex is the focus? Round answer to two decimal places.

A) 0.21 ft
B) 0.52 ft
C) 0.26 ft
D) 0.90 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
43
Graph the equation.

- (x+2)2=8(y1)(x+2)^{2}=8(y-1)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  - (x+2)^{2}=8(y-1)    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the center, foci, and vertices of the ellipse.

- x281+y29=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 9 } = 1

A) center at (0,0)( 0,0 )
foci at (62,0)( - 6 \sqrt { 2 } , 0 ) and (62,0)( 6 \sqrt { 2 } , 0 )
vertices at (9,0),(9,0)( - 9,0 ) , ( 9,0 )

B) center at (0,0)( 0,0 )
foci at (0,3)( 0 , - 3 ) and (0,3)( 0,3 )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )

C) center at (0,0)( 0,0 )
foci at (0,62)( 0 , - 6 \sqrt { 2 } ) and (0,62)( 0,6 \sqrt { 2 } )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )

D) center at (0,0)( 0,0 )
foci at (9,0)( - 9,0 ) and (9,0)( 9,0 )
vertice at (81,0),(81,0)( - 81,0 ) , ( 81,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the center, foci, and vertices of the ellipse.

- 9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36

A) center at (0,0)( 0,0 )
foci at (0,3)( 0,3 ) and (2,0)( 2,0 )
vertices at (0,9)( 0,9 ) and (4,0)( 4,0 )

B) center at (0,0)( 0,0 )
foci at (0,5)( 0 , - \sqrt { 5 } ) and (0,5)( 0 , \sqrt { 5 } )
vertices at (0,3),(0,3)( 0 , - 3 ) , ( 0,3 )

C) center at (0,0)( 0,0 )
foci at (0,3)( 0 , - 3 ) and (0,3)( 0,3 )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )

D) center at (0,0)( 0,0 )
foci at (5,0)( - \sqrt { 5 } , 0 ) and (5,0)( \sqrt { 5 } , 0 )
vertices at (3,0),(3,0)( - 3,0 ) , ( 3,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
46
Match the graph to its equation.

- <strong>Match the graph to its equation.  -  </strong> A)  \frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1   B)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1   C)  \frac { y ^ { 2 } } { 49 } - \frac { x ^ { 2 } } { 4 } = 1   D)  - \frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1

A) y249+x24=1\frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1

B) x249+y24=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 4 } = 1

C) y249x24=1\frac { y ^ { 2 } } { 49 } - \frac { x ^ { 2 } } { 4 } = 1

D) y249+x24=1- \frac { y ^ { 2 } } { 49 } + \frac { x ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
47
Solve the problem.
A sealed-beam headlight is in the shape of a paraboloid of revolution. The bulb, which is placed at the focus, is
3 centimeters from the vertex. If the depth is to be 6 centimeters, what is the diameter of the headlight at its
opening?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the center, foci, and vertices of the ellipse.

- x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1

A) center at (0,0)( 0,0 )
foci at (0,8)( 0,8 ) and (4,0)( 4,0 )
vertices at (0,64),(16,0)( 0,64 ) , ( 16,0 )

B) center at (0,0)( 0,0 )
foci at (0,8)( 0 , - 8 ) and (0,8)( 0,8 )
vertices at (0,64),(0,64)( 0 , - 64 ) , ( 0,64 )

C) center at (0,0)( 0,0 )
foci at (43,0)( - 4 \sqrt { 3 } , 0 ) and (43,0)( 4 \sqrt { 3 } , 0 )
vertices at (8,0),(8,0)( - 8,0 ) , ( 8,0 )

D) center at (0,0)( 0,0 )
foci at (0,43)( 0 , - 4 \sqrt { 3 } ) and (0,43)( 0,4 \sqrt { 3 } )
vertices at (0,8),(0,8)( 0 , - 8 ) , ( 0,8 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (5,0)( 5,0 ) ; vertex at (7,0)( 7,0 )

A) x249+y224=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 24 } = 1

B) x225+y224=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 24 } = 1

C) x225+y249=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 49 } = 1

D) x224+y249=1\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
50
Solve the problem.
A reflecting telescope contains a mirror shaped like a paraboloid of revolution. If the mirror is 24 inches across at its opening and is 4 feet deep, where will the light be concentrated?

