Deck 8: Polar Coordinates; Vectors

ملء الشاشة (f)
exit full mode
سؤال
Plot the point given in polar coordinates.

- (2,9π4)\left( - 2 , \frac { 9 \pi } { 4 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Plot the point given in polar coordinates.

- (4,5π4)\left( 4 , \frac { - 5 \pi } { 4 } \right)
11ed81e9_d221_d939_a8e7_a59319399610_TB7697_

A)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (3,7π6)\left( 3 , \frac { 7 \pi } { 6 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Match the point in polar coordinates with either A, B, C, or D on the graph.

- (3,π3)\left( - 3 , - \frac { \pi } { 3 } \right)
 <strong>Match the point in polar coordinates with either A, B, C, or D on the graph.  - \left( - 3 , - \frac { \pi } { 3 } \right)    </strong> A) A B) B C) C D) D <div style=padding-top: 35px>

A) A
B) B
C) C
D) D
سؤال
Plot the point given in polar coordinates.

- (2,π4)\left(2,-\frac{\pi}{4}\right)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Solve the problem.
Solve the problem.    <div style=padding-top: 35px> Solve the problem.    <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (4,315)\left( 4,315 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (4,30)\left( 4,30 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (2,9π4)\left( 2 , \frac { 9 \pi } { 4 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- [2,3π4\left[-2, \frac{-3 \pi}{4}\right.

 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Match the point in polar coordinates with either A, B, C, or D on the graph.

- [3,π3]\left[-3, \frac{\pi}{3}\right]
 <strong>Match the point in polar coordinates with either A, B, C, or D on the graph.  - \left[-3, \frac{\pi}{3}\right]    </strong> A) A B) B C) C D) D <div style=padding-top: 35px>

A) A
B) B
C) C
D) D
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (7,2π3)\left( 7 , \frac { 2 \pi } { 3 } \right)

A) (72,732)\left( - \frac { 7 } { 2 } , \frac { 7 \sqrt { 3 } } { 2 } \right)
B) (72,732)\left( \frac { 7 } { 2 } , \frac { - 7 \sqrt { 3 } } { 2 } \right)
C) (72,732)\left( - \frac { 7 } { 2 } , \frac { - 7 \sqrt { 3 } } { 2 } \right)
D) (72,732)\left( \frac { 7 } { 2 } , \frac { 7 \sqrt { 3 } } { 2 } \right)
سؤال
Plot the point given in polar coordinates.

- (2,45)\left( 2,45 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)    <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)    <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)    <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)    <div style=padding-top: 35px>

D)

 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)    <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- [5,5π3)\left[5, \frac{5 \pi}{3}\right)

 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
B)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)   <div style=padding-top: 35px>

سؤال
Plot the point given in polar coordinates.

- (2,0)\left( 2,0 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (2,45)\left( - 2,45 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Match the point in polar coordinates with either A, B, C, or D on the graph.

- (3,5π3)\left( 3 , - \frac { 5 \pi } { 3 } \right)
 <strong>Match the point in polar coordinates with either A, B, C, or D on the graph.  - \left( 3 , - \frac { 5 \pi } { 3 } \right)    </strong> A) A B) B C) C D) D <div style=padding-top: 35px>

A) A
B) B
C) C
D) D
سؤال
Plot the point given in polar coordinates.

- (2,360)0)\left. ( 2,360 ) ^ { 0 } \right)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (3,π4)\left( - 3 , - \frac { \pi } { 4 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)   <div style=padding-top: 35px>
سؤال
Plot the point given in polar coordinates.

- (4,405)\left(-4,405^{\circ}\right)

 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

A)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

B)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
C)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>

D)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)   <div style=padding-top: 35px>
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.
(4, 70°) Round the rectangular coordinates to two decimal places.

A) (4.01, 1.59)
B) (1.37, 3.76)
C) (1.59, 4.01)
D) (3.76, 1.37)
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,3π4)\left( - 5 , \frac { 3 \pi } { 4 } \right)

A) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
B) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
C) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
D) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,360)\left( - 5 , - 360 ^ { \circ } \right)

A) (5,0)( 5,0 )
B) (5,0)( - 5,0 )
C) (0,5)( 0,5 )
D) (0,5)( 0 , - 5 )
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x2+4y2=4x ^ { 2 } + 4 y ^ { 2 } = 4

A) 4cos2θ+sin2θ=4r4 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta = 4 \mathrm { r }
B) cos2θ+4sin2θ=4r\cos ^ { 2 } \theta + 4 \sin ^ { 2 } \theta = 4 \mathrm { r }
C) r2(cos2θ+4sin2θ)=4r ^ { 2 } \left( \cos ^ { 2 } \theta + 4 \sin ^ { 2 } \theta \right) = 4
D) r2(4cos2θ+sin2θ)=4\mathrm { r } ^ { 2 } \left( 4 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta \right) = 4
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,4π3)\left( 5 , - \frac { 4 \pi } { 3 } \right)

A) (532,52)\left( \frac { 5 \sqrt { 3 } } { 2 } , \frac { 5 } { 2 } \right)
B) (52,532)\left( - \frac { 5 } { 2 } , \frac { 5 \sqrt { 3 } } { 2 } \right)
C) (52,532)\left( \frac { 5 } { 2 } , - \frac { 5 \sqrt { 3 } } { 2 } \right)
D) (532,52)\left( - \frac { 5 \sqrt { 3 } } { 2 } , - \frac { 5 } { 2 } \right)
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.

- (7,0)( - 7,0 )

A) (7,π2)\left( 7 , \frac { \pi } { 2 } \right)
B) (7,3π2)\left( 7 , \frac { 3 \pi } { 2 } \right)
C) (7,π)( 7 , \pi )
D) (7,π)( - 7 , \pi )
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.

- (3,1)( \sqrt { 3 } , - 1 )

A) (2,π6)\left( 2 , - \frac { \pi } { 6 } \right)
B) (2,5π6)\left( 2 , \frac { 5 \pi } { 6 } \right)
C) (2,π6)\left( 2 , \frac { \pi } { 6 } \right)
D) (2,5π6)\left( 2 , - \frac { 5 \pi } { 6 } \right)
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- y2=16xy ^ { 2 } = 16 x

A) rsin2θ=16cosθr \sin ^ { 2 } \theta = 16 \cos \theta
B) sin2θ=16rcosθ\sin ^ { 2 } \theta = 16 \mathrm { r } \cos \theta
C) r2sin2θ=16cosθr ^ { 2 } \sin ^ { 2 } \theta = 16 \cos \theta
D) sin2θ=16r2cosθ\sin ^ { 2 } \theta = 16 r ^ { 2 } \cos \theta
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,3π4)\left( 5 , \frac { 3 \pi } { 4 } \right)

A) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
B) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
C) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
D) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.
(-2, 0.6) Round the polar coordinates to two decimal places, with θ in radians.

