Deck 9: Inferences From Two Samples

ملء الشاشة (f)
exit full mode
سؤال
Provide an appropriate response.
Discuss the assumptions for constructing confidence intervals or hypothesis testing for two means from dependent samples.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=408n2=145x1=88x2=90\begin{array} { l l } \mathrm { n } _ { 1 } = 408 & \mathrm { n } _ { 2 } = 145 \\\mathrm { x } _ { 1 } = 88 & \mathrm { x } _ { 2 } = 90\end{array}

A) 0.2900.290
B) 0.2250.225
C) 0.3220.322
D) 0.1610.161
سؤال
Provide an appropriate response.
Describe the process for testing hypothesis about two means when the samples are dependent. Compare this process to the methods of hypothesis testing for one mean in Chapter 7.
سؤال
Provide an appropriate response.

-What is the effect on the P-value when a test is changed from two-tailed hypothesis with = and ? to one-tailed hypothesis such as \geq and
سؤال
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=100n2=100p^1=0.12p^2=0.1\begin{array} { l l } \mathrm { n } _ { 1 } = 100 & \mathrm { n } _ { 2 } = 100 \\\hat { \mathrm { p } } _ { 1 } = 0.12 & \hat { \mathrm { p } } _ { 2 } = 0.1\end{array}

A) 0.1380.138
B) 0.2200.220
C) 0.1100.110
D) 0.3320.332
سؤال
Provide an appropriate response.
Describe the process for testing hypothesis about two means when the samples are independent and large. Compare this process to the methods of hypothesis testing for one mean in Chapter 7.
سؤال
Compute the test statistic used to test the null hypothesis that p1 = p2

-In a vote on the Clean Water bill, 45% of the 205 Democrats voted for the bill while 52% of the 230 Republicans voted for it.

A)-1.604
B)-1.239
C)-0.875
D)-1.458
سؤال
Find the number of successes x suggested by the given statement.
A computer manufacturer randomly selects 2140 of its computers for quality assurance and finds that 2.76% of these computers are found to be defective.

A)57
B)62
C)64
D)59
سؤال
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=719n2=3852x1=101x2=612\begin{array} { l l } \mathrm { n } _ { 1 } = 719 & \mathrm { n } _ { 2 } = 3852 \\\mathrm { x } _ { 1 } = 101 & \mathrm { x } _ { 2 } = 612\end{array}

A)0.125
B)0.395
C)0.312
D)0.156
سؤال
Find the number of successes x suggested by the given statement.
Among 900 people selected randomly from among the residents of one city, 14.33% were found to be living below the official poverty line.

A)126
B)129
C)132
D)130
سؤال
Compute the test statistic used to test the null hypothesis that p1 = p2

- n1=187n2=177x1=67x2=62\begin{array} { l l } n _ { 1 } = 187 & n _ { 2 } = 177 \\x _ { 1 } = 67 & x _ { 2 } = 62\end{array}

A)4.086
B)0.159
C)2.200
D)0.364
سؤال
Provide an appropriate response.

-Compare the technique for decision making about populations using the hypothesis test method and the confidence interval method.
سؤال
Provide an appropriate response.
Complete the table to describe each symbol. Provide an appropriate response. Complete the table to describe each symbol.  <div style=padding-top: 35px>
سؤال
Provide an appropriate response.

-  The test statistic for testing hypothesis about two variances is F=s12 s22 where s12>s22. Describe the numeric \text { The test statistic for testing hypothesis about two variances is } F = \frac { \mathrm { s } _ { 1 } ^ { 2 } } { \mathrm {~s} _ { 2 } ^ { 2 } } \text { where } \mathrm { s } _ { 1 } ^ { 2 } > \mathrm { s } _ { 2 } { } ^ { 2 } \text {. Describe the numeric } possibilities for this test statistic. Explain the circumstances under which the conclusion would be either that the variances are equal or that the variances are not equal.
سؤال
Find the number of successes x suggested by the given statement.
Among 1450 randomly selected car drivers in one city, 7.52% said that they had been involved in an accident during the past year.

A)110
B)108
C)109
D)107
سؤال
Provide an appropriate response.
Define independent and dependent samples and give an example of each.
سؤال
Find the number of successes x suggested by the given statement.
Among 620 adults selected randomly from among the residents of one town, 25% said that they favor stronger gun-control laws.

A)153
B)154
C)156
D)155
سؤال
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=44n2=490x1=17x2=191\begin{array} { l l } n _ { 1 } = 44 & n _ { 2 } = 490 \\x _ { 1 } = 17 & x _ { 2 } = 191\end{array}

A)0.467
B)0.156
C)0.390
D)0.312
سؤال
Provide an appropriate response.

-How does finding the error estimate and confidence intervals for dependent samples compare to the methods for one mean from Chapter 7?
سؤال
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=100n2=100x1=36x2=37\begin{array} { l l } \mathrm { n } _ { 1 } = 100 & \mathrm { n } _ { 2 } = 100 \\\mathrm { x } _ { 1 } = 36 & \mathrm { x } _ { 2 } = 37\end{array}

A) 0.3650.365
B) 0.4020.402
C) 0.3290.329
D) 0.2560.256
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-7 of 8,500 people vaccinated against a certain disease later developed the disease. 18 of 10,000 people vaccinated with a placebo later developed the disease. Test the claim that the vaccine is effective in lowering the incidence of the disease. Use a significance level of 0.02.
سؤال
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=50n2=50x1=3x2=7\begin{array} { l l } n _ { 1 } = 50 & n _ { 2 } = 50 \\x _ { 1 } = 3 & x _ { 2 } = 7\end{array}

A).1201
B).0072
C).1836
D).0613
سؤال
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

- x1=20,n1=43x _ { 1 } = 20 , n _ { 1 } = 43 and x2=28,n2=60;x _ { 2 } = 28 , n _ { 2 } = 60 ; Construct a 90%90 \% confidence interval for the difference between population proportions P1P2\mathrm { P } 1 - \mathrm { P } 2 .

A) 0.301<p1P2<0.6290.301 < \mathrm { p } _ { 1 } - \mathrm { P } _ { 2 } < 0.629
B) 0.270<p1p2<0.6600.270 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.660
C) 0.660<p1p2<0.2700.660 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.270
D) 0.166<p1p2<0.162- 0.166 < p _ { 1 } - p _ { 2 } < 0.162
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-A marketing survey involves product recognition in New York and California. Of 558 New Yorkers surveyed, 193 knew the product while 196 out of 614 Californians knew the product. At the 0.05 significance level, test the claim that the recognition rates are the same in both states.
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-In a random sample of 500 people aged 20-24, 22% were smokers. In a random sample of 450 people aged 25-29, 14% were smokers. Test the claim that the proportion of smokers in the two age groups is the same. Use a significance level of 0.01.
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-In a random sample of 360 women, 65% favored stricter gun control laws. In a random sample of 220 men, 60% favored stricter gun control laws. Test the claim that the proportion of women favoring stricter gun control is higher than the proportion of men favoring stricter gun control. Use a significance level of 0.05.
سؤال
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=100n2=140x1=41x2=35\begin{array} { l l } \mathrm { n } _ { 1 } = 100 & \mathrm { n } _ { 2 } = 140 \\\mathrm { x } _ { 1 } = 41 & \mathrm { x } _ { 2 } = 35\end{array}

A).0512
B).0086
C).0021
D).4211
سؤال
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-A marketing survey involves product recognition in New York and California. Of 558 New Yorkers surveyed, 193 knew the product while 196 out of 614 Californians knew the product. Construct a 99% confidence interval for the difference between the two population proportions.

A) 0.0247<p1p2<0.02860.0247 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.0286
B) 0.0443<p1p2<0.0976- 0.0443 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.0976
C) 0.0034<p1p2<0.0566- 0.0034 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.0566
D) 0.0177<p1p2<0.1243- 0.0177 < p _ { 1 } - p _ { 2 } < 0.1243
سؤال
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-x1=65,n1=90 and x2=79,n2=116,construct a 98% confidence interival for the difference berween
population proportions p1p2\mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } .

A) 0.084<p1p2<0.848- 0.084 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.848
B) 0.108<p1p2<0.190- 0.108 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.190
C) 0.596<p1p2<0.8480.596 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.848
D) 0.572<p1p2<0.8720.572 < p _ { 1 } - p _ { 2 } < 0.872
سؤال
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=100n2=100x1=38x2=40\begin{array} { l l } n _ { 1 } = 100 & \mathrm { n } _ { 2 } = 100 \\\mathrm { x } _ { 1 } = 38 & \mathrm { x } _ { 2 } = 40\end{array}

A).2130
B).0412
C).7718
D).1610
سؤال
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-In a random sample of 300 women, 50%50 \% favored stricter gun control legislation. In a random sample of 200 men, 26%26 \% favored stricter gun control legislation. Construct a 98%98 \% confidence interval for the difference between the population proportions p1\mathrm { p } 1 - p2\mathrm { p } 2 .

