Deck 6: Conic Sections

ملء الشاشة (f)
exit full mode
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.
(y4)2=12(x+2)( y - 4 ) ^ { 2 } = 12 ( x + 2 )

A) vertex: (2,4)( - 2,4 )
focus: (5,4)( - 5,4 )
directrix: x=1x = 1
B) vertex: (2,4)( 2 , - 4 )
focus: (5,4)( 5 , - 4 )
directrix: x=1x = - 1
C) vertex: (4,2)( 4 , - 2 )
focus: (7,2)( 7 , - 2 )
directrix: x=1x = 1
D) vertex: (2,4)( - 2,4 )
focus: (1,4)( 1,4 )
directrix: x=5x = - 5
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.
(x4)2=20(y+3)( x - 4 ) ^ { 2 } = - 20 ( y + 3 )

A) vertex: (4,3)( 4 , - 3 )
focus: (4,8)( 4 , - 8 )
directrix: y=2y = 2
B) vertex: (4,3)( - 4,3 )
focus: (4,2)( - 4 , - 2 )
directrix: y=8y = 8
C) vertex: (4,3)( 4 , - 3 )
focus: (4,2)( 4,2 )
directrix: x=8x = - 8
D) vertex: (3,4)( - 3,4 )
focus: (3,1)( - 3 , - 1 )
directrix: y=9y = 9
سؤال
Graph the equation.
(x+1)2=8(y+2)( x + 1 ) ^ { 2 } = - 8 ( y + 2 )
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.
x+3)2=(y+2)x+3)^{2}=-(y+2)
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75    <div style=padding-top: 35px>

A) vertex: (3,2)( - 3 , - 2 )
focus: (3.25,2)( - 3.25 , - 2 )
directrix: x=2.75x = - 2.75
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75    <div style=padding-top: 35px>

B) vertex: (3,2)( 3,2 )
focus: (3,1.75)( 3,1.75 )
directrix: y=2.25y = 2.25
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75    <div style=padding-top: 35px>
C) vertex: (3,2)( 3,2 )
focus: (2.75,2)( 2.75,2 )
directrix: x=3.25x = 3.25
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75    <div style=padding-top: 35px>

D) vertex: (3,2)( - 3 , - 2 )
focus: (3,2.25)( - 3 , - 2.25 )
directrix: y=1.75y = - 1.75
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75    <div style=padding-top: 35px>
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
(y+2)2=5(x1)(y+2)^{2}=-5(x-1)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.
x1)2=8(y+3)x - 1 ) ^ { 2 } = 8 ( y + 3 )

A) vertex: (3,1)( - 3,1 )
focus: (3,3)( - 3,3 )
directrix: y=1y = - 1
B) vertex: (1,3)( 1 , - 3 )
focus: (1,1)( 1 , - 1 )
directrix: y=5y = - 5
C) vertex: (1,3)( - 1,3 )
focus: (1,5)( - 1,5 )
directrix: y=1y = 1
D) vertex: (1,3)( 1 , - 3 )
focus: (1,5)( 1 , - 5 )
directrix: x=1x = - 1
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (0, 0), and the focus has coordinates (6, 0). A) y2=24xy ^ { 2 } = 24 x
B) x2=6yx ^ { 2 } = 6 y
C) x2=24yx ^ { 2 } = 24 y
D) y2=6xy ^ { 2 } = 6 x
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (6, 9), and the focus has coordinates (7, 9). A) (y9)2=4(x6)( y - 9 ) ^ { 2 } = - 4 ( x - 6 )
B) (x9)2=8(y9)( x - 9 ) ^ { 2 } = 8 ( y - 9 )
C) (x9)2=8(y9)( x - 9 ) ^ { 2 } = - 8 ( y - 9 )
D) (y9)2=4(x6)( y - 9 ) ^ { 2 } = 4 ( x - 6 )
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The focus has coordinates (-15, 0), and the equation of the directrix is x = 15. A) y2=60xy ^ { 2 } = 60 x
B) y2=60xy ^ { 2 } = - 60 x
C) x2=60yx ^ { 2 } = - 60 y
D) y2=15xy ^ { 2 } = - 15 x
سؤال
Find the vertex, focus, and directrix of the parabola with the given equation.
(y4)2=16(x1)( y - 4 ) ^ { 2 } = - 16 ( x - 1 )

A) vertex: (1,4)( 1,4 )
focus: (3,4)( - 3,4 )
directrix: x=5x = 5
B) vertex: (1,4)( - 1 , - 4 )
focus: (5,4)( - 5 , - 4 )
directrix: x=3x = 3
C) vertex: (1,4)( 1,4 )
focus: (5,4)( 5,4 )
directrix: x=3x = - 3
D) vertex: (4,1)( 4,1 )
focus: (0,1)( 0,1 )
directrix: x=8x = 8
سؤال
Graph the equation.
x2=18yx^{2}=-18 y
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.
(y+1)2=8(x+2)( y + 1 ) ^ { 2 } = - 8 ( x + 2 )
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0     <div style=padding-top: 35px>

A)
vertex: (1,2) (1,2)
focus: (1,2) (-1,2)
directrix: x=3 x=3
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0     <div style=padding-top: 35px>
B) vertex: (2,1) (-2,-1)
focus: (2,3) (-2,-3)
directrix: y=1 y=1
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0     <div style=padding-top: 35px>
C) vertex: (2,1) (2,1)
focus: (2,1) (2,-1)
directrix: y=3 y=3
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0     <div style=padding-top: 35px>
D) vertex: (2,1) (-2,-1)
focus: (4,1) (-4,-1)
directrix: x=0 x=0
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0     <div style=padding-top: 35px>