A) (-2.09, 1.28)
B) (2.09, -1.28)
C) (2.09, 1.28)
D) (2.09, 2.85)
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.

-(0, 9)

A) (9,0)( 9,0 )
B) (9,π2)\left( 9 , - \frac { \pi } { 2 } \right)
C) (9,π)( 9 , \pi )
D) (9,π2)\left( 9 , \frac { \pi } { 2 } \right)
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.
(0.6, -1.1) Round the polar coordinates to two decimal places, with θ in degrees.

A) (1.25, -61.39°)
B) (1.25, 57.93°)
C) (1.25, -57.93°)
D) (1.25, 61.39°)
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x2+y24x=0x ^ { 2 } + y ^ { 2 } - 4 x = 0

A) r=4cosθr = 4 \cos \theta
B) rcos2θ=4sinθr \cos ^ { 2 } \theta = 4 \sin \theta
C) rsin2θ=4cosθr \sin ^ { 2 } \theta = 4 \cos \theta
D) r=4sinθr = 4 \sin \theta
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (9,2π3)\left( - 9 , \frac { 2 \pi } { 3 } \right)

A) (92,932)\left( \frac { 9 } { 2 } , \frac { 9 \sqrt { 3 } } { 2 } \right)
B) (92,932)\left( - \frac { 9 } { 2 } , \frac { 9 \sqrt { 3 } } { 2 } \right)
C) (92,932)\left( \frac { 9 } { 2 } , \frac { - 9 \sqrt { 3 } } { 2 } \right)
D) (92,932)\left( - \frac { 9 } { 2 } , \frac { - 9 \sqrt { 3 } } { 2 } \right)
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.

-(-3, 3)

A) (32,3π4)\left( 3 \sqrt { 2 } , - \frac { 3 \pi } { 4 } \right)
B) (32,3π4)\left( - 3 \sqrt { 2 } , - \frac { 3 \pi } { 4 } \right)
C) (32,π4)\left( - 3 \sqrt { 2 } , \frac { \pi } { 4 } \right)
D) (32,3π4)\left( 3 \sqrt { 2 } , \frac { 3 \pi } { 4 } \right)
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,120)\left( - 5,120 ^ { \circ } \right)

A) (52,532)\left( - \frac { 5 } { 2 } , \frac { 5 \sqrt { 3 } } { 2 } \right)
B) (52,532)\left( - \frac { 5 } { 2 } , \frac { - 5 \sqrt { 3 } } { 2 } \right)
C) (52,532)\left( \frac { 5 } { 2 } , \frac { 5 \sqrt { 3 } } { 2 } \right)
D) (52,532)\left( \frac { 5 } { 2 } , \frac { - 5 \sqrt { 3 } } { 2 } \right)
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x2=4yx ^ { 2 } = 4 y

A) rsin2θ=4cosθr \sin ^ { 2 } \theta = 4 \cos \theta
B) 4sin2θ=rcosθ4 \sin ^ { 2 } \theta = r \cos \theta
C) 4cos2θ=rsinθ4 \cos ^ { 2 } \theta = r \sin \theta
D) rcos2θ=4sinθr \cos ^ { 2 } \theta = 4 \sin \theta
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.
(400, 130°) Round the rectangular coordinates to two decimal places.

A) (306.42, -257.12)
B) (-257.12, -306.42)
C) (-257.12, 306.42)
D) (306.42, 257.12)
سؤال
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (3,135)\left( - 3 , - 135 ^ { \circ } \right)

A) (322,322)\left( \frac { - 3 \sqrt { 2 } } { 2 } , \frac { - 3 \sqrt { 2 } } { 2 } \right)
B) (322,322)\left( \frac { 3 \sqrt { 2 } } { 2 } , \frac { - 3 \sqrt { 2 } } { 2 } \right)
C) (322,322)\left( \frac { 3 \sqrt { 2 } } { 2 } , \frac { 3 \sqrt { 2 } } { 2 } \right)
D) (322,322)\left( \frac { - 3 \sqrt { 2 } } { 2 } , \frac { 3 \sqrt { 2 } } { 2 } \right)
سؤال
The rectangular coordinates of a point are given. Find polar coordinates for the point.
(100, -30) Round the polar coordinates to two decimal places, with θ in degrees.

A) (104.40, 16.70°)
B) (104.40, -106.70°)
C) (104.40, -16.70°)
D) (104.40, 106.70°)
سؤال
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- rsinθ=4r \sin \theta = 4
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole <div style=padding-top: 35px>

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole <div style=padding-top: 35px>
x=4x = - 4 ; vertical line 4 units
to the left of the pole

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole <div style=padding-top: 35px>
x=4x = 4 ; vertical line 4 units
to the right of the pole

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole <div style=padding-top: 35px>
y=4y = - 4 ; horizontal line 4 units
below the pole

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole <div style=padding-top: 35px>
y=4y = 4 ; horizontal line 4 units
above the pole
سؤال
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r \sin \theta = 3  B)  r = 6 \cos \theta  C)  r = 6 \sin \theta  D)  r = 3  <div style=padding-top: 35px>

A) rsinθ=3r \sin \theta = 3
B) r=6cosθr = 6 \cos \theta
C) r=6sinθr = 6 \sin \theta
D) r=3r = 3
سؤال
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- r=6sinθr = 6 \sin \theta
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates <div style=padding-top: 35px>

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates <div style=padding-top: 35px>
x2+(y3)2=9; x^{2}+(y-3)^{2}=9 ; circle, radius 3 center at (0,3) (0,3) in rectangular coordinates

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates <div style=padding-top: 35px>
(x+3)2+y2=9; circle, radius 3 (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }
center at (3,0) (-3,0) in rectangular coordinates

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates <div style=padding-top: 35px>
(x3)2+y2=9 (x-3)^{2}+y^{2}=9 ; circle, radius 3 , center at (3,0) (3,0) in rectangular coordinates

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates <div style=padding-top: 35px>
x2+(y+3)2=9 \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9 ; circle, radius 3 center at (0,3) (0,-3) in rectangular coordinates
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- 2x+3y=62 x + 3 y = 6

A) 2sinθ+3cosθ=6r2 \sin \theta + 3 \cos \theta = 6 r
B) 2cosθ+3sinθ=6r2 \cos \theta + 3 \sin \theta = 6 r
C) r(2cosθ+3sinθ)=6\mathrm { r } ( 2 \cos \theta + 3 \sin \theta ) = 6
D) r(2sinθ+3cosθ)=6r ( 2 \sin \theta + 3 \cos \theta ) = 6
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r(12cosθ)=1r ( 1 - 2 \cos \theta ) = 1

A) x2+y2=(1+2x)2x ^ { 2 } + y ^ { 2 } = ( 1 + 2 x ) ^ { 2 }
B) x2+y2=1+2xx ^ { 2 } + y ^ { 2 } = 1 + 2 x
C) x2+y2=2+xx ^ { 2 } + y ^ { 2 } = 2 + x
D) x2+y2=(2+x)2x ^ { 2 } + y ^ { 2 } = ( 2 + x ) ^ { 2 }
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- y=xy = x