A) 0.157<p1p2<0.3230.157 < \mathrm { p } 1 - \mathrm { p } _ { 2 } < 0.323
B) 0.141<p1p2<0.3390.141 < \mathrm { p } 1 - \mathrm { p } 2 < 0.339
C) 0.131<p1p2<0.3490.131 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.349
D) 0.153<p1p2<0.3270.153 < p _ { 1 } - p _ { 2 } < 0.327
سؤال
Compute the test statistic used to test the null hypothesis that p1 = p2

-Information about movie ticket sales was printed in a movie magazine. Out of fifty PG-rated movies, 45% had ticket sales in excess of $3,000,000. Out of thirty-five R-rated movies, 27% grossed over $3,000,000.

A)3.372
B)2.698
C)5.227
D)1.686
سؤال
Compute the test statistic used to test the null hypothesis that p1 = p2

-A random sampling of sixty pitchers from the National League and fifty-two pitchers from the American League showed that 16 National and 11 American League pitchers had E.R.A's below 3.5.

A)123.710
B)0.680
C)10.184
D)0.884
سؤال
Compute the test statistic used to test the null hypothesis that p1 = p2

-A report on the nightly news broadcast stated that 13 out of 111 households with pet dogs were burglarized and 23 out of 190 without pet dogs were burglarized.

A)0.000
B)-0.102
C)-0.041
D)-0.173
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-A researcher finds that of 1,000 people who said that they attend a religious service at least once a week, 31 stopped to help a person with car trouble. Of 1,200 people interviewed who had not attended a religious service at least once a month, 22 stopped to help a person with car trouble. At the 0.05 significance level, test the claim that the two proportions are equal.
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-Use the given sample data to test the claim that p1 < p2. Use a significance level of 0.10.  Sample 1 Sample 2n1=462n2=380x1=84x2=95\begin{array} { l l l } \text { Sample } 1 & & \text { Sample } 2 \\\mathrm { n } _ { 1 } = 462 & & \mathrm { n } _ { 2 } = 380 \\\mathrm { x } _ { 1 } = 84 & & \mathrm { x } _ { 2 } = 95\end{array}
سؤال
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-  Use the given sample data to test the claim that p1>p2. Use a significance level of 0.01 Sample 1  Sample 2 n1=85n2=90x1=38x2=23\begin{array}{l}\text { Use the given sample data to test the claim that } \mathrm { p } _ { 1 } > \mathrm { p } _ { 2 } \text {. Use a significance level of } 0.01 \text {. }\\\begin{array} { l l l } \text { Sample 1 } & \text { Sample 2 } \\\hline \mathrm { n } _ { 1 } = 85 & \mathrm { n } _ { 2 } = 90 \\\mathrm { x } _ { 1 } = 38 & \mathrm { x } _ { 2 } = 23\end{array}\end{array}
سؤال
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=50n2=75x1=20x2=15\begin{array} { l l } n _ { 1 } = 50 & n _ { 2 } = 75 \\x _ { 1 } = 20 & x _ { 2 } = 15\end{array}

A).0001
B).0146
C).0032
D).1201
سؤال
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=200n2=100x1=11x2=8\begin{array} { l l } \mathrm { n } _ { 1 } = 200 & \mathrm { n } _ { 2 } = 100 \\\mathrm { x } _ { 1 } = 11 & \mathrm { x } _ { 2 } = 8\end{array}

A).0201
B).1011
C).4010
D).0012
سؤال
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

- x1=27,n1=67\mathrm { x } _ { 1 } = 27 , \mathrm { n } _ { 1 } = 67 and x2=27,n2=72;\mathrm { x } _ { 2 } = 27 , \mathrm { n } _ { 2 } = 72 ; Construct a 95%95 \% confidence interval for the difference between population proportions P1P2\mathrm { P } 1 - \mathrm { P } 2 .

A) 0.210<p1p2<0.5960.210 < \mathrm { p } 1 - \mathrm { p } 2 < 0.596
B) 0.165<p1p2<0.596- 0.165 < \mathrm { p } 1 - \mathrm { p } 2 < 0.596
C) 0.134<p1p2<0.190- 0.134 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.190
D) 0.241<p1p2<0.5650.241 < \mathrm { p } 1 - \mathrm { p } 2 < 0.565
سؤال
Test the indicated claim about the means of two populations. Assume that the two samples are independent and that they have been randomly selected.

-Two types of flares are tested for their burning times (in minutes)and sample results are given below.  Brand X Brand Yn=35n=40x=19.4x=15.1 s=1.4 s=0.8\begin{array} { l l l } \text { Brand } \mathrm { X }& { \text { Brand } \mathrm { Y } } \\\hline n=35 & \overline { \mathrm { n } } = 40 \\\overline { \mathrm { x } } = 19.4 & \overline { \mathrm { x } } = 15.1 \\\mathrm {~s} = 1.4 & \mathrm {~s} = 0.8\end{array} Refer to the sample data to test the claim that the two populations have equal means. Use a 0.05 significance level.
سؤال
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.01 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is greater than the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 171.6392168.77183 Known Variance 47.5167241.082934 Observations 50505 Hypothesized Mean Difference 06 t 2.1540577 P(T>=t) one-tail 0.01588 TCritical one-tail 1.6448539 P(T>=t) two-tail 0.031610 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 171.6392 & 168.7718 \\\hline 3 & \text { Known Variance } & 47.51672 & 41.08293 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & 2.154057 & \\\hline 7 & \text { P(T>=t) one-tail } & 0.0158 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T>=t) two-tail } & 0.0316 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
سؤال
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent and that they have been randomly selected.

-Two types of flares are tested for their burning times (in minutes)and sample results are given below.  Brand X Brand Yn=35nn=40xˉ=19.4xˉ=15.1 s=1.4 s=0.8\begin{array} { l l l } \text { Brand } X & & \text { Brand } Y \\\hline n =35& & \frac { n } { n } = 40 \\\bar { x } = 19.4 & & \bar { x } = 15.1 \\\mathrm {~s} = 1.4 & & \mathrm {~s} = 0.8\end{array}
Construct a 95%95 \% confidence interval for the differences μXμY\mu _ { X } - \mu _ { Y } based on the sample data.

A) 3.6<μXμY<5.03.6 < \mu _ { X } - \mu _ { Y } < 5.0
B) 3.8<μXμY<4.83.8 < \mu _ { X } - \mu Y < 4.8
C) 3.5<μXμY<5.13.5 < \mu X - \mu Y < 5.1
D) 3.2<μXμY<5.43.2 < \mu X - \mu Y < 5.4
سؤال
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.05 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is different from the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 65.1073866.182513 Known Variance 8.10293810.273874 Observations 50505 Hypothesized Mean Difference 06 t 1.7734177 P(T<=t) one-tail 0.03848 TCritical one-tail 1.6448539 P(T<=t) two-tail 0.076810 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 65.10738 & 66.18251 \\\hline 3 & \text { Known Variance } & 8.102938 & 10.27387 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & - 1.773417 & \\\hline 7 & \text { P(T<=t) one-tail } & 0.0384 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T<=t) two-tail } & 0.0768 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
سؤال
Solve the problem.
To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic Solve the problem. To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic    <div style=padding-top: 35px> Solve the problem. To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic    <div style=padding-top: 35px>
سؤال
Determine whether the samples are independent or consist of matched pairs.

-The effectiveness of a new headache medicine is tested by measuring the amount of time before the headache is cured for patients who use the medicine and another group of patients who use a placebo drug.

A)Matched pairs
B)Independent samples
سؤال
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent and that they have been randomly selected.

-Independent samples from two different populations yield the following data. x1=383,x2=448\overline { x _ { 1 } } = 383 , \overline { x _ { 2 } } = 448 , s1 =44= 44 , s2 =18= 18 . The sample size is 177 for both samples. Find the 85 percent confidence interval for μ1μ2\mu _ { 1 } - \mu _ { 2 } .

A) 72<μ1μ2<58- 72 < \mu _ { 1 } - \mu _ { 2 } < - 58
B) 66<μ1μ2<64- 66 < \mu _ { 1 } - \mu _ { 2 } < - 64
C) 79<μ1μ2<51- 79 < \mu _ { 1 } - \mu _ { 2 } < - 51
D) 71<μ1μ2<59- 71 < \mu _ { 1 } - \mu _ { 2 } < - 59
سؤال
Determine whether the samples are independent or consist of matched pairs.

-The effect of caffeine as an ingredient is tested with a sample of regular soda and another sample with decaffeinated soda.