A) 0.1 in. from the vertex
B) 10.1 in. from the vertex
C) 0.2 in. from the vertex
D) 0.8 in. from the vertex
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
51
Match the graph to its equation.

- <strong>Match the graph to its equation.  - </strong> A)  \frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 9 } = 1   B)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1   C)  \frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1   D)  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1

A) y216+x29=1\frac { y ^ { 2 } } { 16 } + \frac { x ^ { 2 } } { 9 } = 1

B) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1

C) y216x29=1\frac { y ^ { 2 } } { 16 } - \frac { x ^ { 2 } } { 9 } = 1

D) x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the center, foci, and vertices of the ellipse.

- 4x2+64y2=2564 x ^ { 2 } + 64 y ^ { 2 } = 256

A) center at (0,0)( 0,0 )
foci at (0,2)( 0 , - 2 ) and (0,2)( 0,2 )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )

B) center at (0,0)( 0,0 )
foci at (0,215)( 0 , - 2 \sqrt { 15 } ) and (0,215)( 0,2 \sqrt { 15 } )
vertices at (0,8),(0,8)( 0 , - 8 ) , ( 0,8 )

C) center at (0,0)( 0,0 )
foci at (215,0)( - 2 \sqrt { 15 } , 0 ) and (215,0)( 2 \sqrt { 15 } , 0 )
vertices at (8,0),(8,0)( - 8,0 ) , ( 8,0 )

D) center at (0,0)( 0,0 )
foci at (8,0)( - 8,0 ) and (8,0)( 8,0 )
vertices at (64,0),(64,0)( - 64,0 ) , ( 64,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
53
Solve the problem.
A searchlight is shaped like a paraboloid of revolution. If the light source is located 5 feet from the base along the axis of symmetry and the opening is 8 feet across, how deep should the searchlight be?

A) 4 ft
B) 0.8 ft
C) 1.6 ft
D) 3.2 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
54
Graph the equation.

- (y1)2=7(x+2)(y-1)^{2}=-7(x+2)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)

A)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)

B)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)

C)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)

D)
 <strong>Graph the equation.  - (y-1)^{2}=-7(x+2)    </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
55
Solve the problem.
An experimental model for a suspension bridge is built in the shape of a parabolic arch. In one section, cable runs from the top of one tower down to the roadway, just touching it there, and up again to the top of a second
Tower. The towers stand 50 inches apart. At a point between the towers and 15 inches along the road from the
Base of one tower, the cable is 1 inches above the roadway. Find the height of the towers.

A) 6.75 in.
B) 5.75 in.
C) 6.25 in.
D) 8.25 in.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
56
Solve the problem.
An experimental model for a suspension bridge is built in the shape of a parabolic arch. In one section, cable runs from the top of one tower down to the roadway, just touching it there, and up again to the top of a second
Tower. The towers are both 12.25 inches tall and stand 70 inches apart. Find the vertical distance from the
Roadway to the cable at a point on the road 14 inches from the lowest point of the cable.

A) 2.16 in.
B) 1.76 in.
C) 7.84 in.
D) 1.96 in.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
57
Solve the problem.
A bridge is built in the shape of a parabolic arch. The bridge arch has a span of 174 feet and a maximum height of 30 feet. Find the height of the arch at 15 feet from its center.

A) 3.6 ft
B) 21.8 ft
C) 0.2 ft
D) 29.1 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
58
Solve the problem.

-A reflecting telescope has a mirror shaped like a paraboloid of revolution. If the distance of the vertex to the focus is 31 feet and the distance across the top of the mirror is 66 inches, how deep is the mirror in the center?

A) 1211984\frac { 121 } { 1984 } in.

B) 363496\frac { 363 } { 496 } in.

C) 961132\frac { 961 } { 132 } in.

D) 1089124in\frac { 1089 } { 124 } \mathrm { in } .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
59
Graph the equation.