A) r=cosθr = \cos \theta
B) sinθ=cosθ\sin \theta = \cos \theta
C) sinθ=cosθ\sin \theta = - \cos \theta
D) r=sinθr = \sin \theta
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- y=5y = 5

A) r=5r = 5
B) rcosθ=5r \cos \theta = 5
C) rsinθ=5r \sin \theta = 5
D) sinθcosθ=5\sin \theta \cos \theta = 5
سؤال
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- rsecθ=6r \sec \theta = - 6
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates <div style=padding-top: 35px>

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates <div style=padding-top: 35px>
(x+3)2+y2=9( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3
center (3,0)( - 3,0 ) in rectangular coordinates

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates <div style=padding-top: 35px>
y=6y = - 6 ; horizontal line 6 units
below the pole

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates <div style=padding-top: 35px>
x=6x = - 6 ; vertical line 6 units
to the left of the pole

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates <div style=padding-top: 35px>
x2+(y+3)2=9x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3
center at (0,3)( 0 , - 3 ) in rectangular coordinates
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=51+cosθr = \frac { 5 } { 1 + \cos \theta }

A) x2=2510yx ^ { 2 } = 25 - 10 y
B) y2=2510xy ^ { 2 } = 25 - 10 x
C) x2=10y25x ^ { 2 } = 10 y - 25
D) y2=10x25\mathrm { y } ^ { 2 } = 10 \mathrm { x } - 25
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=1+2sinθ\mathrm { r } = 1 + 2 \sin \theta

A) x2+y2=x2+y2+2y\sqrt { x ^ { 2 } + y ^ { 2 } } = x ^ { 2 } + y ^ { 2 } + 2 y
B) x2+y2=x2+y2+2yx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + 2 y
C) x2+y2=x2+y2+2xx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + 2 x
D) x2+y2=x2+y2+2x\sqrt { x ^ { 2 } + y ^ { 2 } } = x ^ { 2 } + y ^ { 2 } + 2 x
سؤال
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 2 \sin \theta  B)  r = 2 \cos \theta  C)  r \sin \theta = 1  D)  r = 1  <div style=padding-top: 35px>

A) r=2sinθr = 2 \sin \theta
B) r=2cosθr = 2 \cos \theta
C) rsinθ=1r \sin \theta = 1
D) r=1r = 1
سؤال
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- r=6cosθr=6 \cos \theta
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates <div style=padding-top: 35px>

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates <div style=padding-top: 35px>
(x3)2+y2=9; (x-3)^{2}+y^{2}=9 ; circle, radius 3 center at (3,0) (3,0) in rectangular coordinates

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates <div style=padding-top: 35px>
x2+(y+3)2=9; x^{2}+(y+3)^{2}=9 ; circle, radius 3
center at (0,3) (0,-3) in rectangular coordinates

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates <div style=padding-top: 35px>
(x+3)2+y2=9 (x+3)^{2}+y^{2}=9 ; circle, radius 3 ,
center at (3,0) (-3,0) in rectangular coordinates

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates <div style=padding-top: 35px>

x2+(y3)2=9 \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9 ; circle, radius 3 ,
center at (0,3) (0,3) in rectangular coordinates
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- rsinθ=10\mathrm { r } \sin \theta = 10

A) y=10y = 10
B) x=10x = 10
C) x=10yx = 10 y
D) y=10xy = 10 x
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- xy=1x y = 1

A) rsin2θ=2r \sin 2 \theta = 2
B) r2sin2θ=2r ^ { 2 } \sin 2 \theta = 2
C) 2r2sinθcosθ=12 r ^ { 2 } \sin \theta \cos \theta = 1
D) 2rsinθcosθ=12 r \sin \theta \cos \theta = 1
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=2(sinθcosθ)\mathrm { r } = 2 ( \sin \theta - \cos \theta )

A) x2+y2=2y2xx ^ { 2 } + y ^ { 2 } = 2 y - 2 x
B) x2+y2=2x2yx ^ { 2 } + y ^ { 2 } = 2 x - 2 y
C) 2x2+2y2=yx2 x ^ { 2 } + 2 y ^ { 2 } = y - x
D) 2x2+2y2=xy2 x ^ { 2 } + 2 y ^ { 2 } = x - y
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=5r = 5

A) x+y=5x + y = 5
B) x2y2=25x ^ { 2 } - y ^ { 2 } = 25
C) x2+y2=25x ^ { 2 } + y ^ { 2 } = 25
D) x+y=25x + y = 25
سؤال
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x=3x = - 3

A) rcosθ=3r \cos \theta = - 3
B) rcosθ=3\mathbf { r } \cos \theta = 3
C) rsinθ=3r \sin \theta = - 3
D) rsinθ=3r \sin \theta = 3
سؤال
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- θ=π3\theta = \frac { \pi } { 3 }
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates <div style=padding-top: 35px>

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates <div style=padding-top: 35px>
y=3x y=\sqrt{3} x ; line through the pole making
an angle of π3 \frac{\pi}{3} with the polar axis

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates <div style=padding-top: 35px>
y=33x y=-\frac{\sqrt{3}}{3} x ; line through the pole making
an angle of π3 \frac{\pi}{3} with the polar axis

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates <div style=padding-top: 35px>
y=π3 y=-\frac{\pi}{3} ; horizontal line π3 \frac{\pi}{3} units
below the pole

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates <div style=padding-top: 35px>
(xπ3)2+y2=π29; \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ; circle, radius π3 \frac{\pi}{3}
center at (π3,0) \left(\frac{\pi}{3}, 0\right) in rectangular coordinates
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=cosθr = \cos \theta

A) x2+y2=xx ^ { 2 } + y ^ { 2 } = x
B) x2+y2=yx ^ { 2 } + y ^ { 2 } = y
C) (x+y)2=y( x + y ) ^ { 2 } = y
D) (x+y)2=x( x + y ) ^ { 2 } = x
سؤال
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=10sinθr = 10 \sin \theta

A) x2+y2=10y\sqrt { x ^ { 2 } + y ^ { 2 } } = 10 y
B) x2+y2=10x\sqrt { x ^ { 2 } + y ^ { 2 } } = 10 x
C) x2+y2=10xx ^ { 2 } + y ^ { 2 } = 10 x
D) x2+y2=10yx ^ { 2 } + y ^ { 2 } = 10 y
سؤال
Identify and graph the polar equation.