A)Matched pairs
B)Independent samples
سؤال
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.05 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is less than the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 65.1073866.182513 Known Variance 8.10293810.273874 Observations 50505 Hypothesized Mean Difference 06 t 1.7734177 P(T<=t) one-tail 0.03848 T Critical one-tail 1.6448539 P(T<=t) two-tail 0.076810 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 65.10738 & 66.18251 \\\hline 3 & \text { Known Variance } & 8.102938 & 10.27387 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & - 1.773417 & \\\hline 7 & \text { P(T<=t) one-tail } & 0.0384 & \\\hline 8 & \text { T Critical one-tail } & 1.644853 & \\\hline 9 & \text { P(T<=t) two-tail } & 0.0768 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
سؤال
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.04 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is different from the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 171.6392168.77183 Known Variance 47.5167241.082934 Observations 50505 Hypothesized Mean Difference 06 t 2.1540577 P(T>=t) one-tail 0.01588 TCritical one-tail 1.6448539 P(T>=t) two-tail 0.031610 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 171.6392 & 168.7718 \\\hline 3 & \text { Known Variance } & 47.51672 & 41.08293 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & 2.154057 & \\\hline 7 & \text { P(T>=t) one-tail } & 0.0158 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T>=t) two-tail } & 0.0316 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
سؤال
Determine whether the following statement regarding the hypothesis test for two population proportions is true or false: However small the difference between two population proportions, for sufficiently large sample sizes, the null hypothesis of equal population proportions is likely to be rejected.
سؤال
Determine whether the samples are independent or consist of matched pairs.

-The effectiveness of a headache medicine is tested by measuring the intensity of a headache in patients before and after drug treatment. The data consist of before and after intensities for each patient.

A)Matched pairs
B)Independent samples
سؤال
Determine whether the samples are independent or consist of matched pairs.

-The accuracy of verbal responses is tested in an experiment in which individuals report their heights and then are measured. The data consist of the reported height and measured height for each individual.

A)Independent samples
B)Matched pairs
سؤال
Test the indicated claim about the means of two populations. Assume that the two samples are independent and that they have been randomly selected.

-A researcher wishes to determine whether people with high blood pressure can reduce their blood pressure by following a particular diet. Use the sample data below to test the claim that the treatment population mean µ1 is smaller than the control population mean µ2. Test the claim using a significance level of 0.01.
 Treatment Group  Control Groupn1=85n2=75x1=189.1x2=203.7 s1=38.7 s2=39.2\begin{array} { l } \text { Treatment Group }& \text { Control Group}\\\hline \mathrm{n}_{1}=85 &\mathrm{n}_{2}=75 \\\overline{\mathrm{x}_{1}}=189.1 & \overline{\mathrm{x}_{2}}=203.7 \\\mathrm{~s}_{1}=38.7 & \mathrm{~s}_{2}=39.2\end{array}
سؤال
Solve the problem.

-A researcher wished to perform a hypothesis test to test the claim that the rate of defectives among the computers of two different manufacturers are the same. She selects two independent random samples and obtains the following sample data. Manufacturer
A: n1=400\mathrm { n } _ { 1 } = 400 , rate of defectives: 1.5%1.5 \% Manufacturer
B: n2=200\mathrm { n } _ { 2 } = 200 , rate of defectives: 3.5%3.5 \%
Can the methods of this section be used to perform a hypothesis test to test for the equality of the two population proportions? Go through the steps of checking whether the conditions for the hypothesis test for two population proportions are satisfied. Show your calculations and state your conclusion.
سؤال
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent and that they have been randomly selected.

-A researcher wishes to determine whether people with high blood pressure can reduce their blood pressure by following a particular diet. Use the sample data below to construct a 99%99 \% confidence interval for u1\mathrm { u } _ { 1 } - u2\mathrm { u } _ { 2 } where u1u _ { 1 } and u2u _ { 2 } represent the mean for the treatment group and the control group respectively.
 Treatment Group  Control Groupn1=85n2=75x1=189.1x2=203.7 s1=38.7 s2=39.2\begin{array} { l } \text { Treatment Group }& \text { Control Group}\\\hline \mathrm{n}_{1}=85 &\mathrm{n}_{2}=75 \\\overline{\mathrm{x}_{1}}=189.1 & \overline{\mathrm{x}_{2}}=203.7 \\\mathrm{~s}_{1}=38.7 & \mathrm{~s}_{2}=39.2\end{array}

A) 1.3<μ1μ2<30.5- 1.3 < \mu _ { 1 } - \mu _ { 2 } < 30.5
B) 29.0<μ1μ2<0.2- 29.0 < \mu _ { 1 } - \mu _ { 2 } < - 0.2
C) 26.7<μ1μ2<2.5- 26.7 < \mu _ { 1 } - \mu _ { 2 } < - 2.5
D) 30.9<μ1μ2<1.7- 30.9 < \mu _ { 1 } - \mu _ { 2 } < 1.7
سؤال
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-In a random sample of 500 people aged 2024,22%20 - 24,22 \% were smokers. In a random sample of 450 people aged 2529,14%25 - 29,14 \% were smokers. Construct a 95%95 \% confidence interval for the difference between the population proportions p1p2\mathrm { p } _ { 1 } - \mathrm { p } 2 .

A) 0.025<0.025 < p 1_ { 1 } - p 2<0.135_ { 2 } < 0.135
B) 0.035<p1p2<0.1250.035 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.125
C) 0.032<p1p2<0.1280.032 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.128
D) 0.048<p1p2<0.1120.048 < p _ { 1 } - p _ { 2 } < 0.112
سؤال
Solve the problem.

-A hypothesis test is to be performed to test the equality of two population means. The sample sizes are large and the samples are independent. A 95% confidence interval for the difference between the population means is (1.4, 8.7). If the hypothesis test is based on the same samples, which of the following do you know for sure:
A: The hypothesis μ1=μ2\mu _ { 1 } = \mu _ { 2 } would be rejected at the 5%5 \% level of significance.
B: The hypothesis μ1=μ2\mu _ { 1 } = \mu _ { 2 } would be rejected at the 10%10 \% level of significance.
C: The hypothesis μ1=μ2\mu _ { 1 } = \mu _ { 2 } would be rejected at the 1%1 \% level of significance.

A) A, B, and C
B) A only
C) A and C
D) A and B
سؤال
Solve the problem.

-The sample size needed to estimate the difference between two population proportions to within a margin of error E\mathrm { E } with a confidence level of 1α1 - \alpha can be found as follows: in the expression
E=zα/2p1q1n1+p2q2n2E = z _ { \alpha / 2} \sqrt { \frac { p _ { 1 } q _ { 1 } } { \mathrm { n } _ { 1 } } + \frac { \mathrm { p } _ { 2 } \mathrm { q } _ { 2 } } { \mathrm { n } _ { 2 } } }
replace n1\mathrm { n } _ { 1 } and n2\mathrm { n } _ { 2 } by n\mathrm { n } (assuming both samples have the same size) and replace each of p1,q1,p2\mathrm { p } _ { 1 } , \mathrm { q } _ { 1 } , \mathrm { p } _ { 2 } , and q2\mathrm { q } _ { 2 } by 0.50.5 (because their values are not known). Then solve for nn .

Use this approach to find the size of each sample if you want to estimate the difference between the proportions . and women who plan to vote in the next presidential election. Assume that you want 99%99 \% confidence that your no more than 0.030.03 .

A) 3017
B) 2135
C) 3685
D) 1432
سؤال
Solve the problem.
To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic Solve the problem. To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic  <div style=padding-top: 35px>
سؤال
Find sd.

-The differences between two sets of dependent data are -1, 5, -4, 2. Round to the nearest tenth.

A)2.0
B)3.9
C)89.7
D)3.1
سؤال
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

- x3038252628273335y2834342629323334\begin{array}{l|ccccc}x & 30&38&25&26&28&27&33&35\\\hline y &28&34&34&26&29&32&33&34\end{array}

A) t=0.185t = - 0.185
B) t=0.690t = 0.690
C) t=1.480t = - 1.480
D) t=0.523t = - 0.523
سؤال
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

-The following table shows the weights of nine subjects before and after following a particular diet for two months. You wish to test the claim that the diet is effective in helping people lose weight. What is the value of the appropriate test statistic?  Subject  A  B  C  D  E  F  G  H  I  Before 168180157132202124190210171 After 162178145125171126180195163\begin{array} { r | r r r r r r r r r } \text { Subject } & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { H } & \text { I } \\\hline \text { Before } & 168 & 180 & 157 & 132 & 202 & 124 & 190 & 210 & 171 \\\hline \text { After } & 162 & 178 & 145 & 125 & 171 & 126 & 180 & 195 & 163\end{array}

A)0.351
B)1.052
C)3.156
D)9.468
سؤال
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-We wish to compare the means of two populations using paired observations. Suppose that dˉ=3.125, Sd=\bar { d } = 3.125 , \mathrm {~S} _ { \mathrm { d } } = 2.9112.911 , and n=8\mathrm { n } = 8 , and that you wish to test the following hypothesis at the 5 percent level of significance:
H0:μd=0 against H1:μd>0\mathrm { H } _ { 0 } : \mu _ { \mathrm { d } } = 0 \text { against } \mathrm { H } _ { 1 } : \boldsymbol { \mu } _ { \mathrm { d } } > 0 \text {. }
What decision rule would you use?

A) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 1.895- 1.895 and less than 1.8951.895 .
B) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 1.8951.895 .
C) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 1.8951.895 .
D) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 1.895- 1.895 .
سؤال
Determine whether the samples are independent or consist of matched pairs.

-A hypothesis test is to be performed to test the equality of two population means. The sample sizes are large and the samples are independent. Give an expression for the population standard deviation of the (xˉ1xˉ2)\left( \bar { x } _ { 1 } - \bar { x } _ { 2 } \right) values in terms of s1, s2,n1\mathrm { s } _ { 1 } , \mathrm {~s} _ { 2 } , \mathrm { n } _ { 1 } , and n2\mathrm { n } _ { 2 } .