سؤال
Graph the equation.
Graph the equation.   A)   B)   C)   D)  <div style=padding-top: 35px> A)
Graph the equation.   A)   B)   C)   D)  <div style=padding-top: 35px>
B)
Graph the equation.   A)   B)   C)   D)  <div style=padding-top: 35px>
C)
Graph the equation.   A)   B)   C)   D)  <div style=padding-top: 35px>
D)
Graph the equation.   A)   B)   C)   D)  <div style=padding-top: 35px>
سؤال
Graph the equation.
y2=20xy^{2}=20 x
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the equation.
(y+1)2=7(x2)( y + 1 ) ^ { 2 } = 7 ( x - 2 )
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the equation.
(x2)2=7(y+2)( x - 2 ) ^ { 2 } = 7 ( y + 2 )
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)  <div style=padding-top: 35px>
A)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)  <div style=padding-top: 35px>
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The focus has coordinates (0, 19), and the equation of the directrix is y = -19. A) x2=76yx ^ { 2 } = - 76 y
B) x2=76yx ^ { 2 } = 76 y
C) y2=76xy ^ { 2 } = 76 x
D) y2=19xy ^ { 2 } = 19 x
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    <div style=padding-top: 35px>  A) vertex: (0,0)( 0,0 )
focus: (4,0)( - 4,0 )
directrix: x=4x = 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    <div style=padding-top: 35px>
B) vertex: (0,0)( 0,0 )
focus: (4,0)( 4,0 )
directrix: x=4x = - 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    <div style=padding-top: 35px>

C) vertex: (0,0)( 0,0 )
focus: (0,4)( 0 , - 4 )
directrix: y=4y = 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    <div style=padding-top: 35px>
D) vertex: (0,0)( 0,0 )
focus: (0,4)( 0 , - 4 )
directrix: y=4y = 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    <div style=padding-top: 35px>
سؤال
Graph the equation.
y2=16xy^{2}=-16 x
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     <div style=padding-top: 35px>  A) vertex: (0,0)( 0,0 )
focus: (2,0)( 2,0 )
directrix: x=2x = - 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     <div style=padding-top: 35px>

B) vertex: (0,0)( 0,0 )
focus: (0,2)( 0,2 )
directrix: y=2y = - 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     <div style=padding-top: 35px>
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     <div style=padding-top: 35px>
سؤال
Graph the ellipse and locate the foci.
4x2+9y2=364 x ^ { 2 } + 9 y ^ { 2 } = 36
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    <div style=padding-top: 35px>

A) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    <div style=padding-top: 35px>
B) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    <div style=padding-top: 35px>
C) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    <div style=padding-top: 35px>

D) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    <div style=padding-top: 35px>
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (5, 6), and the focus has coordinates (5, 3). A) (y6)2=8(x5)( y - 6 ) ^ { 2 } = 8 ( x - 5 )
B) (x5)2=12(y6)( x - 5 ) ^ { 2 } = - 12 ( y - 6 )
C) (y6)2=8(x5)( y - 6 ) ^ { 2 } = - 8 ( x - 5 )
D) (x5)2=12(y6)( x - 5 ) ^ { 2 } = 12 ( y - 6 )
سؤال
Find the center, foci, and vertices of the ellipse.
4x2+16y2=644 x ^ { 2 } + 16 y ^ { 2 } = 64

A) center at (0,0)( 0,0 )
foci at (4,0)( - 4,0 ) and (4,0)( 4,0 )
vertices at (16,0),(16,0)( - 16,0 ) , ( 16,0 )
B) center at (0,0)( 0,0 )
foci at (0,23)( 0 , - 2 \sqrt { 3 } ) and (0,23)( 0,2 \sqrt { 3 } )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
C) center at (0,0)( 0,0 )
foci at (0,2)( 0 , - 2 ) and (0,2)( 0,2 )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
D) center at (0,0)( 0,0 )
foci at (23,0)( - 2 \sqrt { 3 } , 0 ) and (23,0)( 2 \sqrt { 3 } , 0 )
vertices at (4,0),(4,0)( - 4,0 ) , ( 4,0 )
سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (9, -3), and the focus has coordinates (9, -7). A) (y3)2=8(x+9)( y - 3 ) ^ { 2 } = 8 ( x + 9 )
B) (x9)2=16(y+3)( x - 9 ) ^ { 2 } = 16 ( y + 3 )
C) (y3)2=8(x+9)( y - 3 ) ^ { 2 } = - 8 ( x + 9 )
D) (x9)2=16(y+3)( x - 9 ) ^ { 2 } = - 16 ( y + 3 )
سؤال
Solve the problem.
A reflecting telescope contains a parabolic mirror. If the mirror is 24 inches across at its opening and is 4 feet deep, where will the light be concentrated?

A)0.3 in. from the vertex
B)0.8 in. from the vertex
C)0.7 in. from the vertex
D)9 in. from the vertex
سؤال
Find the center, foci, and vertices of the ellipse.
16(x+1)2+9(y3)2=14416 ( x + 1 ) ^ { 2 } + 9 ( y - 3 ) ^ { 2 } = 144

A) center at (1,3)( - 1,3 )
foci at (1,37),(1,3+7)( - 1,3 - \sqrt { 7 } ) , ( - 1,3 + \sqrt { 7 } )
vertices at (1,7),(1,1)( - 1,7 ) , ( - 1 , - 1 )
B) center at (1,3)( 1,3 )
foci at (1,37),(1,3+7)( 1,3 - \sqrt { 7 } ) , ( 1,3 + \sqrt { 7 } )
vertices at (1,7),(1,1)( 1,7 ) , ( 1 , - 1 )
C) center at (0,3)( 0,3 )
foci at (0,37),(0,3+7)( 0,3 - \sqrt { 7 } ) , ( 0,3 + \sqrt { 7 } )
vertices at (0,7),(0,1)( 0,7 ) , ( 0 , - 1 )
D) center at (3,1)( 3 , - 1 )
foci at (3,17),(3,1+7)( 3 , - 1 - \sqrt { 7 } ) , ( 3 , - 1 + \sqrt { 7 } )
vertices at (3,7),(3,1)( 3,7 ) , ( 3 , - 1 )
سؤال
Graph the equation.
(x+2)216+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Solve the problem.
A searchlight is shaped like a parabola. If the light source is located 3 feet from the base along the axis of symmetry and the opening is 8 feet across, how deep should the searchlight be?