- r=34sinθr=3-4 \sin \theta
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop <div style=padding-top: 35px>

A)
11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11
limacon without inner loop

B)
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop <div style=padding-top: 35px>
limacon with inner loop
C)
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop <div style=padding-top: 35px>
limacon with inner loop

D)
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop <div style=padding-top: 35px>
limacon without inner loop
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=44sinθ; polar axis r = 4 - 4 \sin \theta ; \text { polar axis }

A) Symmetric with respect to the polar axis
B) May or may not be symmetric with respect to the polar axis
سؤال
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 2 \sin \theta  B)  r = 2 \cos \theta  C)  r = 1  D)  r \sin \theta = 1  <div style=padding-top: 35px>

A) r=2sinθr = 2 \sin \theta
B) r=2cosθr = 2 \cos \theta
C) r=1r = 1
D) rsinθ=1r \sin \theta = 1
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=3sin(3θ);r = 3 \sin ( 3 \theta ) ; the line θ=π2\theta = \frac { \pi } { 2 }

A) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
سؤال
Identify and graph the polar equation.

- r=4sin(2θ)r=4 \sin (2 \theta)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate <div style=padding-top: 35px>

A)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate <div style=padding-top: 35px>
circle

B)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate <div style=padding-top: 35px>
rose with four petals
C)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate <div style=padding-top: 35px>
rose with two petals

D)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate <div style=padding-top: 35px>
lemniscate
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=36sinθ; the polar axis r = 3 - 6 \sin \theta \text {; the polar axis }

A) May or may not be symmetric with respect to the polar axis
B) Symmetric with respect to the polar axis
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=3+3cosθ;r = 3 + 3 \cos \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

A) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=4cosθ\mathrm { r } = - 4 \cos \theta ; the polar axis

A) May or may not be symmetric with respect to the polar axis
B) Symmetric with respect to the polar axis
سؤال
Identify and graph the polar equation.

- r2=4cos(2θ)r^{2}=4 \cos (2 \theta)

 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals <div style=padding-top: 35px>

A)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals <div style=padding-top: 35px>
rose with four petals
B)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals <div style=padding-top: 35px>
lemniscate
C)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals <div style=padding-top: 35px>
lemniscate

D)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals <div style=padding-top: 35px>
rose with four petals
سؤال
Identify and graph the polar equation.

- r=54cosθr=5-4 \cos \theta
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop <div style=padding-top: 35px>

A)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop <div style=padding-top: 35px>
limacon without inner loop

B)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop <div style=padding-top: 35px>
limacon without inner loop
C)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop <div style=padding-top: 35px>
limacon with inner loop


D)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop <div style=padding-top: 35px>
limacon with inner loop
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r2=sin(2θ); the pole \mathrm { r } ^ { 2 } = \sin ( 2 \theta ) \text {; the pole }

A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=6+2cosθ; the pole r = 6 + 2 \cos \theta ; \text { the pole }

A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole
سؤال
Identify and graph the polar equation.

- r=1cosθr=1-\cos \theta
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid <div style=padding-top: 35px>

A)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid <div style=padding-top: 35px>
cardioid

B)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid <div style=padding-top: 35px>
cardioid
C)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid <div style=padding-top: 35px>
cardioid

D)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid <div style=padding-top: 35px>
cardioid
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=2sinθr = 2 \sin \theta ; the pole

A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole
سؤال
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 3 + \sin \theta  B)  r = 6 \sin \theta  C)  r = 3 + \cos \theta  D)  r = 6 \cos \theta  <div style=padding-top: 35px>

A) r=3+sinθr = 3 + \sin \theta
B) r=6sinθr = 6 \sin \theta
C) r=3+cosθr = 3 + \cos \theta
D) r=6cosθr = 6 \cos \theta
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=4cosθ;r = 4 \cos \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

A) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
سؤال
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 3 + \sin \theta  B)  r = 3 + \cos \theta  C)  r = 6 \cos \theta  D)  r = 6 \sin \theta  <div style=padding-top: 35px>

A) r=3+sinθr = 3 + \sin \theta
B) r=3+cosθr = 3 + \cos \theta
C) r=6cosθr = 6 \cos \theta
D) r=6sinθr = 6 \sin \theta
سؤال
Identify and graph the polar equation.

- r=4θr = 4 \theta
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral <div style=padding-top: 35px>

A)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral <div style=padding-top: 35px>
logarithmic spiral
B)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral <div style=padding-top: 35px>
logarithmic spiral
C)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral <div style=padding-top: 35px>
logarithmic spiral

D)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral <div style=padding-top: 35px>

logarithmic spiral
سؤال
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = - 2 \cos \theta  B)  r \sin \theta = - 1  C)  r = - 2 \sin \theta  D)  r = - 1  <div style=padding-top: 35px>

A) r=2cosθr = - 2 \cos \theta
B) rsinθ=1r \sin \theta = - 1
C) r=2sinθr = - 2 \sin \theta
D) r=1r = - 1
سؤال
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=6+2sinθ;r = 6 + 2 \sin \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

A) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/270
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 8: Polar Coordinates; Vectors
1
Plot the point given in polar coordinates.

- (2,9π4)\left( - 2 , \frac { 9 \pi } { 4 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( - 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

2
Plot the point given in polar coordinates.

- (4,5π4)\left( 4 , \frac { - 5 \pi } { 4 } \right)
11ed81e9_d221_d939_a8e7_a59319399610_TB7697_

A)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( 4 , \frac { - 5 \pi } { 4 } \right)  11ed81e9_d221_d939_a8e7_a59319399610_TB7697_ </strong> A)    B)   C)    D)

3
Plot the point given in polar coordinates.

- (3,7π6)\left( 3 , \frac { 7 \pi } { 6 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( 3 , \frac { 7 \pi } { 6 } \right)   </strong> A)    B)   C)    D)

4
Match the point in polar coordinates with either A, B, C, or D on the graph.

- (3,π3)\left( - 3 , - \frac { \pi } { 3 } \right)
 <strong>Match the point in polar coordinates with either A, B, C, or D on the graph.  - \left( - 3 , - \frac { \pi } { 3 } \right)    </strong> A) A B) B C) C D) D

A) A
B) B
C) C
D) D
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
5
Plot the point given in polar coordinates.

- (2,π4)\left(2,-\frac{\pi}{4}\right)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left(2,-\frac{\pi}{4}\right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
6
Solve the problem.
Solve the problem.    Solve the problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
7
Plot the point given in polar coordinates.

- (4,315)\left( 4,315 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( 4,315 ^ { \circ } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
8
Plot the point given in polar coordinates.

- (4,30)\left( 4,30 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( 4,30 ^ { \circ } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
9
Plot the point given in polar coordinates.

- (2,9π4)\left( 2 , \frac { 9 \pi } { 4 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( 2 , \frac { 9 \pi } { 4 } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
10
Plot the point given in polar coordinates.

- [2,3π4\left[-2, \frac{-3 \pi}{4}\right.

 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left[-2, \frac{-3 \pi}{4}\right.    </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
11
Match the point in polar coordinates with either A, B, C, or D on the graph.