A) s12n1s22n2\sqrt{\frac{s_{1}^{2}}{n_{1}}-\frac{s_{2}^{2}}{n_{2}}}

B) s12n1+s22n2\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}

C) s12n12+s22n22\sqrt{\frac{\mathrm{s}_{1}^{2}}{\mathrm{n}_{1}^{2}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n} \frac{2}{2}}}

D) s12n1+s22n2\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}
سؤال
Find sd.

-The differences between two sets of dependent data are 3, 21, 3, 27, 15. Round to the nearest tenth.

A)10.7
B)8.6
C)21.4
D)13.9
سؤال
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- X227189220182246277302Y217154195153227246284\begin{array} { l | l l l l l l l } \mathrm { X } & 227 & 189 & 220 & 182 & 246 & 277 & 302 \\\hline \mathrm { Y } & 217 & 154 & 195 & 153 & 227 & 246 & 284\end{array}

A)143.4
B)23.9
C)14.3
D)31.1
سؤال
Find sd.

-The differences between two sets of dependent data are 0.11, 0.21, 0.15, 0.12, 0.14. Round to the nearest hundredth.

A)0.06
B)0.02
C)0.12
D)0.04
سؤال
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

- x11612611y88876\begin{array}{l|ccccc}x & 11 & 6 & 12 & 6 & 11 \\\hline y & 8 & 8 & 8 & 7 & 6\end{array}

A) t=0.415t = 0.415
B) t=0.578t = 0.578
C) t=1.292t = 1.292
D) t=2.890t = 2.890
سؤال
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- X12.011.310.112.911.6Y13.212.613.510.712.4\begin{array} { l | l l l l l } \mathrm { X } & 12.0 & 11.3 & 10.1 & 12.9 & 11.6 \\\hline \mathrm { Y } & 13.2 & 12.6 & 13.5 & 10.7 & 12.4\end{array}

A)-1.2
B)-1.1
C)-0.9
D)-0.5
سؤال
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- X8.35.37.98.56.85.7Y8.17.59.57.78.19.3\begin{array} { c | c c c c c c } \mathrm { X } & 8.3 & 5.3 & 7.9 & 8.5 & 6.8 & 5.7 \\\hline \mathrm { Y } & 8.1 & 7.5 & 9.5 & 7.7 & 8.1 & 9.3\end{array}

A)-0.8
B)-1.3
C)-7.8
D)-1.7
سؤال
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-Suppose you wish to test the claim that μd\mu _ { \mathrm { d } } , the mean value of the differences d\mathrm { d } for a population of paired data, is greater than 0 . Given a sample of n=15\mathrm { n } = 15 and a significance level of α=0.01\alpha = 0.01 , what criterion would be used for rejecting the null hypothesis?

A) Reject null hypothesis if test statistic <2.624< 2.624 .
B) Reject null hypothesis if test statistic >2.602> 2.602 .
C) Reject null hypothesis if test statistic >2.977> 2.977 or <2.977< - 2.977 .
D) Reject null hypothesis if test statistic >2.624> 2.624 .
سؤال
Find sd.

-Consider the set of differences between two dependent sets: 84, 85, 83, 63, 61, 100, 98. Round to the nearest tenth.

A)13.1
B)16.2
C)15.3
D)15.7
سؤال
Use the traditional method of hypothesis testing to test the given claim about the means of two populations. Assume that
two dependent samples have been randomly selected from normally distributed populations.
Five students took a math test before and after tutoring. Their scores were as follows. Use the traditional method of hypothesis testing to test the given claim about the means of two populations. Assume that two dependent samples have been randomly selected from normally distributed populations. Five students took a math test before and after tutoring. Their scores were as follows.   Using a 0.01 level of significance, test the claim that the tutoring has an effect on the math scores.<div style=padding-top: 35px> Using a 0.01 level of significance, test the claim that the tutoring has an effect on the math scores.
سؤال
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-Suppose you wish to test the claim that μd,\mu _ { \mathrm { d } }, , the mean value of the differences d for a population of paired data, is different from 0. Given a sample of n = 23 and a significance level of α=\alpha = 0.05, what criterion would be used for rejecting the null hypothesis?

A) Reject null hypothesis if test statistic >1.717> 1.717 .
B) Reject null hypothesis if test statistic >2.074> 2.074 or <2.074< - 2.074 .
C) Reject null hypothesis if test statistic >2.069> 2.069 or <2.069< - 2.069 .
D) Reject null hypothesis if test statistic >1.717> 1.717 or <1.717< - 1.717 .
سؤال
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

-A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels)before and after using the additive. The results are shown below.  Plot: 12345678910 Before 998768591011 After 109987106101012\begin{array} { l l l l l l l l l l l } \text { Plot: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\text { Before } & 9 & 9 & 8 & 7 & 6 & 8 & 5 & 9 & 10 & 11 \\ \text { After } & 10 & 9 & 9 & 8 & 7 & 10 & 6 & 10 & 10 & 12 \end{array}
You wish to test the following hypothesis at the 5 percent level of significance.
HO:μD=0 against H1:μD0\mathrm { H } _ { \mathrm { O } } : \mu _ { \mathrm { D } } = 0 \text { against } \mathrm { H } _ { 1 } : \mu _ { \mathrm { D } } \neq 0 \text {. } What is the value of the appropriate test statistic?

A)2.536
B)1.584
C)5.014
D)2.033
سؤال
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- A5659556351B2725212522\begin{array} { l | l l l l l } \mathrm { A } & 56 & 59 & 55 & 63 & 51 \\\hline \mathrm { B } & 27 & 25 & 21 & 25 & 22\end{array}

A)41.0
B)32.8
C)19.7
D)42.6
سؤال
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels)before and after using the additive. The results are shown below.  Plot: 12345678910 Before 998768591011 After 109987106101012\begin{array} { l l l l l l l l l l l } \text { Plot: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\hline \text { Before } & 9 & 9 & 8 & 7 & 6 & 8 & 5 & 9 & 10 & 11 \\ \text { After } & 10 & 9 & 9 & 8 & 7 & 10 & 6 & 10 & 10 & 12 \end{array}
You wish the test the following hypothesis at the 1 percent level of significance.
H0:μD=0\mathrm { H } _ { 0 } : \mu _ { \mathrm { D } } = 0 against H1:μD>0\mathrm { H } _ { 1 } : \mu _ { \mathrm { D } } > 0 .
What decision rule would you use?

A) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 2.8212.821 .
B) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 2.821- 2.821 or less than 2.8212.821 .
C) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 2.821- 2.821 .
D) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 2.8212.821 .
سؤال
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

- x7.15.93.410.3410.29.37.1y5.35.64.55.64.44.95.45.4\begin{array} { c | c c c c c c c c } \mathrm { x } & 7.1 & 5.9 & 3.4 & 10.3 & 4 & 10.2 & 9.3 & 7.1 \\\hline \mathrm { y } & 5.3 & 5.6 & 4.5 & 5.6 & 4.4 & 4.9 & 5.4 & 5.4\end{array}

A)t = 6.792
B)t = 0.998
C)t = 2.391
D)t = 0.845
سؤال
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels)before and after using the additive. The results are shown below.  Plot: 12345678910 Before 998768591011 After 109987106101012\begin{array} { l l l l l l l l l l l } \text { Plot: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\hline \text { Before } & 9 & 9 & 8 & 7 & 6 & 8 & 5 & 9 & 10 & 11 \\ \text { After } & 10 & 9 & 9 & 8 & 7 & 10 & 6 & 10 & 10 & 12 \end{array}
You wish to test the following hypothesis at the 1 percent level of significance.
H0:μD=0\mathrm { H } _ { 0 } : \mu _ { \mathrm { D } } = 0 against H1:μD0\mathrm { H } _ { 1 } : \mu _ { \mathrm { D } } \neq 0
What decision rule would you use?

A) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 3.250- 3.250 .
B) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 3.2503.250 .
C) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 3.250- 3.250 or greater than 3.2503.250 .
D) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 3.250- 3.250 or less than 3.2503.250 .
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/105
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Inferences From Two Samples
1
Provide an appropriate response.
Discuss the assumptions for constructing confidence intervals or hypothesis testing for two means from dependent samples.
1)Two dependent samples must be selected randomly.
2)Each of the populations from which the samples are drawn must be normally distributed.
2
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=408n2=145x1=88x2=90\begin{array} { l l } \mathrm { n } _ { 1 } = 408 & \mathrm { n } _ { 2 } = 145 \\\mathrm { x } _ { 1 } = 88 & \mathrm { x } _ { 2 } = 90\end{array}

A) 0.2900.290
B) 0.2250.225
C) 0.3220.322
D) 0.1610.161
0.3220.322
3
Provide an appropriate response.
Describe the process for testing hypothesis about two means when the samples are dependent. Compare this process to the methods of hypothesis testing for one mean in Chapter 7.
When the samples are dependent, the differences are computed for each pair of values. Then the mean
and standard deviation are computed. The process proceeds exactly like the process in Chapter 7 for When the samples are dependent, the differences are computed for each pair of values. Then the mean and standard deviation are computed. The process proceeds exactly like the process in Chapter 7 for
4
Provide an appropriate response.