- (x+1)2=8(y2)(x+1)^{2}=-8(y-2)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  - (x+1)^{2}=-8(y-2)    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
60
Solve the problem.
An experimental model for a suspension bridge is built in the shape of a parabolic arch. In one section, cable runs from the top of one tower down to the roadway, just touching it there, and up again to the top of a second
Tower. The towers are both 12.25 inches tall and stand 70 inches apart. At some point along the road from the
Lowest point of the cable, the cable is 1.96 inches above the roadway. Find the distance between that point and
The base of the nearest tower.

A) 21 in.
B) 13.8 in.
C) 14.2 in.
D) 21.2 in.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the center, foci, and vertices of the ellipse.

- (x1)236+(y+2)29=1\frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1

A) center at (1,2)( 1 , - 2 )
foci at (1+33,1),(133,1)( 1 + 3 \sqrt { 3 } , 1 ) , ( 1 - 3 \sqrt { 3 } , 1 )
vertices at (6,2),(6,2)( 6 , - 2 ) , ( - 6 , - 2 )

B) center at (2,1)( - 2,1 )
foci at (2+33,1),(233,1)( - 2 + 3 \sqrt { 3 } , 1 ) , ( - 2 - 3 \sqrt { 3 } , 1 )
vertices at (5,2),(7,2)( - 5 , - 2 ) , ( 7 , - 2 )

C) center at (1,2)( 1 , - 2 )
foci at (33,2),(33,2)( - 3 \sqrt { 3 } , - 2 ) , ( 3 \sqrt { 3 } , - 2 )
vertices at (6,2),(6,2)( 6 , - 2 ) , ( - 6 , - 2 )

D) center at (1,2)( 1 , - 2 )
foci at (1+33,2),(133,2)( 1 + 3 \sqrt { 3 } , - 2 ) , ( 1 - 3 \sqrt { 3 } , - 2 )
vertices at (5,2),(7,2)( - 5 , - 2 ) , ( 7 , - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
62
Find an equation for the ellipse described.

-Center (0,0)( 0,0 ) ; major axis horizontal with length 10 ; length of minor axis is 4

A) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1

B) x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1

C) x26+y24=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 4 } = 1

D) x2100+y216=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
63
Graph the ellipse and locate the foci.

- 4x2+16y2=644 x^{2}+16 y^{2}=64
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

A) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

B) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

C) foci at (4,0)( 4,0 ) and (4,0)( - 4,0 )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

D) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  - 4 x^{2}+16 y^{2}=64    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     C) foci at  ( 4,0 )  and  ( - 4,0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the center, foci, and vertices of the ellipse.

- 16x2+y2256x+1,008=016 x ^ { 2 } + y ^ { 2 } - 256 x + 1,008 = 0

A) (x2)2+y264=1( x - 2 ) ^ { 2 } + \frac { y ^ { 2 } } { 64 } = 1
center: (2,0)( 2,0 ) ; foci: (2,37),(2,37)( 2,3 \sqrt { 7 } ) , ( 2 , - 3 \sqrt { 7 } ) ; vertices:( 2, 8),(2,8)8 ), ( 2 , - 8 )

B) (x8)2+y24=1( x - 8 ) ^ { 2 } + \frac { y ^ { 2 } } { 4 } = 1
center: (8,0)( 8,0 ) ; foci: (8,3),(8,3)( 8 , \sqrt { 3 } ) , ( 8 , - \sqrt { 3 } ) ; vertices: (8,2),(8,2)( 8,2 ) , ( 8 , - 2 )

C) x264+(y2)2=1\frac { x ^ { 2 } } { 64 } + ( y - 2 ) ^ { 2 } = 1
center: (2,0)( 2,0 ) ; foci: (2,37),(2,37)( 2,3 \sqrt { 7 } ) , ( 2 , - 3 \sqrt { 7 } ) ; vertices: (2,8),(2,8)( 2,8 ) , ( 2 , - 8 )

D) x24+(y8)2=1\frac { x ^ { 2 } } { 4 } + ( y - 8 ) ^ { 2 } = 1
center: (8,0)( 8,0 ) ; foci: (8,3),(8,37)( 8 , \sqrt { 3 } ) , ( 8 , - 3 \sqrt { 7 } ) ; vertices: (8,2)( 8,2 ) , (8,2)( 8 , - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (0,2)( 0,2 ) ; vertex at (0,3)( 0,3 )

A) x236+y264=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 64 } = 1

B) x236+y228=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 28 } = 1

C) x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1

D) x25+y29=1\frac { x ^ { 2 } } { 5 } + \frac { y ^ { 2 } } { 9 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
66
Find an equation for the ellipse described.