- [3,π3]\left[-3, \frac{\pi}{3}\right]
 <strong>Match the point in polar coordinates with either A, B, C, or D on the graph.  - \left[-3, \frac{\pi}{3}\right]    </strong> A) A B) B C) C D) D

A) A
B) B
C) C
D) D
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
12
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (7,2π3)\left( 7 , \frac { 2 \pi } { 3 } \right)

A) (72,732)\left( - \frac { 7 } { 2 } , \frac { 7 \sqrt { 3 } } { 2 } \right)
B) (72,732)\left( \frac { 7 } { 2 } , \frac { - 7 \sqrt { 3 } } { 2 } \right)
C) (72,732)\left( - \frac { 7 } { 2 } , \frac { - 7 \sqrt { 3 } } { 2 } \right)
D) (72,732)\left( \frac { 7 } { 2 } , \frac { 7 \sqrt { 3 } } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
13
Plot the point given in polar coordinates.

- (2,45)\left( 2,45 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)

D)

 <strong>Plot the point given in polar coordinates.  - \left( 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
14
Plot the point given in polar coordinates.

- [5,5π3)\left[5, \frac{5 \pi}{3}\right)

 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)
B)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left[5, \frac{5 \pi}{3}\right)    </strong> A)   B)   C)    D)

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
15
Plot the point given in polar coordinates.

- (2,0)\left( 2,0 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( 2,0 ^ { \circ } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
16
Plot the point given in polar coordinates.

- (2,45)\left( - 2,45 ^ { \circ } \right)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left( - 2,45 ^ { \circ } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
17
Match the point in polar coordinates with either A, B, C, or D on the graph.

- (3,5π3)\left( 3 , - \frac { 5 \pi } { 3 } \right)
 <strong>Match the point in polar coordinates with either A, B, C, or D on the graph.  - \left( 3 , - \frac { 5 \pi } { 3 } \right)    </strong> A) A B) B C) C D) D

A) A
B) B
C) C
D) D
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
18
Plot the point given in polar coordinates.

- (2,360)0)\left. ( 2,360 ) ^ { 0 } \right)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left. ( 2,360 ) ^ { 0 } \right)   </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
19
Plot the point given in polar coordinates.

- (3,π4)\left( - 3 , - \frac { \pi } { 4 } \right)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)

A)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)

B)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)
C)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)
D)
 <strong>Plot the point given in polar coordinates.  - \left( - 3 , - \frac { \pi } { 4 } \right)   </strong> A)    B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
20
Plot the point given in polar coordinates.

- (4,405)\left(-4,405^{\circ}\right)

 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)

A)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)

B)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)
C)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)

D)
 <strong>Plot the point given in polar coordinates.  - \left(-4,405^{\circ}\right)    </strong> A)    B)   C)    D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
21
The polar coordinates of a point are given. Find the rectangular coordinates of the point.
(4, 70°) Round the rectangular coordinates to two decimal places.

A) (4.01, 1.59)
B) (1.37, 3.76)
C) (1.59, 4.01)
D) (3.76, 1.37)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
22
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,3π4)\left( - 5 , \frac { 3 \pi } { 4 } \right)

A) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
B) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
C) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
D) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
23
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,360)\left( - 5 , - 360 ^ { \circ } \right)

A) (5,0)( 5,0 )
B) (5,0)( - 5,0 )
C) (0,5)( 0,5 )
D) (0,5)( 0 , - 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
24
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x2+4y2=4x ^ { 2 } + 4 y ^ { 2 } = 4

A) 4cos2θ+sin2θ=4r4 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta = 4 \mathrm { r }
B) cos2θ+4sin2θ=4r\cos ^ { 2 } \theta + 4 \sin ^ { 2 } \theta = 4 \mathrm { r }
C) r2(cos2θ+4sin2θ)=4r ^ { 2 } \left( \cos ^ { 2 } \theta + 4 \sin ^ { 2 } \theta \right) = 4
D) r2(4cos2θ+sin2θ)=4\mathrm { r } ^ { 2 } \left( 4 \cos ^ { 2 } \theta + \sin ^ { 2 } \theta \right) = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
25
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,4π3)\left( 5 , - \frac { 4 \pi } { 3 } \right)

A) (532,52)\left( \frac { 5 \sqrt { 3 } } { 2 } , \frac { 5 } { 2 } \right)
B) (52,532)\left( - \frac { 5 } { 2 } , \frac { 5 \sqrt { 3 } } { 2 } \right)
C) (52,532)\left( \frac { 5 } { 2 } , - \frac { 5 \sqrt { 3 } } { 2 } \right)
D) (532,52)\left( - \frac { 5 \sqrt { 3 } } { 2 } , - \frac { 5 } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
26
The rectangular coordinates of a point are given. Find polar coordinates for the point.

- (7,0)( - 7,0 )

A) (7,π2)\left( 7 , \frac { \pi } { 2 } \right)
B) (7,3π2)\left( 7 , \frac { 3 \pi } { 2 } \right)
C) (7,π)( 7 , \pi )
D) (7,π)( - 7 , \pi )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
27
The rectangular coordinates of a point are given. Find polar coordinates for the point.

- (3,1)( \sqrt { 3 } , - 1 )

A) (2,π6)\left( 2 , - \frac { \pi } { 6 } \right)
B) (2,5π6)\left( 2 , \frac { 5 \pi } { 6 } \right)
C) (2,π6)\left( 2 , \frac { \pi } { 6 } \right)
D) (2,5π6)\left( 2 , - \frac { 5 \pi } { 6 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
28
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- y2=16xy ^ { 2 } = 16 x

A) rsin2θ=16cosθr \sin ^ { 2 } \theta = 16 \cos \theta
B) sin2θ=16rcosθ\sin ^ { 2 } \theta = 16 \mathrm { r } \cos \theta
C) r2sin2θ=16cosθr ^ { 2 } \sin ^ { 2 } \theta = 16 \cos \theta
D) sin2θ=16r2cosθ\sin ^ { 2 } \theta = 16 r ^ { 2 } \cos \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
29
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,3π4)\left( 5 , \frac { 3 \pi } { 4 } \right)

A) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
B) (522,522)\left( \frac { - 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
C) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { - 5 \sqrt { 2 } } { 2 } \right)
D) (522,522)\left( \frac { 5 \sqrt { 2 } } { 2 } , \frac { 5 \sqrt { 2 } } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
30
The rectangular coordinates of a point are given. Find polar coordinates for the point.
(-2, 0.6) Round the polar coordinates to two decimal places, with θ in radians.

A) (-2.09, 1.28)
B) (2.09, -1.28)
C) (2.09, 1.28)
D) (2.09, 2.85)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
31
The rectangular coordinates of a point are given. Find polar coordinates for the point.