-What is the effect on the P-value when a test is changed from two-tailed hypothesis with = and ? to one-tailed hypothesis such as \geq and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
5
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=100n2=100p^1=0.12p^2=0.1\begin{array} { l l } \mathrm { n } _ { 1 } = 100 & \mathrm { n } _ { 2 } = 100 \\\hat { \mathrm { p } } _ { 1 } = 0.12 & \hat { \mathrm { p } } _ { 2 } = 0.1\end{array}

A) 0.1380.138
B) 0.2200.220
C) 0.1100.110
D) 0.3320.332
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
6
Provide an appropriate response.
Describe the process for testing hypothesis about two means when the samples are independent and large. Compare this process to the methods of hypothesis testing for one mean in Chapter 7.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
7
Compute the test statistic used to test the null hypothesis that p1 = p2

-In a vote on the Clean Water bill, 45% of the 205 Democrats voted for the bill while 52% of the 230 Republicans voted for it.

A)-1.604
B)-1.239
C)-0.875
D)-1.458
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find the number of successes x suggested by the given statement.
A computer manufacturer randomly selects 2140 of its computers for quality assurance and finds that 2.76% of these computers are found to be defective.

A)57
B)62
C)64
D)59
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
9
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=719n2=3852x1=101x2=612\begin{array} { l l } \mathrm { n } _ { 1 } = 719 & \mathrm { n } _ { 2 } = 3852 \\\mathrm { x } _ { 1 } = 101 & \mathrm { x } _ { 2 } = 612\end{array}

A)0.125
B)0.395
C)0.312
D)0.156
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the number of successes x suggested by the given statement.
Among 900 people selected randomly from among the residents of one city, 14.33% were found to be living below the official poverty line.

A)126
B)129
C)132
D)130
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
11
Compute the test statistic used to test the null hypothesis that p1 = p2

- n1=187n2=177x1=67x2=62\begin{array} { l l } n _ { 1 } = 187 & n _ { 2 } = 177 \\x _ { 1 } = 67 & x _ { 2 } = 62\end{array}

A)4.086
B)0.159
C)2.200
D)0.364
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
12
Provide an appropriate response.

-Compare the technique for decision making about populations using the hypothesis test method and the confidence interval method.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
13
Provide an appropriate response.
Complete the table to describe each symbol. Provide an appropriate response. Complete the table to describe each symbol.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
14
Provide an appropriate response.

-  The test statistic for testing hypothesis about two variances is F=s12 s22 where s12>s22. Describe the numeric \text { The test statistic for testing hypothesis about two variances is } F = \frac { \mathrm { s } _ { 1 } ^ { 2 } } { \mathrm {~s} _ { 2 } ^ { 2 } } \text { where } \mathrm { s } _ { 1 } ^ { 2 } > \mathrm { s } _ { 2 } { } ^ { 2 } \text {. Describe the numeric } possibilities for this test statistic. Explain the circumstances under which the conclusion would be either that the variances are equal or that the variances are not equal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the number of successes x suggested by the given statement.
Among 1450 randomly selected car drivers in one city, 7.52% said that they had been involved in an accident during the past year.

A)110
B)108
C)109
D)107
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
16
Provide an appropriate response.
Define independent and dependent samples and give an example of each.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the number of successes x suggested by the given statement.
Among 620 adults selected randomly from among the residents of one town, 25% said that they favor stronger gun-control laws.

A)153
B)154
C)156
D)155
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
18
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=44n2=490x1=17x2=191\begin{array} { l l } n _ { 1 } = 44 & n _ { 2 } = 490 \\x _ { 1 } = 17 & x _ { 2 } = 191\end{array}

A)0.467
B)0.156
C)0.390
D)0.312
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
19
Provide an appropriate response.

-How does finding the error estimate and confidence intervals for dependent samples compare to the methods for one mean from Chapter 7?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
20
From the sample statistics, find the value of pˉ\bar{ p} used to test the hypothesis that the population proportions are equal

- n1=100n2=100x1=36x2=37\begin{array} { l l } \mathrm { n } _ { 1 } = 100 & \mathrm { n } _ { 2 } = 100 \\\mathrm { x } _ { 1 } = 36 & \mathrm { x } _ { 2 } = 37\end{array}

A) 0.3650.365
B) 0.4020.402
C) 0.3290.329
D) 0.2560.256
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
21
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-7 of 8,500 people vaccinated against a certain disease later developed the disease. 18 of 10,000 people vaccinated with a placebo later developed the disease. Test the claim that the vaccine is effective in lowering the incidence of the disease. Use a significance level of 0.02.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=50n2=50x1=3x2=7\begin{array} { l l } n _ { 1 } = 50 & n _ { 2 } = 50 \\x _ { 1 } = 3 & x _ { 2 } = 7\end{array}

A).1201
B).0072
C).1836
D).0613
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
23
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

- x1=20,n1=43x _ { 1 } = 20 , n _ { 1 } = 43 and x2=28,n2=60;x _ { 2 } = 28 , n _ { 2 } = 60 ; Construct a 90%90 \% confidence interval for the difference between population proportions P1P2\mathrm { P } 1 - \mathrm { P } 2 .

A) 0.301<p1P2<0.6290.301 < \mathrm { p } _ { 1 } - \mathrm { P } _ { 2 } < 0.629
B) 0.270<p1p2<0.6600.270 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.660
C) 0.660<p1p2<0.2700.660 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.270
D) 0.166<p1p2<0.162- 0.166 < p _ { 1 } - p _ { 2 } < 0.162
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
24
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-A marketing survey involves product recognition in New York and California. Of 558 New Yorkers surveyed, 193 knew the product while 196 out of 614 Californians knew the product. At the 0.05 significance level, test the claim that the recognition rates are the same in both states.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
25
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-In a random sample of 500 people aged 20-24, 22% were smokers. In a random sample of 450 people aged 25-29, 14% were smokers. Test the claim that the proportion of smokers in the two age groups is the same. Use a significance level of 0.01.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
26
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-In a random sample of 360 women, 65% favored stricter gun control laws. In a random sample of 220 men, 60% favored stricter gun control laws. Test the claim that the proportion of women favoring stricter gun control is higher than the proportion of men favoring stricter gun control. Use a significance level of 0.05.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
27
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=100n2=140x1=41x2=35\begin{array} { l l } \mathrm { n } _ { 1 } = 100 & \mathrm { n } _ { 2 } = 140 \\\mathrm { x } _ { 1 } = 41 & \mathrm { x } _ { 2 } = 35\end{array}

A).0512
B).0086
C).0021
D).4211
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
28
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-A marketing survey involves product recognition in New York and California. Of 558 New Yorkers surveyed, 193 knew the product while 196 out of 614 Californians knew the product. Construct a 99% confidence interval for the difference between the two population proportions.

A) 0.0247<p1p2<0.02860.0247 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.0286
B) 0.0443<p1p2<0.0976- 0.0443 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.0976
C) 0.0034<p1p2<0.0566- 0.0034 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.0566
D) 0.0177<p1p2<0.1243- 0.0177 < p _ { 1 } - p _ { 2 } < 0.1243
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
29
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-x1=65,n1=90 and x2=79,n2=116,construct a 98% confidence interival for the difference berween
population proportions p1p2\mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } .

A) 0.084<p1p2<0.848- 0.084 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.848
B) 0.108<p1p2<0.190- 0.108 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.190
C) 0.596<p1p2<0.8480.596 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.848
D) 0.572<p1p2<0.8720.572 < p _ { 1 } - p _ { 2 } < 0.872
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=100n2=100x1=38x2=40\begin{array} { l l } n _ { 1 } = 100 & \mathrm { n } _ { 2 } = 100 \\\mathrm { x } _ { 1 } = 38 & \mathrm { x } _ { 2 } = 40\end{array}

A).2130
B).0412
C).7718
D).1610
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
31
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-In a random sample of 300 women, 50%50 \% favored stricter gun control legislation. In a random sample of 200 men, 26%26 \% favored stricter gun control legislation. Construct a 98%98 \% confidence interval for the difference between the population proportions p1\mathrm { p } 1 - p2\mathrm { p } 2 .

A) 0.157<p1p2<0.3230.157 < \mathrm { p } 1 - \mathrm { p } _ { 2 } < 0.323
B) 0.141<p1p2<0.3390.141 < \mathrm { p } 1 - \mathrm { p } 2 < 0.339
C) 0.131<p1p2<0.3490.131 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.349
D) 0.153<p1p2<0.3270.153 < p _ { 1 } - p _ { 2 } < 0.327
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
32
Compute the test statistic used to test the null hypothesis that p1 = p2

-Information about movie ticket sales was printed in a movie magazine. Out of fifty PG-rated movies, 45% had ticket sales in excess of $3,000,000. Out of thirty-five R-rated movies, 27% grossed over $3,000,000.