A)0.6 ft
B)1.3 ft
C)5.3 ft
D)4 ft
سؤال
Graph the ellipse and locate the foci.
x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>

A) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
B) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
C) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
D) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
سؤال
Find the center, foci, and vertices of the ellipse.
x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1

A) center at (0,0)( 0,0 )
foci at (23,0)( - 2 \sqrt { 3 } , 0 ) and (23,0)( 2 \sqrt { 3 } , 0 )
vertices at (4,0),(4,0)( - 4,0 ) , ( 4,0 )
B) center at (0,0)( 0,0 )
foci at (0,4)( 0,4 ) and (2,0)( 2,0 )
vertices at (0,16),(4,0)( 0,16 ) , ( 4,0 )
C) center at (0,0)( 0,0 )
foci at (0,4)( 0 , - 4 ) and (0,4)( 0,4 )
vertices at (0,16),(0,16)( 0 , - 16 ) , ( 0,16 )
D) center at (0,0)( 0,0 )
foci at (0,23)( 0 , - 2 \sqrt { 3 } ) and (0,23)( 0,2 \sqrt { 3 } )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
سؤال
Find the center, foci, and vertices of the ellipse.
36x2+9y2=32436 x ^ { 2 } + 9 y ^ { 2 } = 324

A) center at (0,0)( 0,0 )
foci at (33,0)( - 3 \sqrt { 3 } , 0 ) and (33,0)( 3 \sqrt { 3 } , 0 )
vertices at (6,0),(6,0)( - 6,0 ) , ( 6,0 )
B) center at (0,0)( 0,0 )
foci at (0,6)( 0 , - 6 ) and (0,6)( 0,6 )
vertices at (0,36),(0,36)( 0 , - 36 ) , ( 0,36 )
C) center at (0,0)( 0,0 )
foci at (0,33)( 0 , - 3 \sqrt { 3 } ) and (0,33)( 0,3 \sqrt { 3 } )
vertices at (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
D) center at (0,0)( 0,0 )
foci at (0,6)( 0,6 ) and (3,0)( 3,0 )
vertices at (0,36)( 0,36 ) and (9,0)( 9,0 )
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.
y2+10y=12x+23y^{2}+10 y=12 x+23
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7    <div style=padding-top: 35px>

A) vertex: (4,5)( - 4 , - 5 )
focus: (4,8)( - 4 , - 8 )
directrix: y=2y = - 2
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7    <div style=padding-top: 35px>
B) vertex: (4,5)( - 4 , - 5 )
focus: (4,2)( - 4 , - 2 )
directrix: y=8y = - 8
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7    <div style=padding-top: 35px>
C) vertex: (4,5)( - 4 , - 5 )
focus: (7,5)( - 7 , - 5 )
directrix: x=1x = - 1
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7    <div style=padding-top: 35px>
D) vertex: (4,5)( - 4 , - 5 )
focus: (1,5)( - 1 , - 5 )
directrix: x=7x = - 7
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7    <div style=padding-top: 35px>

سؤال
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (3, -5), and the focus has coordinates (4, -5). A) (x+3)2=4(y5)( x + 3 ) ^ { 2 } = 4 ( y - 5 )
B) (y+5)2=4(x3)( y + 5 ) ^ { 2 } = - 4 ( x - 3 )
C) (y+5)2=4(x3)( y + 5 ) ^ { 2 } = 4 ( x - 3 )
D) (x+3)2=4(y5)( x + 3 ) ^ { 2 } = - 4 ( y - 5 )
سؤال
Graph the ellipse and locate the foci.
x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    <div style=padding-top: 35px>

A) foci at (0,23)( 0,2 \sqrt { 3 } ) and (0,23)( 0 , - 2 \sqrt { 3 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    <div style=padding-top: 35px>
B) foci at (21,0)( \sqrt { 21 } , 0 ) and (21,0)( - \sqrt { 21 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    <div style=padding-top: 35px>
C) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    <div style=padding-top: 35px>
D) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )    <div style=padding-top: 35px>
سؤال
Find the center, foci, and vertices of the ellipse.
x281+y29=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 9 } = 1

A) center at (0,0)( 0,0 )
foci at (0,3)( 0 , - 3 ) and (0,3)( 0,3 )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )
B) center at (0,0)( 0,0 )
foci at (0,62)( 0 , - 6 \sqrt { 2 } ) and (0,62)( 0,6 \sqrt { 2 } )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )
C) center at (0,0)( 0,0 )
foci at (62,0)( - 6 \sqrt { 2 } , 0 ) and (62,0)( 6 \sqrt { 2 } , 0 )
vertices at (9,0),(9,0)( - 9,0 ) , ( 9,0 )
D) center at (0,0)( 0,0 )
foci at (9,0)( - 9,0 ) and (9,0)( 9,0 )
vertices at (81,0),(81,0)( - 81,0 ) , ( 81,0 )
سؤال
Find the vertex, focus, and directrix of the parabola. Graph the equation.
x212x=12y96x ^ { 2 } - 12 x = 12 y - 96
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2     <div style=padding-top: 35px>
A) vertex: (6,5)( 6,5 )
focus: (3,5)( 3,5 )
directrix: x=9x = 9
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2     <div style=padding-top: 35px>

B) vertex: (6,5)( 6,5 )
focus: (6,8)( 6,8 )
directrix: y=2y = 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2     <div style=padding-top: 35px>
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2     <div style=padding-top: 35px>
سؤال
Find the center, foci, and vertices of the ellipse.
(x2)236+(y+3)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1

A) center at (3,2)( - 3,2 )
foci at (3+33,2),(333,2)( - 3 + 3 \sqrt { 3 } , 2 ) , ( - 3 - 3 \sqrt { 3 } , 2 )
vertices at (4,3),(8,3)( - 4 , - 3 ) , ( 8 , - 3 )
B) center at (2,3)( 2 , - 3 )
foci at (2+33,2),(233,2)( 2 + 3 \sqrt { 3 } , 2 ) , ( 2 - 3 \sqrt { 3 } , 2 )
vertices at (6,3),(6,3)( 6 , - 3 ) , ( - 6 , - 3 )
C) center at (2,3)( 2 , - 3 )
foci at (33,3),(33,3)( - 3 \sqrt { 3 } , - 3 ) , ( 3 \sqrt { 3 } , - 3 )
vertices at (6,3),(6,3)( 6 , - 3 ) , ( - 6 , - 3 )
D) center at (2,3)( 2 , - 3 )
foci at (2+33,3),(233,3)( 2 + 3 \sqrt { 3 } , - 3 ) , ( 2 - 3 \sqrt { 3 } , - 3 )
vertices at (4,3),(8,3)( - 4 , - 3 ) , ( 8 , - 3 )
سؤال
Graph the equation.
(x+2)29+(y2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the ellipse and locate the foci.
9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    <div style=padding-top: 35px>

A) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    <div style=padding-top: 35px>
B) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    <div style=padding-top: 35px>
C) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    <div style=padding-top: 35px>
D) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    <div style=padding-top: 35px>
سؤال
Solve the problem.
A bridge is built in the shape of a parabolic arch. The bridge arch has a span of 160 feet and a maximum height of 40 feet. Find the height of the arch at 10 feet from its center.