-(0, 9)

A) (9,0)( 9,0 )
B) (9,π2)\left( 9 , - \frac { \pi } { 2 } \right)
C) (9,π)( 9 , \pi )
D) (9,π2)\left( 9 , \frac { \pi } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
32
The rectangular coordinates of a point are given. Find polar coordinates for the point.
(0.6, -1.1) Round the polar coordinates to two decimal places, with θ in degrees.

A) (1.25, -61.39°)
B) (1.25, 57.93°)
C) (1.25, -57.93°)
D) (1.25, 61.39°)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
33
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x2+y24x=0x ^ { 2 } + y ^ { 2 } - 4 x = 0

A) r=4cosθr = 4 \cos \theta
B) rcos2θ=4sinθr \cos ^ { 2 } \theta = 4 \sin \theta
C) rsin2θ=4cosθr \sin ^ { 2 } \theta = 4 \cos \theta
D) r=4sinθr = 4 \sin \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
34
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (9,2π3)\left( - 9 , \frac { 2 \pi } { 3 } \right)

A) (92,932)\left( \frac { 9 } { 2 } , \frac { 9 \sqrt { 3 } } { 2 } \right)
B) (92,932)\left( - \frac { 9 } { 2 } , \frac { 9 \sqrt { 3 } } { 2 } \right)
C) (92,932)\left( \frac { 9 } { 2 } , \frac { - 9 \sqrt { 3 } } { 2 } \right)
D) (92,932)\left( - \frac { 9 } { 2 } , \frac { - 9 \sqrt { 3 } } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
35
The rectangular coordinates of a point are given. Find polar coordinates for the point.

-(-3, 3)

A) (32,3π4)\left( 3 \sqrt { 2 } , - \frac { 3 \pi } { 4 } \right)
B) (32,3π4)\left( - 3 \sqrt { 2 } , - \frac { 3 \pi } { 4 } \right)
C) (32,π4)\left( - 3 \sqrt { 2 } , \frac { \pi } { 4 } \right)
D) (32,3π4)\left( 3 \sqrt { 2 } , \frac { 3 \pi } { 4 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
36
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (5,120)\left( - 5,120 ^ { \circ } \right)

A) (52,532)\left( - \frac { 5 } { 2 } , \frac { 5 \sqrt { 3 } } { 2 } \right)
B) (52,532)\left( - \frac { 5 } { 2 } , \frac { - 5 \sqrt { 3 } } { 2 } \right)
C) (52,532)\left( \frac { 5 } { 2 } , \frac { 5 \sqrt { 3 } } { 2 } \right)
D) (52,532)\left( \frac { 5 } { 2 } , \frac { - 5 \sqrt { 3 } } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
37
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x2=4yx ^ { 2 } = 4 y

A) rsin2θ=4cosθr \sin ^ { 2 } \theta = 4 \cos \theta
B) 4sin2θ=rcosθ4 \sin ^ { 2 } \theta = r \cos \theta
C) 4cos2θ=rsinθ4 \cos ^ { 2 } \theta = r \sin \theta
D) rcos2θ=4sinθr \cos ^ { 2 } \theta = 4 \sin \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
38
The polar coordinates of a point are given. Find the rectangular coordinates of the point.
(400, 130°) Round the rectangular coordinates to two decimal places.

A) (306.42, -257.12)
B) (-257.12, -306.42)
C) (-257.12, 306.42)
D) (306.42, 257.12)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
39
The polar coordinates of a point are given. Find the rectangular coordinates of the point.

- (3,135)\left( - 3 , - 135 ^ { \circ } \right)

A) (322,322)\left( \frac { - 3 \sqrt { 2 } } { 2 } , \frac { - 3 \sqrt { 2 } } { 2 } \right)
B) (322,322)\left( \frac { 3 \sqrt { 2 } } { 2 } , \frac { - 3 \sqrt { 2 } } { 2 } \right)
C) (322,322)\left( \frac { 3 \sqrt { 2 } } { 2 } , \frac { 3 \sqrt { 2 } } { 2 } \right)
D) (322,322)\left( \frac { - 3 \sqrt { 2 } } { 2 } , \frac { 3 \sqrt { 2 } } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
40
The rectangular coordinates of a point are given. Find polar coordinates for the point.
(100, -30) Round the polar coordinates to two decimal places, with θ in degrees.

A) (104.40, 16.70°)
B) (104.40, -106.70°)
C) (104.40, -16.70°)
D) (104.40, 106.70°)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
41
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- rsinθ=4r \sin \theta = 4
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole
x=4x = - 4 ; vertical line 4 units
to the left of the pole

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole
x=4x = 4 ; vertical line 4 units
to the right of the pole

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole
y=4y = - 4 ; horizontal line 4 units
below the pole

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sin \theta = 4   </strong> A)    x = - 4 ; vertical line 4 units to the left of the pole  B)    x = 4 ; vertical line 4 units to the right of the pole  C)    y = - 4 ; horizontal line 4 units below the pole  D)    y = 4 ; horizontal line 4 units above the pole
y=4y = 4 ; horizontal line 4 units
above the pole
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
42
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r \sin \theta = 3  B)  r = 6 \cos \theta  C)  r = 6 \sin \theta  D)  r = 3

A) rsinθ=3r \sin \theta = 3
B) r=6cosθr = 6 \cos \theta
C) r=6sinθr = 6 \sin \theta
D) r=3r = 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
43
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- r=6sinθr = 6 \sin \theta
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates
x2+(y3)2=9; x^{2}+(y-3)^{2}=9 ; circle, radius 3 center at (0,3) (0,3) in rectangular coordinates

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates
(x+3)2+y2=9; circle, radius 3 (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }
center at (3,0) (-3,0) in rectangular coordinates

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates
(x3)2+y2=9 (x-3)^{2}+y^{2}=9 ; circle, radius 3 , center at (3,0) (3,0) in rectangular coordinates

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r = 6 \sin \theta   </strong> A)     x^{2}+(y-3)^{2}=9 ;   circle, radius 3 center at   (0,3)   in rectangular coordinates  B)     (x+3)^{2}+y^{2}=9 \text {; circle, radius 3 }   center at   (-3,0)   in rectangular coordinates  C)     (x-3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (3,0)   in rectangular coordinates  D)     \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9  ; circle, radius 3 center at   (0,-3)   in rectangular coordinates
x2+(y+3)2=9 \mathrm{x}^{2}+(\mathrm{y}+3)^{2}=9 ; circle, radius 3 center at (0,3) (0,-3) in rectangular coordinates
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
44
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- 2x+3y=62 x + 3 y = 6

A) 2sinθ+3cosθ=6r2 \sin \theta + 3 \cos \theta = 6 r
B) 2cosθ+3sinθ=6r2 \cos \theta + 3 \sin \theta = 6 r
C) r(2cosθ+3sinθ)=6\mathrm { r } ( 2 \cos \theta + 3 \sin \theta ) = 6
D) r(2sinθ+3cosθ)=6r ( 2 \sin \theta + 3 \cos \theta ) = 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
45
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r(12cosθ)=1r ( 1 - 2 \cos \theta ) = 1