-Foci at (0,±5);y( 0 , \pm 5 ) ; \quad \mathrm { y } -intercepts are ±8\pm 8

A) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1

B) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1

C) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1

D) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (3,0)( - 3,0 ) ; vertex at (4,0)( 4,0 )

A) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1

B) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1

C) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1

D) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find an equation for the ellipse described.

-Center at (0,0)( 0,0 ) ; focus at (5,0);( - 5,0 ) ; vertex at (8,0)( 8,0 )

A) x264+y260=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 60 } = 1

B) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1

C) x24+y260=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 60 } = 1

D) x260+y264=1\frac { x ^ { 2 } } { 60 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
69
Find an equation for the ellipse described.

-Center at (0,0);( 0,0 ) ; focus at (0,2)( 0 , - 2 ) ; vertex at (0,6)( 0,6 )

A) x24+y232=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 32 } = 1

B) x24+y236=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 36 } = 1

C) x232+y236=1\frac { x ^ { 2 } } { 32 } + \frac { y ^ { 2 } } { 36 } = 1

D) x236+y232=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 32 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find an equation for the ellipse described.

-Foci at (±2,0);x( \pm 2,0 ) ; \quad x -intercepts are ±7\pm 7

A) x245+y249=1\frac { x ^ { 2 } } { 45 } + \frac { y ^ { 2 } } { 49 } = 1

B) x24+y249=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 49 } = 1

C) x24+y245=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 45 } = 1

D) x249+y245=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 45 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
71
Graph the ellipse and locate the foci.

- x29+y216=1\frac{x^{2}}{9}+\frac{y^{2}}{16}=1
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )

A) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )

B) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )

C) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )

D) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac{x^{2}}{9}+\frac{y^{2}}{16}=1    </strong> A) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )     B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     C) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )     D) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
72
Write an equation for the graph.

- <strong>Write an equation for the graph.  -  </strong> A)  \frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1   B)  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   C)  \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1   D)  \frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1

A) (x2)24+(y1)29=1\frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1

B) (x+2)29+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1

C) (x1)29+(y2)24=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1

D) (x2)29+(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
73
Graph the ellipse and locate the foci.

- x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})

A) foci at (21,0)( \sqrt { 21 } , 0 ) and (21,0)( - \sqrt { 21 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})

B) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})

C)  foci at (23,0) and (23,0)\text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})

D)  foci at (0,23) and (0,23)\text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})
 <strong>Graph the ellipse and locate the foci.  - \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1    </strong> A) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )     B) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )     C)  \text { foci at }(2 \sqrt{3}, 0) \text { and }(-2 \sqrt{3}, 0)     D)  \text { foci at }(0,2 \sqrt{3}) \text { and }(0,-2 \sqrt{3})



فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find an equation for the ellipse described.

-Focus at (3,0)( - 3,0 ) ; vertices at (±5,0)( \pm 5,0 )

A) x216+y225=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 25 } = 1

B) x225+y216=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1

C) x29+y225=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } = 1

D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find an equation for the ellipse described.

-Focus at (0,4)( 0 , - 4 ) ; vertices at (0,±8)( 0 , \pm 8 )

A) x216+y248=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 48 } = 1

B) x264+y248=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 48 } = 1

C) x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1

D) x248+y264=1\frac { x ^ { 2 } } { 48 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
76
Graph the ellipse and locate the foci.

- 16x2+9y2=14416 x^{2}+9 y^{2}=144
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

A) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

B)  foci at (4,0) and (4,0)\text { foci at }(4,0) \text { and }(-4,0)
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

C) foci at (7,0)( \sqrt { 7 } , 0 ) and (7,0)( - \sqrt { 7 } , 0 )
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )

D) foci at (0,7)( 0 , \sqrt { 7 } ) and (0,7)( 0 , - \sqrt { 7 } )
 <strong>Graph the ellipse and locate the foci.  - 16 x^{2}+9 y^{2}=144    </strong> A) foci at  ( 5,0 )  and  ( - 5,0 )     B)  \text { foci at }(4,0) \text { and }(-4,0)     C) foci at  ( \sqrt { 7 } , 0 )  and  ( - \sqrt { 7 } , 0 )     D) foci at  ( 0 , \sqrt { 7 } )  and  ( 0 , - \sqrt { 7 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
77
Graph the equation.