A)3.372
B)2.698
C)5.227
D)1.686
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
33
Compute the test statistic used to test the null hypothesis that p1 = p2

-A random sampling of sixty pitchers from the National League and fifty-two pitchers from the American League showed that 16 National and 11 American League pitchers had E.R.A's below 3.5.

A)123.710
B)0.680
C)10.184
D)0.884
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
34
Compute the test statistic used to test the null hypothesis that p1 = p2

-A report on the nightly news broadcast stated that 13 out of 111 households with pet dogs were burglarized and 23 out of 190 without pet dogs were burglarized.

A)0.000
B)-0.102
C)-0.041
D)-0.173
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
35
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-A researcher finds that of 1,000 people who said that they attend a religious service at least once a week, 31 stopped to help a person with car trouble. Of 1,200 people interviewed who had not attended a religious service at least once a month, 22 stopped to help a person with car trouble. At the 0.05 significance level, test the claim that the two proportions are equal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-Use the given sample data to test the claim that p1 < p2. Use a significance level of 0.10.  Sample 1 Sample 2n1=462n2=380x1=84x2=95\begin{array} { l l l } \text { Sample } 1 & & \text { Sample } 2 \\\mathrm { n } _ { 1 } = 462 & & \mathrm { n } _ { 2 } = 380 \\\mathrm { x } _ { 1 } = 84 & & \mathrm { x } _ { 2 } = 95\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
37
Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected

-  Use the given sample data to test the claim that p1>p2. Use a significance level of 0.01 Sample 1  Sample 2 n1=85n2=90x1=38x2=23\begin{array}{l}\text { Use the given sample data to test the claim that } \mathrm { p } _ { 1 } > \mathrm { p } _ { 2 } \text {. Use a significance level of } 0.01 \text {. }\\\begin{array} { l l l } \text { Sample 1 } & \text { Sample 2 } \\\hline \mathrm { n } _ { 1 } = 85 & \mathrm { n } _ { 2 } = 90 \\\mathrm { x } _ { 1 } = 38 & \mathrm { x } _ { 2 } = 23\end{array}\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=50n2=75x1=20x2=15\begin{array} { l l } n _ { 1 } = 50 & n _ { 2 } = 75 \\x _ { 1 } = 20 & x _ { 2 } = 15\end{array}

A).0001
B).0146
C).0032
D).1201
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the appropriate p-value to test the null hypothesis, H0: p1 = p2, using a significance level of 0.05.

- n1=200n2=100x1=11x2=8\begin{array} { l l } \mathrm { n } _ { 1 } = 200 & \mathrm { n } _ { 2 } = 100 \\\mathrm { x } _ { 1 } = 11 & \mathrm { x } _ { 2 } = 8\end{array}

A).0201
B).1011
C).4010
D).0012
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
40
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

- x1=27,n1=67\mathrm { x } _ { 1 } = 27 , \mathrm { n } _ { 1 } = 67 and x2=27,n2=72;\mathrm { x } _ { 2 } = 27 , \mathrm { n } _ { 2 } = 72 ; Construct a 95%95 \% confidence interval for the difference between population proportions P1P2\mathrm { P } 1 - \mathrm { P } 2 .

A) 0.210<p1p2<0.5960.210 < \mathrm { p } 1 - \mathrm { p } 2 < 0.596
B) 0.165<p1p2<0.596- 0.165 < \mathrm { p } 1 - \mathrm { p } 2 < 0.596
C) 0.134<p1p2<0.190- 0.134 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.190
D) 0.241<p1p2<0.5650.241 < \mathrm { p } 1 - \mathrm { p } 2 < 0.565
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
41
Test the indicated claim about the means of two populations. Assume that the two samples are independent and that they have been randomly selected.

-Two types of flares are tested for their burning times (in minutes)and sample results are given below.  Brand X Brand Yn=35n=40x=19.4x=15.1 s=1.4 s=0.8\begin{array} { l l l } \text { Brand } \mathrm { X }& { \text { Brand } \mathrm { Y } } \\\hline n=35 & \overline { \mathrm { n } } = 40 \\\overline { \mathrm { x } } = 19.4 & \overline { \mathrm { x } } = 15.1 \\\mathrm {~s} = 1.4 & \mathrm {~s} = 0.8\end{array} Refer to the sample data to test the claim that the two populations have equal means. Use a 0.05 significance level.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
42
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.01 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is greater than the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 171.6392168.77183 Known Variance 47.5167241.082934 Observations 50505 Hypothesized Mean Difference 06 t 2.1540577 P(T>=t) one-tail 0.01588 TCritical one-tail 1.6448539 P(T>=t) two-tail 0.031610 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 171.6392 & 168.7718 \\\hline 3 & \text { Known Variance } & 47.51672 & 41.08293 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & 2.154057 & \\\hline 7 & \text { P(T>=t) one-tail } & 0.0158 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T>=t) two-tail } & 0.0316 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
43
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent and that they have been randomly selected.

-Two types of flares are tested for their burning times (in minutes)and sample results are given below.  Brand X Brand Yn=35nn=40xˉ=19.4xˉ=15.1 s=1.4 s=0.8\begin{array} { l l l } \text { Brand } X & & \text { Brand } Y \\\hline n =35& & \frac { n } { n } = 40 \\\bar { x } = 19.4 & & \bar { x } = 15.1 \\\mathrm {~s} = 1.4 & & \mathrm {~s} = 0.8\end{array}
Construct a 95%95 \% confidence interval for the differences μXμY\mu _ { X } - \mu _ { Y } based on the sample data.

A) 3.6<μXμY<5.03.6 < \mu _ { X } - \mu _ { Y } < 5.0
B) 3.8<μXμY<4.83.8 < \mu _ { X } - \mu Y < 4.8
C) 3.5<μXμY<5.13.5 < \mu X - \mu Y < 5.1
D) 3.2<μXμY<5.43.2 < \mu X - \mu Y < 5.4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
44
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.05 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is different from the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 65.1073866.182513 Known Variance 8.10293810.273874 Observations 50505 Hypothesized Mean Difference 06 t 1.7734177 P(T<=t) one-tail 0.03848 TCritical one-tail 1.6448539 P(T<=t) two-tail 0.076810 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 65.10738 & 66.18251 \\\hline 3 & \text { Known Variance } & 8.102938 & 10.27387 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & - 1.773417 & \\\hline 7 & \text { P(T<=t) one-tail } & 0.0384 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T<=t) two-tail } & 0.0768 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
45
Solve the problem.
To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic Solve the problem. To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic    Solve the problem. To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
46
Determine whether the samples are independent or consist of matched pairs.

-The effectiveness of a new headache medicine is tested by measuring the amount of time before the headache is cured for patients who use the medicine and another group of patients who use a placebo drug.

A)Matched pairs
B)Independent samples
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
47
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent and that they have been randomly selected.

-Independent samples from two different populations yield the following data. x1=383,x2=448\overline { x _ { 1 } } = 383 , \overline { x _ { 2 } } = 448 , s1 =44= 44 , s2 =18= 18 . The sample size is 177 for both samples. Find the 85 percent confidence interval for μ1μ2\mu _ { 1 } - \mu _ { 2 } .

A) 72<μ1μ2<58- 72 < \mu _ { 1 } - \mu _ { 2 } < - 58
B) 66<μ1μ2<64- 66 < \mu _ { 1 } - \mu _ { 2 } < - 64
C) 79<μ1μ2<51- 79 < \mu _ { 1 } - \mu _ { 2 } < - 51
D) 71<μ1μ2<59- 71 < \mu _ { 1 } - \mu _ { 2 } < - 59
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
48
Determine whether the samples are independent or consist of matched pairs.

-The effect of caffeine as an ingredient is tested with a sample of regular soda and another sample with decaffeinated soda.

A)Matched pairs
B)Independent samples
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
49
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.05 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is less than the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 65.1073866.182513 Known Variance 8.10293810.273874 Observations 50505 Hypothesized Mean Difference 06 t 1.7734177 P(T<=t) one-tail 0.03848 T Critical one-tail 1.6448539 P(T<=t) two-tail 0.076810 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 65.10738 & 66.18251 \\\hline 3 & \text { Known Variance } & 8.102938 & 10.27387 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & - 1.773417 & \\\hline 7 & \text { P(T<=t) one-tail } & 0.0384 & \\\hline 8 & \text { T Critical one-tail } & 1.644853 & \\\hline 9 & \text { P(T<=t) two-tail } & 0.0768 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
50
Use the computer display to solve the problem.