A) x2+y2=(1+2x)2x ^ { 2 } + y ^ { 2 } = ( 1 + 2 x ) ^ { 2 }
B) x2+y2=1+2xx ^ { 2 } + y ^ { 2 } = 1 + 2 x
C) x2+y2=2+xx ^ { 2 } + y ^ { 2 } = 2 + x
D) x2+y2=(2+x)2x ^ { 2 } + y ^ { 2 } = ( 2 + x ) ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
46
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- y=xy = x

A) r=cosθr = \cos \theta
B) sinθ=cosθ\sin \theta = \cos \theta
C) sinθ=cosθ\sin \theta = - \cos \theta
D) r=sinθr = \sin \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
47
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- y=5y = 5

A) r=5r = 5
B) rcosθ=5r \cos \theta = 5
C) rsinθ=5r \sin \theta = 5
D) sinθcosθ=5\sin \theta \cos \theta = 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
48
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- rsecθ=6r \sec \theta = - 6
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates
(x+3)2+y2=9( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3
center (3,0)( - 3,0 ) in rectangular coordinates

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates
y=6y = - 6 ; horizontal line 6 units
below the pole

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates
x=6x = - 6 ; vertical line 6 units
to the left of the pole

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r \sec \theta = - 6   </strong> A)    ( x + 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 center  ( - 3,0 )  in rectangular coordinates  B)    y = - 6 ; horizontal line 6 units below the pole  C)    x = - 6 ; vertical line 6 units to the left of the pole  D)    x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 center at  ( 0 , - 3 )  in rectangular coordinates
x2+(y+3)2=9x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3
center at (0,3)( 0 , - 3 ) in rectangular coordinates
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
49
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=51+cosθr = \frac { 5 } { 1 + \cos \theta }

A) x2=2510yx ^ { 2 } = 25 - 10 y
B) y2=2510xy ^ { 2 } = 25 - 10 x
C) x2=10y25x ^ { 2 } = 10 y - 25
D) y2=10x25\mathrm { y } ^ { 2 } = 10 \mathrm { x } - 25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
50
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=1+2sinθ\mathrm { r } = 1 + 2 \sin \theta

A) x2+y2=x2+y2+2y\sqrt { x ^ { 2 } + y ^ { 2 } } = x ^ { 2 } + y ^ { 2 } + 2 y
B) x2+y2=x2+y2+2yx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + 2 y
C) x2+y2=x2+y2+2xx ^ { 2 } + y ^ { 2 } = \sqrt { x ^ { 2 } + y ^ { 2 } } + 2 x
D) x2+y2=x2+y2+2x\sqrt { x ^ { 2 } + y ^ { 2 } } = x ^ { 2 } + y ^ { 2 } + 2 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
51
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 2 \sin \theta  B)  r = 2 \cos \theta  C)  r \sin \theta = 1  D)  r = 1

A) r=2sinθr = 2 \sin \theta
B) r=2cosθr = 2 \cos \theta
C) rsinθ=1r \sin \theta = 1
D) r=1r = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
52
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- r=6cosθr=6 \cos \theta
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates
(x3)2+y2=9; (x-3)^{2}+y^{2}=9 ; circle, radius 3 center at (3,0) (3,0) in rectangular coordinates

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates
x2+(y+3)2=9; x^{2}+(y+3)^{2}=9 ; circle, radius 3
center at (0,3) (0,-3) in rectangular coordinates

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates
(x+3)2+y2=9 (x+3)^{2}+y^{2}=9 ; circle, radius 3 ,
center at (3,0) (-3,0) in rectangular coordinates

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - r=6 \cos \theta   </strong> A)     (x-3)^{2}+y^{2}=9 ;   circle, radius 3 center at   (3,0)   in rectangular coordinates  B)     x^{2}+(y+3)^{2}=9 ;   circle, radius 3 center at   (0,-3)   in rectangular coordinates  C)     (x+3)^{2}+y^{2}=9  ; circle, radius 3 , center at   (-3,0)   in rectangular coordinates  D)      \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9  ; circle, radius 3 , center at   (0,3)   in rectangular coordinates

x2+(y3)2=9 \mathrm{x}^{2}+(\mathrm{y}-3)^{2}=9 ; circle, radius 3 ,
center at (0,3) (0,3) in rectangular coordinates
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
53
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- rsinθ=10\mathrm { r } \sin \theta = 10

A) y=10y = 10
B) x=10x = 10
C) x=10yx = 10 y
D) y=10xy = 10 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
54
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- xy=1x y = 1

A) rsin2θ=2r \sin 2 \theta = 2
B) r2sin2θ=2r ^ { 2 } \sin 2 \theta = 2
C) 2r2sinθcosθ=12 r ^ { 2 } \sin \theta \cos \theta = 1
D) 2rsinθcosθ=12 r \sin \theta \cos \theta = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
55
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=2(sinθcosθ)\mathrm { r } = 2 ( \sin \theta - \cos \theta )

A) x2+y2=2y2xx ^ { 2 } + y ^ { 2 } = 2 y - 2 x
B) x2+y2=2x2yx ^ { 2 } + y ^ { 2 } = 2 x - 2 y
C) 2x2+2y2=yx2 x ^ { 2 } + 2 y ^ { 2 } = y - x
D) 2x2+2y2=xy2 x ^ { 2 } + 2 y ^ { 2 } = x - y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
56
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=5r = 5

A) x+y=5x + y = 5
B) x2y2=25x ^ { 2 } - y ^ { 2 } = 25
C) x2+y2=25x ^ { 2 } + y ^ { 2 } = 25
D) x+y=25x + y = 25
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
57
The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ).

- x=3x = - 3

A) rcosθ=3r \cos \theta = - 3
B) rcosθ=3\mathbf { r } \cos \theta = 3
C) rsinθ=3r \sin \theta = - 3
D) rsinθ=3r \sin \theta = 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
58
Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

- θ=π3\theta = \frac { \pi } { 3 }
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates

A)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates
y=3x y=\sqrt{3} x ; line through the pole making
an angle of π3 \frac{\pi}{3} with the polar axis

B)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates
y=33x y=-\frac{\sqrt{3}}{3} x ; line through the pole making
an angle of π3 \frac{\pi}{3} with the polar axis

C)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates
y=π3 y=-\frac{\pi}{3} ; horizontal line π3 \frac{\pi}{3} units
below the pole