A)2.5 ft
B)39.4 ft
C)0.2 ft
D)5 ft
سؤال
Find an equation for the ellipse described.
Foci at (1, 4)and (-5, 4); vertex at (-8, 4) A) (x+2)227+(y4)236=1\frac { ( x + 2 ) ^ { 2 } } { 27 } + \frac { ( y - 4 ) ^ { 2 } } { 36 } = 1
B) (x4)236+(y+2)227=1\frac { ( x - 4 ) ^ { 2 } } { 36 } + \frac { ( y + 2 ) ^ { 2 } } { 27 } = 1
C) (x4)227+(y+2)236=1\frac { ( x - 4 ) ^ { 2 } } { 27 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
D) (x+2)236+(y4)227=1\frac { ( x + 2 ) ^ { 2 } } { 36 } + \frac { ( y - 4 ) ^ { 2 } } { 27 } = 1
سؤال
Find an equation for the ellipse described.
Foci at (1, 4)and (7, 4); length of major axis is 10 A) (x+4)225+(y+4)216=1\frac { ( x + 4 ) ^ { 2 } } { 25 } + \frac { ( y + 4 ) ^ { 2 } } { 16 } = 1
В) (y+4)225+(x4)216=1\frac { ( y + 4 ) ^ { 2 } } { 25 } + \frac { ( x - 4 ) ^ { 2 } } { 16 } = 1
C) (x4)225+(y4)216=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
D) (x4)225+(x+4)216=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( x + 4 ) ^ { 2 } } { 16 } = 1
سؤال
Find an equation for the ellipse described.
Focus at (-2, 0); vertices at (-8, 0)and (8, 0) A) x24+y260=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 60 } = 1
B) x260+y264=1\frac { x ^ { 2 } } { 60 } + \frac { y ^ { 2 } } { 64 } = 1
C) x24+y264=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 64 } = 1
D) x264+y260=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 60 } = 1
سؤال
Find the equation in standard form of the parabola described.
Center at (-4, 5); focus at (-6, 5); contains the point (-9, 5) A) (x+5)221+(y4)225=1\frac { ( x + 5 ) ^ { 2 } } { 21 } + \frac { ( y - 4 ) ^ { 2 } } { 25 } = 1
B) (x+5)225+(y4)221=1\frac { ( x + 5 ) ^ { 2 } } { 25 } + \frac { ( y - 4 ) ^ { 2 } } { 21 } = 1
(x+4)221+(y5)225=1\frac { ( x + 4 ) ^ { 2 } } { 21 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
D) (x+4)225+(y5)221=1\frac { ( x + 4 ) ^ { 2 } } { 25 } + \frac { ( y - 5 ) ^ { 2 } } { 21 } = 1
سؤال
Find an equation for the ellipse described.
Vertices at (5, -4)and (5, 8); length of minor axis is 6 A) (x5)236+(y2)29=1\frac { ( x - 5 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
B) (x+5)236+(y+2)29=1\frac { ( x + 5 ) ^ { 2 } } { 36 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
C) (x5)29+(y2)236=1\frac { ( x - 5 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
D) (x+5)29(y+2)236=1\frac { ( x + 5 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
سؤال
Find the equation in standard form of the parabola described.
4x2+25y28x+150y+129=04 x ^ { 2 } + 25 y ^ { 2 } - 8 x + 150 y + 129 = 0

A) (x+3)225+(y1)24=1\frac { ( x + 3 ) ^ { 2 } } { 25 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
B) (x+1)225+(y3)24=1\frac { ( x + 1 ) ^ { 2 } } { 25 } + \frac { ( y - 3 ) ^ { 2 } } { 4 } = 1
C) (x1)24+(y+3)225=1\frac { ( x - 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1
D) (x1)225+(y+3)24=1\frac { ( x - 1 ) ^ { 2 } } { 25 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
سؤال
Find an equation for the ellipse described.
Center at (0, 0); focus at (-2, 0); vertex at (3, 0) A) x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1
B) x24+y25=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 5 } = 1
C) x25+y29=1\frac { x ^ { 2 } } { 5 } + \frac { y ^ { 2 } } { 9 } = 1
D) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
سؤال
Find an equation for the ellipse described.
Foci at (-3, 4)and (-3, -2); length of major axis is 10 A) (y1)225+(x3)216=1\frac { ( y - 1 ) ^ { 2 } } { 25 } + \frac { ( x - 3 ) ^ { 2 } } { 16 } = 1
B) (x1)225+(y3)216=1\frac { ( x - 1 ) ^ { 2 } } { 25 } + \frac { ( y - 3 ) ^ { 2 } } { 16 } = 1
C) (y1)225+(x+3)216=1\frac { ( y - 1 ) ^ { 2 } } { 25 } + \frac { ( x + 3 ) ^ { 2 } } { 16 } = 1
D) (x1)216+(y3)225=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 25 } = 1
سؤال
Find an equation for the ellipse described.
Foci at (0, -3)and (0, 3); length of the major axis is 12 A) x236+y227=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 27 } = 1
B) x227+y26=1\frac { x ^ { 2 } } { 27 } + \frac { y ^ { 2 } } { 6 } = 1
C) x236+y26=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 6 } = 1
D) x227+y236=1\frac { x ^ { 2 } } { 27 } + \frac { y ^ { 2 } } { 36 } = 1
سؤال
Find an equation for the ellipse described.
Center at (3, 3); focus at (9, 3); vertex at (11, 3) A) (x+3)236(y3)222=1\frac { ( x + 3 ) ^ { 2 } } { 36 } - \frac { ( y - 3 ) ^ { 2 } } { 22 } = 1
B) (x3)264+(y3)228=1\frac { ( x - 3 ) ^ { 2 } } { 64 } + \frac { ( y - 3 ) ^ { 2 } } { 28 } = 1
C) (x+3)264+(y+3)228=1\frac { ( x + 3 ) ^ { 2 } } { 64 } + \frac { ( y + 3 ) ^ { 2 } } { 28 } = 1
D) (x3)2121+(y+3)210=2\frac { ( x - 3 ) ^ { 2 } } { 121 } + \frac { ( y + 3 ) ^ { 2 } } { 10 } = 2
سؤال
Graph the equation.
9(x+2)2+4(y+1)2=369 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Write an equation for the graph.
 <strong>Write an equation for the graph.  </strong> A)  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1  B)  \frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1  C)  \frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1  D)  \frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1  <div style=padding-top: 35px>