-When testing for a difference between the means of a treatment group and a placebo group, the computer display below is obtained. Using a 0.04 significance level, is there sufficient evidence to support the claim that the treatment group (variable 1)comes from a population with a mean that is different from the mean for the placebo population? Explain.  t-Test: Two Sample for Means 1 Variable 1  Variable 2 2 Mean 171.6392168.77183 Known Variance 47.5167241.082934 Observations 50505 Hypothesized Mean Difference 06 t 2.1540577 P(T>=t) one-tail 0.01588 TCritical one-tail 1.6448539 P(T>=t) two-tail 0.031610 tCritical two-tail 1.959961\begin{array} { | l | l | l | l | } \hline & \text { t-Test: Two Sample for Means } & & \\\hline 1 & & \text { Variable 1 } & \text { Variable 2 } \\\hline 2 & \text { Mean } & 171.6392 & 168.7718 \\\hline 3 & \text { Known Variance } & 47.51672 & 41.08293 \\\hline 4 & \text { Observations } & 50 & 50 \\\hline 5 & \text { Hypothesized Mean Difference } & 0 & \\\hline 6 & \text { t } & 2.154057 & \\\hline 7 & \text { P(T>=t) one-tail } & 0.0158 & \\\hline 8 & \text { TCritical one-tail } & 1.644853 & \\\hline 9 & \text { P(T>=t) two-tail } & 0.0316 & \\\hline 10 & \text { tCritical two-tail } & 1.959961 & \\\hline\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
51
Determine whether the following statement regarding the hypothesis test for two population proportions is true or false: However small the difference between two population proportions, for sufficiently large sample sizes, the null hypothesis of equal population proportions is likely to be rejected.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
52
Determine whether the samples are independent or consist of matched pairs.

-The effectiveness of a headache medicine is tested by measuring the intensity of a headache in patients before and after drug treatment. The data consist of before and after intensities for each patient.

A)Matched pairs
B)Independent samples
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
53
Determine whether the samples are independent or consist of matched pairs.

-The accuracy of verbal responses is tested in an experiment in which individuals report their heights and then are measured. The data consist of the reported height and measured height for each individual.

A)Independent samples
B)Matched pairs
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
54
Test the indicated claim about the means of two populations. Assume that the two samples are independent and that they have been randomly selected.

-A researcher wishes to determine whether people with high blood pressure can reduce their blood pressure by following a particular diet. Use the sample data below to test the claim that the treatment population mean µ1 is smaller than the control population mean µ2. Test the claim using a significance level of 0.01.
 Treatment Group  Control Groupn1=85n2=75x1=189.1x2=203.7 s1=38.7 s2=39.2\begin{array} { l } \text { Treatment Group }& \text { Control Group}\\\hline \mathrm{n}_{1}=85 &\mathrm{n}_{2}=75 \\\overline{\mathrm{x}_{1}}=189.1 & \overline{\mathrm{x}_{2}}=203.7 \\\mathrm{~s}_{1}=38.7 & \mathrm{~s}_{2}=39.2\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
55
Solve the problem.

-A researcher wished to perform a hypothesis test to test the claim that the rate of defectives among the computers of two different manufacturers are the same. She selects two independent random samples and obtains the following sample data. Manufacturer
A: n1=400\mathrm { n } _ { 1 } = 400 , rate of defectives: 1.5%1.5 \% Manufacturer
B: n2=200\mathrm { n } _ { 2 } = 200 , rate of defectives: 3.5%3.5 \%
Can the methods of this section be used to perform a hypothesis test to test for the equality of the two population proportions? Go through the steps of checking whether the conditions for the hypothesis test for two population proportions are satisfied. Show your calculations and state your conclusion.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
56
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent and that they have been randomly selected.

-A researcher wishes to determine whether people with high blood pressure can reduce their blood pressure by following a particular diet. Use the sample data below to construct a 99%99 \% confidence interval for u1\mathrm { u } _ { 1 } - u2\mathrm { u } _ { 2 } where u1u _ { 1 } and u2u _ { 2 } represent the mean for the treatment group and the control group respectively.
 Treatment Group  Control Groupn1=85n2=75x1=189.1x2=203.7 s1=38.7 s2=39.2\begin{array} { l } \text { Treatment Group }& \text { Control Group}\\\hline \mathrm{n}_{1}=85 &\mathrm{n}_{2}=75 \\\overline{\mathrm{x}_{1}}=189.1 & \overline{\mathrm{x}_{2}}=203.7 \\\mathrm{~s}_{1}=38.7 & \mathrm{~s}_{2}=39.2\end{array}

A) 1.3<μ1μ2<30.5- 1.3 < \mu _ { 1 } - \mu _ { 2 } < 30.5
B) 29.0<μ1μ2<0.2- 29.0 < \mu _ { 1 } - \mu _ { 2 } < - 0.2
C) 26.7<μ1μ2<2.5- 26.7 < \mu _ { 1 } - \mu _ { 2 } < - 2.5
D) 30.9<μ1μ2<1.7- 30.9 < \mu _ { 1 } - \mu _ { 2 } < 1.7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
57
Construct the indicated confidence interval for the difference between population proportions p1 - p2. Assume that the samples are independent and that they have been randomly selected.

-In a random sample of 500 people aged 2024,22%20 - 24,22 \% were smokers. In a random sample of 450 people aged 2529,14%25 - 29,14 \% were smokers. Construct a 95%95 \% confidence interval for the difference between the population proportions p1p2\mathrm { p } _ { 1 } - \mathrm { p } 2 .

A) 0.025<0.025 < p 1_ { 1 } - p 2<0.135_ { 2 } < 0.135
B) 0.035<p1p2<0.1250.035 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.125
C) 0.032<p1p2<0.1280.032 < \mathrm { p } _ { 1 } - \mathrm { p } _ { 2 } < 0.128
D) 0.048<p1p2<0.1120.048 < p _ { 1 } - p _ { 2 } < 0.112
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
58
Solve the problem.

-A hypothesis test is to be performed to test the equality of two population means. The sample sizes are large and the samples are independent. A 95% confidence interval for the difference between the population means is (1.4, 8.7). If the hypothesis test is based on the same samples, which of the following do you know for sure:
A: The hypothesis μ1=μ2\mu _ { 1 } = \mu _ { 2 } would be rejected at the 5%5 \% level of significance.
B: The hypothesis μ1=μ2\mu _ { 1 } = \mu _ { 2 } would be rejected at the 10%10 \% level of significance.
C: The hypothesis μ1=μ2\mu _ { 1 } = \mu _ { 2 } would be rejected at the 1%1 \% level of significance.

A) A, B, and C
B) A only
C) A and C
D) A and B
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
59
Solve the problem.

-The sample size needed to estimate the difference between two population proportions to within a margin of error E\mathrm { E } with a confidence level of 1α1 - \alpha can be found as follows: in the expression
E=zα/2p1q1n1+p2q2n2E = z _ { \alpha / 2} \sqrt { \frac { p _ { 1 } q _ { 1 } } { \mathrm { n } _ { 1 } } + \frac { \mathrm { p } _ { 2 } \mathrm { q } _ { 2 } } { \mathrm { n } _ { 2 } } }
replace n1\mathrm { n } _ { 1 } and n2\mathrm { n } _ { 2 } by n\mathrm { n } (assuming both samples have the same size) and replace each of p1,q1,p2\mathrm { p } _ { 1 } , \mathrm { q } _ { 1 } , \mathrm { p } _ { 2 } , and q2\mathrm { q } _ { 2 } by 0.50.5 (because their values are not known). Then solve for nn .

Use this approach to find the size of each sample if you want to estimate the difference between the proportions . and women who plan to vote in the next presidential election. Assume that you want 99%99 \% confidence that your no more than 0.030.03 .

A) 3017
B) 2135
C) 3685
D) 1432
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
60
Solve the problem.
To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic Solve the problem. To test the null hypothesis that the difference between two population proportions is equal to a nonzero constant c, use the test statistic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find sd.

-The differences between two sets of dependent data are -1, 5, -4, 2. Round to the nearest tenth.

A)2.0
B)3.9
C)89.7
D)3.1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
62
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

- x3038252628273335y2834342629323334\begin{array}{l|ccccc}x & 30&38&25&26&28&27&33&35\\\hline y &28&34&34&26&29&32&33&34\end{array}

A) t=0.185t = - 0.185
B) t=0.690t = 0.690
C) t=1.480t = - 1.480
D) t=0.523t = - 0.523
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
63
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

-The following table shows the weights of nine subjects before and after following a particular diet for two months. You wish to test the claim that the diet is effective in helping people lose weight. What is the value of the appropriate test statistic?  Subject  A  B  C  D  E  F  G  H  I  Before 168180157132202124190210171 After 162178145125171126180195163\begin{array} { r | r r r r r r r r r } \text { Subject } & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { H } & \text { I } \\\hline \text { Before } & 168 & 180 & 157 & 132 & 202 & 124 & 190 & 210 & 171 \\\hline \text { After } & 162 & 178 & 145 & 125 & 171 & 126 & 180 & 195 & 163\end{array}

A)0.351
B)1.052
C)3.156
D)9.468
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
64
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-We wish to compare the means of two populations using paired observations. Suppose that dˉ=3.125, Sd=\bar { d } = 3.125 , \mathrm {~S} _ { \mathrm { d } } = 2.9112.911 , and n=8\mathrm { n } = 8 , and that you wish to test the following hypothesis at the 5 percent level of significance:
H0:μd=0 against H1:μd>0\mathrm { H } _ { 0 } : \mu _ { \mathrm { d } } = 0 \text { against } \mathrm { H } _ { 1 } : \boldsymbol { \mu } _ { \mathrm { d } } > 0 \text {. }
What decision rule would you use?

A) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 1.895- 1.895 and less than 1.8951.895 .
B) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 1.8951.895 .
C) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 1.8951.895 .
D) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 1.895- 1.895 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
65
Determine whether the samples are independent or consist of matched pairs.

-A hypothesis test is to be performed to test the equality of two population means. The sample sizes are large and the samples are independent. Give an expression for the population standard deviation of the (xˉ1xˉ2)\left( \bar { x } _ { 1 } - \bar { x } _ { 2 } \right) values in terms of s1, s2,n1\mathrm { s } _ { 1 } , \mathrm {~s} _ { 2 } , \mathrm { n } _ { 1 } , and n2\mathrm { n } _ { 2 } .

A) s12n1s22n2\sqrt{\frac{s_{1}^{2}}{n_{1}}-\frac{s_{2}^{2}}{n_{2}}}

B) s12n1+s22n2\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}

C) s12n12+s22n22\sqrt{\frac{\mathrm{s}_{1}^{2}}{\mathrm{n}_{1}^{2}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n} \frac{2}{2}}}

D) s12n1+s22n2\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
66
Find sd.

-The differences between two sets of dependent data are 3, 21, 3, 27, 15. Round to the nearest tenth.

A)10.7
B)8.6
C)21.4
D)13.9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
67
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- X227189220182246277302Y217154195153227246284\begin{array} { l | l l l l l l l } \mathrm { X } & 227 & 189 & 220 & 182 & 246 & 277 & 302 \\\hline \mathrm { Y } & 217 & 154 & 195 & 153 & 227 & 246 & 284\end{array}

A)143.4
B)23.9
C)14.3
D)31.1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find sd.

-The differences between two sets of dependent data are 0.11, 0.21, 0.15, 0.12, 0.14. Round to the nearest hundredth.

A)0.06
B)0.02
C)0.12
D)0.04
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
69
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

- x11612611y88876\begin{array}{l|ccccc}x & 11 & 6 & 12 & 6 & 11 \\\hline y & 8 & 8 & 8 & 7 & 6\end{array}

A) t=0.415t = 0.415
B) t=0.578t = 0.578
C) t=1.292t = 1.292
D) t=2.890t = 2.890
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
70
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- X12.011.310.112.911.6Y13.212.613.510.712.4\begin{array} { l | l l l l l } \mathrm { X } & 12.0 & 11.3 & 10.1 & 12.9 & 11.6 \\\hline \mathrm { Y } & 13.2 & 12.6 & 13.5 & 10.7 & 12.4\end{array}

A)-1.2
B)-1.1
C)-0.9
D)-0.5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
71
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- X8.35.37.98.56.85.7Y8.17.59.57.78.19.3\begin{array} { c | c c c c c c } \mathrm { X } & 8.3 & 5.3 & 7.9 & 8.5 & 6.8 & 5.7 \\\hline \mathrm { Y } & 8.1 & 7.5 & 9.5 & 7.7 & 8.1 & 9.3\end{array}

A)-0.8
B)-1.3
C)-7.8
D)-1.7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
72
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-Suppose you wish to test the claim that μd\mu _ { \mathrm { d } } , the mean value of the differences d\mathrm { d } for a population of paired data, is greater than 0 . Given a sample of n=15\mathrm { n } = 15 and a significance level of α=0.01\alpha = 0.01 , what criterion would be used for rejecting the null hypothesis?

A) Reject null hypothesis if test statistic <2.624< 2.624 .
B) Reject null hypothesis if test statistic >2.602> 2.602 .
C) Reject null hypothesis if test statistic >2.977> 2.977 or <2.977< - 2.977 .
D) Reject null hypothesis if test statistic >2.624> 2.624 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find sd.

-Consider the set of differences between two dependent sets: 84, 85, 83, 63, 61, 100, 98. Round to the nearest tenth.

A)13.1
B)16.2
C)15.3
D)15.7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
74
Use the traditional method of hypothesis testing to test the given claim about the means of two populations. Assume that
two dependent samples have been randomly selected from normally distributed populations.
Five students took a math test before and after tutoring. Their scores were as follows. Use the traditional method of hypothesis testing to test the given claim about the means of two populations. Assume that two dependent samples have been randomly selected from normally distributed populations. Five students took a math test before and after tutoring. Their scores were as follows.   Using a 0.01 level of significance, test the claim that the tutoring has an effect on the math scores. Using a 0.01 level of significance, test the claim that the tutoring has an effect on the math scores.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
75
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-Suppose you wish to test the claim that μd,\mu _ { \mathrm { d } }, , the mean value of the differences d for a population of paired data, is different from 0. Given a sample of n = 23 and a significance level of α=\alpha = 0.05, what criterion would be used for rejecting the null hypothesis?

A) Reject null hypothesis if test statistic >1.717> 1.717 .
B) Reject null hypothesis if test statistic >2.074> 2.074 or <2.074< - 2.074 .
C) Reject null hypothesis if test statistic >2.069> 2.069 or <2.069< - 2.069 .
D) Reject null hypothesis if test statistic >1.717> 1.717 or <1.717< - 1.717 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
76
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

-A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels)before and after using the additive. The results are shown below.  Plot: 12345678910 Before 998768591011 After 109987106101012\begin{array} { l l l l l l l l l l l } \text { Plot: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\text { Before } & 9 & 9 & 8 & 7 & 6 & 8 & 5 & 9 & 10 & 11 \\ \text { After } & 10 & 9 & 9 & 8 & 7 & 10 & 6 & 10 & 10 & 12 \end{array}
You wish to test the following hypothesis at the 5 percent level of significance.
HO:μD=0 against H1:μD0\mathrm { H } _ { \mathrm { O } } : \mu _ { \mathrm { D } } = 0 \text { against } \mathrm { H } _ { 1 } : \mu _ { \mathrm { D } } \neq 0 \text {. } What is the value of the appropriate test statistic?

A)2.536
B)1.584
C)5.014
D)2.033
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
77
The two data sets are dependent. Find dˉ\bar { d } to the nearest tenth.

- A5659556351B2725212522\begin{array} { l | l l l l l } \mathrm { A } & 56 & 59 & 55 & 63 & 51 \\\hline \mathrm { B } & 27 & 25 & 21 & 25 & 22\end{array}

A)41.0
B)32.8
C)19.7
D)42.6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
78
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels)before and after using the additive. The results are shown below.  Plot: 12345678910 Before 998768591011 After 109987106101012\begin{array} { l l l l l l l l l l l } \text { Plot: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\hline \text { Before } & 9 & 9 & 8 & 7 & 6 & 8 & 5 & 9 & 10 & 11 \\ \text { After } & 10 & 9 & 9 & 8 & 7 & 10 & 6 & 10 & 10 & 12 \end{array}
You wish the test the following hypothesis at the 1 percent level of significance.
H0:μD=0\mathrm { H } _ { 0 } : \mu _ { \mathrm { D } } = 0 against H1:μD>0\mathrm { H } _ { 1 } : \mu _ { \mathrm { D } } > 0 .
What decision rule would you use?

A) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 2.8212.821 .
B) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 2.821- 2.821 or less than 2.8212.821 .
C) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 2.821- 2.821 .
D) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 2.8212.821 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
79
Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is μd=0\mu _ { \mathrm { d } } = 0 . Compute the value of the tt test statistic.

- x7.15.93.410.3410.29.37.1y5.35.64.55.64.44.95.45.4\begin{array} { c | c c c c c c c c } \mathrm { x } & 7.1 & 5.9 & 3.4 & 10.3 & 4 & 10.2 & 9.3 & 7.1 \\\hline \mathrm { y } & 5.3 & 5.6 & 4.5 & 5.6 & 4.4 & 4.9 & 5.4 & 5.4\end{array}

A)t = 6.792
B)t = 0.998
C)t = 2.391
D)t = 0.845
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
80
Determine the decision criterion for rejecting the null hypothesis in the given hypothesis test; i.e., describe the values of the test statistic that would result in rejection of the null hypothesis

-A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels)before and after using the additive. The results are shown below.  Plot: 12345678910 Before 998768591011 After 109987106101012\begin{array} { l l l l l l l l l l l } \text { Plot: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\hline \text { Before } & 9 & 9 & 8 & 7 & 6 & 8 & 5 & 9 & 10 & 11 \\ \text { After } & 10 & 9 & 9 & 8 & 7 & 10 & 6 & 10 & 10 & 12 \end{array}
You wish to test the following hypothesis at the 1 percent level of significance.
H0:μD=0\mathrm { H } _ { 0 } : \mu _ { \mathrm { D } } = 0 against H1:μD0\mathrm { H } _ { 1 } : \mu _ { \mathrm { D } } \neq 0
What decision rule would you use?

A) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 3.250- 3.250 .
B) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 3.2503.250 .
C) Reject H0\mathrm { H } _ { 0 } if test statistic is less than 3.250- 3.250 or greater than 3.2503.250 .
D) Reject H0\mathrm { H } _ { 0 } if test statistic is greater than 3.250- 3.250 or less than 3.2503.250 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 105 في هذه المجموعة.