- (x1)29+(y+1)24=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)

A)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)

B)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)

C)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)

D)
 <strong>Graph the equation.  - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)    B)    C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find the center, foci, and vertices of the ellipse.

- 2x2+5y212x+60y+188=02 x ^ { 2 } + 5 y ^ { 2 } - 12 x + 60 y + 188 = 0

A) (x3)22+(y+6)25=1\frac { ( x - 3 ) ^ { 2 } } { 2 } + \frac { ( y + 6 ) ^ { 2 } } { 5 } = 1
center: (3,6)( - 3,6 ) ; foci: (1.3,6),(4.7,6)( - 1.3,6 ) , ( - 4.7,6 ) ; vertices: (5.2,6),(0.8,6)( - 5.2,6 ) , ( - 0.8,6 )

B) (x3)25+(y+6)22=1\frac { ( x - 3 ) ^ { 2 } } { 5 } + \frac { ( y + 6 ) ^ { 2 } } { 2 } = 1
center: (3,6)( 3 , - 6 ) ; foci: (4.7,6),(1.3,6)( 4.7 , - 6 ) , ( 1.3 , - 6 ) ; vertices: (5.2,6),(0.8,6)( 5.2 , - 6 ) , ( 0.8 , - 6 )

C) (x3)25+(y+6)22=1\frac { ( x - 3 ) ^ { 2 } } { 5 } + \frac { ( y + 6 ) ^ { 2 } } { 2 } = 1
center: (3,6)( - 3,6 ) ; foci: (1.3,6),(4.7,6)( - 1.3,6 ) , ( - 4.7,6 ) ; vertices: (5.2,6),(0.8,6)( - 5.2,6 ) , ( - 0.8,6 )

D) (x3)22+(y+6)25=1\frac { ( x - 3 ) ^ { 2 } } { 2 } + \frac { ( y + 6 ) ^ { 2 } } { 5 } = 1
center: (3,6)( 3 , - 6 ) ; foci: (4.7,6),(1.3,6)( 4.7 , - 6 ) , ( 1.3 , - 6 ) ; vertices: (5.2,6),(0.8,6)( 5.2 , - 6 ) , ( 0.8 , - 6 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
79
Find an equation for the ellipse described.

-Center at (0,0);( 0,0 ) ; focus at (0,5)( 0,5 ) ; vertex at (0,7)( 0 , - 7 )

A) x224+y249=1\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1

B) x225+y224=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 24 } = 1

C) x225+y249=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 49 } = 1

D) x249+y224=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 24 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find the center, foci, and vertices of the ellipse.

- 16(x+2)2+9(y1)2=14416 ( \mathrm { x } + 2 ) ^ { 2 } + 9 ( \mathrm { y } - 1 ) ^ { 2 } = 144

A) center at (1,1)( - 1,1 )
foci at (1,17),(1,1+7)( - 1,1 - \sqrt { 7 } ) , ( - 1,1 + \sqrt { 7 } )
vertices at (1,5),(1,3)( - 1,5 ) , ( - 1 , - 3 )

B) center at (1,2)( 1 , - 2 )
foci at (1,27),(1,2+7)( 1 , - 2 - \sqrt { 7 } ) , ( 1 , - 2 + \sqrt { 7 } )
vertices at (1,5),(1,3)( 1,5 ) , ( 1 , - 3 )

C) center at (2,1)( 2,1 )
foci at (2,17),(2,1+7)( 2,1 - \sqrt { 7 } ) , ( 2,1 + \sqrt { 7 } )
vertices at (2,5),(2,3)( 2,5 ) , ( 2 , - 3 )

D) center at (2,1)( - 2,1 )
foci at (2,17),(2,1+7)( - 2,1 - \sqrt { 7 } ) , ( - 2,1 + \sqrt { 7 } )
vertices at (2,5),(2,3)( - 2,5 ) , ( - 2 , - 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 197 في هذه المجموعة.