A) (x+2)216+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
B) (x1)216+(y2)24=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1
C) (x+1)216+(y+2)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1
D) (x+1)24+(y+2)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1
سؤال
Find an equation for the ellipse described.
Focus at (0, -6); vertices at (0, -7)and (0, 7) A) x213+y249=1\frac { x ^ { 2 } } { 13 } + \frac { y ^ { 2 } } { 49 } = 1
B) x249+y213=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 13 } = 1
C) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1
D) x236+y213=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 13 } = 1
سؤال
Find an equation for the ellipse described.
Center at (0, 0); focus at (0, -5); vertex at (0, 8) A) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1
B) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1
C) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
D) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Graph the equation.
4(x2)2+16(y+1)2=644 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find an equation for the ellipse described.
Center (0, 0); major axis horizontal with length 8; length of minor axis is 4 A) x264+y216=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 16 } = 1
B) x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
C) x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
D) x28+y24=1\frac { x ^ { 2 } } { 8 } + \frac { y ^ { 2 } } { 4 } = 1
سؤال
Find an equation for the ellipse described.
Center at (0, 0); focus at (-5, 0); vertex at (8, 0) A) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1
B) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
C) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
D) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1
سؤال
Find an equation for the ellipse described.
Vertices at (-6, 2)and (14, 2); focus at (12, 2) A) (x2)281+(y4)235=1\frac { ( x - 2 ) ^ { 2 } } { 81 } + \frac { ( y - 4 ) ^ { 2 } } { 35 } = 1
B) (x4)2144(y+2)244=1\frac { ( x - 4 ) ^ { 2 } } { 144 } - \frac { ( y + 2 ) ^ { 2 } } { 44 } = 1
C) (x4)2100+(y2)236=1\frac { ( x - 4 ) ^ { 2 } } { 100 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
D) (x+4)264+(y+2)236=1\frac { ( x + 4 ) ^ { 2 } } { 64 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
سؤال
Find an equation for the ellipse described.
Center at (0, 0); focus at (5, 0); vertex at (8, 0) A) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
B) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1
C) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1
D) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
سؤال
Find an equation for the ellipse described.
Center (0, 0); major axis vertical with length 12; length of minor axis is 8 A) x28+y236=1\frac { x ^ { 2 } } { 8 } + \frac { y ^ { 2 } } { 36 } = 1
В) x236+y216=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 16 } = 1
C) x264+y2144=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 144 } = 1
D) x216+y236=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 36 } = 1
سؤال
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
4x216y2=644 x ^ { 2 } - 16 y ^ { 2 } = 64

A) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
B) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
D) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
سؤال
Graph the hyperbola.
25x24y2=10025 x^{2}-4 y^{2}=100
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the hyperbola.
y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the hyperbola.
36y24x2=14436 y^{2}-4 x^{2}=144
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the center, transverse axis, vertices, and foci of the hyperbola.
16x2100y2=160016 x ^ { 2 } - 100 y ^ { 2 } = 1600

A) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,229),(0,229)( 0 , - 2 \sqrt { 29 } ) , ( 0,2 \sqrt { 29 } )
B) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (221,0),(221,0)( - 2 \sqrt { 21 } , 0 ) , ( 2 \sqrt { 21 } , 0 )
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (229,0),(229,0)( - 2 \sqrt { 29 } , 0 ) , ( 2 \sqrt { 29 } , 0 )
D) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (229,0),(229,0)( - 2 \sqrt { 29 } , 0 ) , ( 2 \sqrt { 29 } , 0 )
سؤال
Find the equation in standard form of the parabola described.
16x2+4y2+32x+24y12=016 x ^ { 2 } + 4 y ^ { 2 } + 32 x + 24 y - 12 = 0

A) (x+3)24+(y+1)216=1\frac { ( x + 3 ) ^ { 2 } } { 4 } + \frac { ( y + 1 ) ^ { 2 } } { 16 } = 1
B) (x+1)24+(y+3)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
C) (x1)24+(y3)216=1\frac { ( x - 1 ) ^ { 2 } } { 4 } + \frac { ( y - 3 ) ^ { 2 } } { 16 } = 1
D) (x+1)216+(y+3)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
سؤال
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(y+2)29(x4)2=9( y + 2 ) ^ { 2 } - 9 ( x - 4 ) ^ { 2 } = 9