D)
 <strong>Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.  - \theta = \frac { \pi } { 3 }   </strong> A)     y=\sqrt{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  B)     y=-\frac{\sqrt{3}}{3} x  ; line through the pole making an angle of   \frac{\pi}{3}   with the polar axis  C)     y=-\frac{\pi}{3}  ; horizontal line   \frac{\pi}{3}   units below the pole  D)     \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ;   circle, radius   \frac{\pi}{3}   center at   \left(\frac{\pi}{3}, 0\right)   in rectangular coordinates
(xπ3)2+y2=π29; \left(x-\frac{\pi}{3}\right)^{2}+y^{2}=\frac{\pi^{2}}{9} ; circle, radius π3 \frac{\pi}{3}
center at (π3,0) \left(\frac{\pi}{3}, 0\right) in rectangular coordinates
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
59
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=cosθr = \cos \theta

A) x2+y2=xx ^ { 2 } + y ^ { 2 } = x
B) x2+y2=yx ^ { 2 } + y ^ { 2 } = y
C) (x+y)2=y( x + y ) ^ { 2 } = y
D) (x+y)2=x( x + y ) ^ { 2 } = x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
60
The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

- r=10sinθr = 10 \sin \theta

A) x2+y2=10y\sqrt { x ^ { 2 } + y ^ { 2 } } = 10 y
B) x2+y2=10x\sqrt { x ^ { 2 } + y ^ { 2 } } = 10 x
C) x2+y2=10xx ^ { 2 } + y ^ { 2 } = 10 x
D) x2+y2=10yx ^ { 2 } + y ^ { 2 } = 10 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
61
Identify and graph the polar equation.

- r=34sinθr=3-4 \sin \theta
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop

A)
11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11
limacon without inner loop

B)
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop
limacon with inner loop
C)
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop
limacon with inner loop

D)
 <strong>Identify and graph the polar equation.  - r=3-4 \sin \theta   </strong> A) 11e81ee_3c59_064b_a8e7_911a803408be_TB7697_11 limacon without inner loop  B)   limacon with inner loop C)   limacon with inner loop  D)   limacon without inner loop
limacon without inner loop
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
62
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=44sinθ; polar axis r = 4 - 4 \sin \theta ; \text { polar axis }

A) Symmetric with respect to the polar axis
B) May or may not be symmetric with respect to the polar axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
63
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 2 \sin \theta  B)  r = 2 \cos \theta  C)  r = 1  D)  r \sin \theta = 1

A) r=2sinθr = 2 \sin \theta
B) r=2cosθr = 2 \cos \theta
C) r=1r = 1
D) rsinθ=1r \sin \theta = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
64
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=3sin(3θ);r = 3 \sin ( 3 \theta ) ; the line θ=π2\theta = \frac { \pi } { 2 }

A) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
65
Identify and graph the polar equation.

- r=4sin(2θ)r=4 \sin (2 \theta)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate

A)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate
circle

B)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate
rose with four petals
C)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate
rose with two petals

D)
 <strong>Identify and graph the polar equation.  - r=4 \sin (2 \theta)   </strong> A)   circle  B)   rose with four petals C)   rose with two petals  D)   lemniscate
lemniscate
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
66
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=36sinθ; the polar axis r = 3 - 6 \sin \theta \text {; the polar axis }

A) May or may not be symmetric with respect to the polar axis
B) Symmetric with respect to the polar axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
67
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=3+3cosθ;r = 3 + 3 \cos \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

A) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
68
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=4cosθ\mathrm { r } = - 4 \cos \theta ; the polar axis

A) May or may not be symmetric with respect to the polar axis
B) Symmetric with respect to the polar axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
69
Identify and graph the polar equation.

- r2=4cos(2θ)r^{2}=4 \cos (2 \theta)

 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals

A)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals
rose with four petals
B)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals
lemniscate
C)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals
lemniscate

D)
 <strong>Identify and graph the polar equation.  - r^{2}=4 \cos (2 \theta)    </strong> A)   rose with four petals B)   lemniscate C)   lemniscate  D)   rose with four petals
rose with four petals
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
70
Identify and graph the polar equation.

- r=54cosθr=5-4 \cos \theta
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop

A)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop
limacon without inner loop

B)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop
limacon without inner loop
C)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop
limacon with inner loop


D)
 <strong>Identify and graph the polar equation.  - r=5-4 \cos \theta   </strong> A)   limacon without inner loop  B)   limacon without inner loop C)   limacon with inner loop   D)   limacon with inner loop
limacon with inner loop
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
71
Test the equation for symmetry with respect to the given axis, line, or pole.

- r2=sin(2θ); the pole \mathrm { r } ^ { 2 } = \sin ( 2 \theta ) \text {; the pole }

A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
72
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=6+2cosθ; the pole r = 6 + 2 \cos \theta ; \text { the pole }

A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
73
Identify and graph the polar equation.

- r=1cosθr=1-\cos \theta
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid

A)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid
cardioid

B)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid
cardioid
C)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid
cardioid

D)
 <strong>Identify and graph the polar equation.  - r=1-\cos \theta    </strong> A)   cardioid  B)   cardioid C)   cardioid  D)   cardioid
cardioid
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
74
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=2sinθr = 2 \sin \theta ; the pole

A) Symmetric with respect to the pole
B) May or may not be symmetric with respect to the pole
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
75
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 3 + \sin \theta  B)  r = 6 \sin \theta  C)  r = 3 + \cos \theta  D)  r = 6 \cos \theta

A) r=3+sinθr = 3 + \sin \theta
B) r=6sinθr = 6 \sin \theta
C) r=3+cosθr = 3 + \cos \theta
D) r=6cosθr = 6 \cos \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
76
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=4cosθ;r = 4 \cos \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

A) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
77
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = 3 + \sin \theta  B)  r = 3 + \cos \theta  C)  r = 6 \cos \theta  D)  r = 6 \sin \theta

A) r=3+sinθr = 3 + \sin \theta
B) r=3+cosθr = 3 + \cos \theta
C) r=6cosθr = 6 \cos \theta
D) r=6sinθr = 6 \sin \theta
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
78
Identify and graph the polar equation.

- r=4θr = 4 \theta
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral

A)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral
logarithmic spiral
B)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral
logarithmic spiral
C)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral
logarithmic spiral

D)
 <strong>Identify and graph the polar equation.  - r = 4 \theta    </strong> A)   logarithmic spiral B)   logarithmic spiral C)   logarithmic spiral  D)    logarithmic spiral

logarithmic spiral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
79
Match the graph to one of the polar equations.

- <strong>Match the graph to one of the polar equations.  -  </strong> A)  r = - 2 \cos \theta  B)  r \sin \theta = - 1  C)  r = - 2 \sin \theta  D)  r = - 1

A) r=2cosθr = - 2 \cos \theta
B) rsinθ=1r \sin \theta = - 1
C) r=2sinθr = - 2 \sin \theta
D) r=1r = - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
80
Test the equation for symmetry with respect to the given axis, line, or pole.

- r=6+2sinθ;r = 6 + 2 \sin \theta ; the line θ=π2\theta = \frac { \pi } { 2 }

A) May or may not be symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
B) Symmetric with respect to the line θ=π2\theta = \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 270 في هذه المجموعة.