A) center: (4,2)( 4 , - 2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (4,5)( 4 , - 5 ) and (4,1)( 4,1 )
foci: (4,210)( 4 , - 2 - \sqrt { 10 } ) and (4,2+10)( 4 , - 2 + \sqrt { 10 } )
asymptotes of y+2=3(x4)y + 2 = - 3 ( x - 4 ) and y+2=3(x4)y + 2 = 3 ( x - 4 )
B) center: (4,2)( - 4,2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (4,1)( - 4 , - 1 ) and (4,5)( - 4,5 )
foci: (4,210)( - 4,2 - \sqrt { 10 } ) and (4,2+10)( - 4,2 + \sqrt { 10 } )
asymptotes of y+2=3(x4)y + 2 = - 3 ( x - 4 ) and y+2=3(x4)y + 2 = 3 ( x - 4 )
C) center: (4,2)( 4 , - 2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (5,4)( 5 , - 4 ) and (5,2)( 5,2 )
foci: (5,110)( 5 , - 1 - \sqrt { 10 } ) and (5,1+10)( 5 , - 1 + \sqrt { 10 } )
asymptotes of y+2=13(x4)y + 2 = - \frac { 1 } { 3 } ( x - 4 ) and y+2=13(x4)y + 2 = \frac { 1 } { 3 } ( x - 4 )
D) center: (4,2)( 4 , - 2 )
transverse axis is parallel to x\mathrm { x } -axis
vertices: (4,3)( - 4 , - 3 ) and (4,3)( 4,3 )
foci: (4,10)( 4 , - \sqrt { 10 } ) and (4,10)( 4 , \sqrt { 10 } )
asymptotes of y+2=3(x4)y + 2 = - 3 ( x - 4 ) and y+2=3(x4)y + 2 = 3 ( x - 4 )
سؤال
Graph the hyperbola.
(x+1)29(y+2)216=1\frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(x+4)216(y+3)236=1\frac { ( x + 4 ) ^ { 2 } } { 16 } - \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1

A) center at (4,3)( - 4 , - 3 )
transverse axis is parallel to xx -axis
vertices at (10,3)( - 10 , - 3 ) and (2,3)( 2 , - 3 )
foci at (4213,3)( - 4 - 2 \sqrt { 13 } , - 3 ) and (4+213,3)( - 4 + 2 \sqrt { 13 } , - 3 )
asymptotes of y+3=23(x+4)y + 3 = - \frac { 2 } { 3 } ( x + 4 ) and y+3=23(x+4)y + 3 = \frac { 2 } { 3 } ( x + 4 )
B) center at (4,3)( - 4 , - 3 )
transverse axis is parallel to xx -axis
vertices at (8,3)( - 8 , - 3 ) and (0,3)( 0 , - 3 )
foci at (4213,3)( - 4 - 2 \sqrt { 13 } , - 3 ) and (4+213,3)( - 4 + 2 \sqrt { 13 } , - 3 )
asymptotes of y+3=32(x+4)y + 3 = - \frac { 3 } { 2 } ( x + 4 ) and y+3=32(x+4)y + 3 = \frac { 3 } { 2 } ( x + 4 )
C) center at (3,4)( - 3 , - 4 )
transverse axis is parallel to xx -axis
vertices at (7,4)( - 7 , - 4 ) and (1,4)( 1 , - 4 )
foci at (3213,4)( - 3 - 2 \sqrt { 13 } , - 4 ) and (3+213,4)( - 3 + 2 \sqrt { 13 } , - 4 )
asymptotes of y+4=32(x+3)y + 4 = - \frac { 3 } { 2 } ( x + 3 ) and y+4=32(x+3)y + 4 = \frac { 3 } { 2 } ( x + 3 )
D) center at (4,3)( - 4 , - 3 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (4,7)( - 4 , - 7 ) and (4,1)( - 4,1 )
foci at (4,3213)( - 4 , - 3 - 2 \sqrt { 13 } ) and (4,3+213)( - 4 , - 3 + 2 \sqrt { 13 } )
asymptotes of y3=23(x4)y - 3 = - \frac { 2 } { 3 } ( x - 4 ) and y3=23(x4)y - 3 = \frac { 2 } { 3 } ( x - 4 )
سؤال
Graph the hyperbola.
36y2=9x2+32436 y^{2}=9 x^{2}+324
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Graph the hyperbola.
x24y225=1\frac{x^{2}}{4}-\frac{y^{2}}{25}=1
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(x1)24(y2)2=4( x - 1 ) ^ { 2 } - 4 ( y - 2 ) ^ { 2 } = 4

A) center at (1,2)( 1,2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (1,0)( 1,0 ) and (1,4)( 1,4 ) ,
foci at (1,25)( 1,2 - \sqrt { 5 } ) and (1,2+5)( 1,2 + \sqrt { 5 } ) ,
asymptotes of y+2=2(x+1)y + 2 = - 2 ( x + 1 ) and y+2=2(x+1)y + 2 = 2 ( x + 1 )
B) center at (1,2)( 1,2 )
transverse axis is parallel to xx -axis
vertices at (0,2)( 0,2 ) and (2,2)( 2,2 )
foci at (15,2)( 1 - \sqrt { 5 } , 2 ) and (1+5,2)( 1 + \sqrt { 5 } , 2 )
asymptotes of y2=2(x1)y - 2 = - 2 ( x - 1 ) and y2=2(x1)y - 2 = 2 ( x - 1 )
C) center at (1,2)( 1,2 )
transverse axis is parallel to xx -axis
vertices at (1,2)( - 1,2 ) and (3,2)( 3,2 )
foci at (15,2)( 1 - \sqrt { 5 } , 2 ) and (1+5,2)( 1 + \sqrt { 5 } , 2 )
asymptotes of y2=12(x1)y - 2 = - \frac { 1 } { 2 } ( x - 1 ) and y2=12(x1)y - 2 = \frac { 1 } { 2 } ( x - 1 )
D) center at (2,1)( 2,1 )
transverse axis is parallel to xx -axis
vertices at (0,1)( 0,1 ) and (4,1)( 4,1 )
foci at (25,1)( 2 - \sqrt { 5 } , 1 ) and (2+5,1)( 2 + \sqrt { 5 } , 1 )
asymptotes of y1=12(x2)y - 1 = - \frac { 1 } { 2 } ( x - 2 ) and y1=12(x2)y - 1 = \frac { 1 } { 2 } ( x - 2 )
سؤال
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(y1)24(x3)249=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 3 ) ^ { 2 } } { 49 } = 1

A) center: (3,1)( 3,1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (3,153)( 3,1 - \sqrt { 53 } ) and (3,1+53)( 3,1 + \sqrt { 53 } ) ;
foci: (3,1)( 3 , - 1 ) and (3,3)( 3,3 )
asymptotes of y1=72(x3)y - 1 = - \frac { 7 } { 2 } ( x - 3 ) and y1=72(x3)y - 1 = \frac { 7 } { 2 } ( x - 3 )
B) center: (3,1)( 3,1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (1,0)( 1,0 ) and (4,4)( 4,4 )
foci: (1,253)( 1,2 - \sqrt { 53 } ) and (4,2+53)( 4,2 + \sqrt { 53 } )
asymptotes of y1=72(x3)y - 1 = - \frac { 7 } { 2 } ( x - 3 ) and y1=72(x3)y - 1 = \frac { 7 } { 2 } ( x - 3 )
C) center: (3,1)( 3,1 )
transverse axis is parallel to yy -axis
vertices: (3,1)( 3 , - 1 ) and (3,3)( 3,3 )
foci: (3,153)( 3,1 - \sqrt { 53 } ) and (3,1+53)( 3,1 + \sqrt { 53 } )
asymptotes of y1=27(x3)\mathrm { y } - 1 = - \frac { 2 } { 7 } ( x - 3 ) and y1=27(x3)y - 1 = \frac { 2 } { 7 } ( x - 3 )
D) center: (3,1)( - 3 , - 1 )
transverse axis is parallel to xx -axis
vertices: (3,3)( - 3 , - 3 ) and (3,1)( - 3,1 )
foci: (3,153)( - 3 , - 1 - \sqrt { 53 } ) and (3,1+53)( - 3 , - 1 + \sqrt { 53 } )
asymptotes of y1=27(x3)y - 1 = - \frac { 2 } { 7 } ( x - 3 ) and y1=27(x3)y - 1 = \frac { 2 } { 7 } ( x - 3 )
سؤال
Graph the hyperbola.
25x2=9y2+22525 x^{2}=9 y^{2}+225
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
Find the center, transverse axis, vertices, and foci of the hyperbola.
25y236x2=90025 y ^ { 2 } - 36 x ^ { 2 } = 900

A) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
foci: (61,0),(61,0)( - \sqrt { 61 } , 0 ) , ( \sqrt { 61 } , 0 )
B) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
foci: (61,0),(61,0)( - \sqrt { 61 } , 0 ) , ( \sqrt { 61 } , 0 )
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
D) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices at (0,6)( 0 , - 6 ) and (0,6)( 0,6 )
foci at (0,61)( 0 , - \sqrt { 61 } ) and (0,61)( 0 , \sqrt { 61 } )
سؤال
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
y236x281=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 81 } = 1

A) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
foci: (313,0),(313,0)( - 3 \sqrt { 13 } , 0 ) , ( 3 \sqrt { 13 } , 0 )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
B) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
foci: (0,313),(0,313)( 0 , - 3 \sqrt { 13 } ) , ( 0,3 \sqrt { 13 } )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
C) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
foci: (313,0),(313,0)( - 3 \sqrt { 13 } , 0 ) , ( 3 \sqrt { 13 } , 0 )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
D) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
سؤال
Solve the problem.
An arch for a bridge over a highway is in the form of a semiellipse. The top of the arch is 35 feet above ground (the major axis). What should the span of the bridge be (the length of its minor axis)if the height 27 feet from the center is to be 16 feet above ground?

A)60.72 ft
B)30.36 ft
C)50.29 ft
D)118.13 ft
سؤال
Find the center, transverse axis, vertices, and foci of the hyperbola.
y24x2121=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 121 } = 1

A) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
oci: (0,55),(0,55)( 0 , - 5 \sqrt { 5 } ) , ( 0,5 \sqrt { 5 } )
B) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) f
foci: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
C) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (55,0),(55,0)( - 5 \sqrt { 5 } , 0 ) , ( 5 \sqrt { 5 } , 0 )
D) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
foci: (55,0),(55,0)( - 5 \sqrt { 5 } , 0 ) , ( 5 \sqrt { 5 } , 0 )
سؤال
Solve the problem.
A bridge is built in the shape of a semielliptical arch. It has a span of 102 feet. The height of the arch 27 feet from the center is to be 11 feet. Find the height of the arch at its center.

A)11.41 ft
B)20.78 ft
C)12.97 ft
D)27.65 ft
سؤال
Find the center, transverse axis, vertices, and foci of the hyperbola.
x2121y225=1\frac { x ^ { 2 } } { 121 } - \frac { y ^ { 2 } } { 25 } = 1

A) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices at (0,11)( 0 , - 11 ) and (0,11)( 0,11 )
foci at (146,0)( - \sqrt { 146 } , 0 ) and (146,0)( \sqrt { 146 } , 0 )
B) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices at (11,0)( - 11,0 ) and (11,0)( 11,0 )
foci at (5,0)( - 5,0 ) and (5,0)( 5,0 )
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices at (5,0)( - 5,0 ) and (5,0)( 5,0 )
foci at (146,0)( - \sqrt { 146 } , 0 ) and (146,0)( \sqrt { 146 } , 0 )
D) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices at (11,0)( - 11,0 ) and (11,0)( 11,0 )
foci at (146,0)( - \sqrt { 146 } , 0 ) and (146,0)( \sqrt { 146 } , 0 )
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/97
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 6: Conic Sections
1
Find the vertex, focus, and directrix of the parabola with the given equation.
(y4)2=12(x+2)( y - 4 ) ^ { 2 } = 12 ( x + 2 )

A) vertex: (2,4)( - 2,4 )
focus: (5,4)( - 5,4 )
directrix: x=1x = 1
B) vertex: (2,4)( 2 , - 4 )
focus: (5,4)( 5 , - 4 )
directrix: x=1x = - 1
C) vertex: (4,2)( 4 , - 2 )
focus: (7,2)( 7 , - 2 )
directrix: x=1x = 1
D) vertex: (2,4)( - 2,4 )
focus: (1,4)( 1,4 )
directrix: x=5x = - 5
D
2
Find the vertex, focus, and directrix of the parabola with the given equation.
(x4)2=20(y+3)( x - 4 ) ^ { 2 } = - 20 ( y + 3 )

A) vertex: (4,3)( 4 , - 3 )
focus: (4,8)( 4 , - 8 )
directrix: y=2y = 2
B) vertex: (4,3)( - 4,3 )
focus: (4,2)( - 4 , - 2 )
directrix: y=8y = 8
C) vertex: (4,3)( 4 , - 3 )
focus: (4,2)( 4,2 )
directrix: x=8x = - 8
D) vertex: (3,4)( - 3,4 )
focus: (3,1)( - 3 , - 1 )
directrix: y=9y = 9
A
3
Graph the equation.
(x+1)2=8(y+2)( x + 1 ) ^ { 2 } = - 8 ( y + 2 )
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  ( x + 1 ) ^ { 2 } = - 8 ( y + 2 )   </strong> A)   B)   C)   D)
A
4
Find the vertex, focus, and directrix of the parabola. Graph the equation.
x+3)2=(y+2)x+3)^{2}=-(y+2)
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75

A) vertex: (3,2)( - 3 , - 2 )
focus: (3.25,2)( - 3.25 , - 2 )
directrix: x=2.75x = - 2.75
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75

B) vertex: (3,2)( 3,2 )
focus: (3,1.75)( 3,1.75 )
directrix: y=2.25y = 2.25
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75
C) vertex: (3,2)( 3,2 )
focus: (2.75,2)( 2.75,2 )
directrix: x=3.25x = 3.25
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75

D) vertex: (3,2)( - 3 , - 2 )
focus: (3,2.25)( - 3 , - 2.25 )
directrix: y=1.75y = - 1.75
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  x+3)^{2}=-(y+2)    </strong> A) vertex:  ( - 3 , - 2 )  focus:  ( - 3.25 , - 2 )  directrix:  x = - 2.75     B) vertex:  ( 3,2 )  focus:  ( 3,1.75 )  directrix:  y = 2.25    C) vertex:  ( 3,2 )  focus:  ( 2.75,2 )  directrix:  x = 3.25     D) vertex:  ( - 3 , - 2 )  focus:  ( - 3 , - 2.25 )  directrix:  y = - 1.75
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
5
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
(y+2)2=5(x1)(y+2)^{2}=-5(x-1)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)

A)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)
B)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)
C)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)
D)
 <strong>Determine if each ordered pair is a solution to the given system of inequalities in two variables.  (y+2)^{2}=-5(x-1)    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the vertex, focus, and directrix of the parabola with the given equation.
x1)2=8(y+3)x - 1 ) ^ { 2 } = 8 ( y + 3 )

A) vertex: (3,1)( - 3,1 )
focus: (3,3)( - 3,3 )
directrix: y=1y = - 1
B) vertex: (1,3)( 1 , - 3 )
focus: (1,1)( 1 , - 1 )
directrix: y=5y = - 5
C) vertex: (1,3)( - 1,3 )
focus: (1,5)( - 1,5 )
directrix: y=1y = 1
D) vertex: (1,3)( 1 , - 3 )
focus: (1,5)( 1 , - 5 )
directrix: x=1x = - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
7
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (0, 0), and the focus has coordinates (6, 0). A) y2=24xy ^ { 2 } = 24 x
B) x2=6yx ^ { 2 } = 6 y
C) x2=24yx ^ { 2 } = 24 y
D) y2=6xy ^ { 2 } = 6 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
8
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (6, 9), and the focus has coordinates (7, 9). A) (y9)2=4(x6)( y - 9 ) ^ { 2 } = - 4 ( x - 6 )
B) (x9)2=8(y9)( x - 9 ) ^ { 2 } = 8 ( y - 9 )
C) (x9)2=8(y9)( x - 9 ) ^ { 2 } = - 8 ( y - 9 )
D) (y9)2=4(x6)( y - 9 ) ^ { 2 } = 4 ( x - 6 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
9
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The focus has coordinates (-15, 0), and the equation of the directrix is x = 15. A) y2=60xy ^ { 2 } = 60 x
B) y2=60xy ^ { 2 } = - 60 x
C) x2=60yx ^ { 2 } = - 60 y
D) y2=15xy ^ { 2 } = - 15 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the vertex, focus, and directrix of the parabola with the given equation.
(y4)2=16(x1)( y - 4 ) ^ { 2 } = - 16 ( x - 1 )

A) vertex: (1,4)( 1,4 )
focus: (3,4)( - 3,4 )
directrix: x=5x = 5
B) vertex: (1,4)( - 1 , - 4 )
focus: (5,4)( - 5 , - 4 )
directrix: x=3x = 3
C) vertex: (1,4)( 1,4 )
focus: (5,4)( 5,4 )
directrix: x=3x = - 3
D) vertex: (4,1)( 4,1 )
focus: (0,1)( 0,1 )
directrix: x=8x = 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
11
Graph the equation.
x2=18yx^{2}=-18 y
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  x^{2}=-18 y   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the vertex, focus, and directrix of the parabola. Graph the equation.
(y+1)2=8(x+2)( y + 1 ) ^ { 2 } = - 8 ( x + 2 )
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0

A)
vertex: (1,2) (1,2)
focus: (1,2) (-1,2)
directrix: x=3 x=3
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0
B) vertex: (2,1) (-2,-1)
focus: (2,3) (-2,-3)
directrix: y=1 y=1
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0
C) vertex: (2,1) (2,1)
focus: (2,1) (2,-1)
directrix: y=3 y=3
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0
D) vertex: (2,1) (-2,-1)
focus: (4,1) (-4,-1)
directrix: x=0 x=0
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  ( y + 1 ) ^ { 2 } = - 8 ( x + 2 )   </strong> A) vertex:   (1,2)   focus:   (-1,2)   directrix:   x=3     B) vertex:   (-2,-1)   focus:   (-2,-3)   directrix:   y=1     C) vertex:   (2,1)   focus:   (2,-1)   directrix:   y=3     D) vertex:   (-2,-1)   focus:   (-4,-1)   directrix:   x=0




فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
13
Graph the equation.
Graph the equation.   A)   B)   C)   D)  A)
Graph the equation.   A)   B)   C)   D)
B)
Graph the equation.   A)   B)   C)   D)
C)
Graph the equation.   A)   B)   C)   D)
D)
Graph the equation.   A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
14
Graph the equation.
y2=20xy^{2}=20 x
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y^{2}=20 x    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
15
Graph the equation.
(y+1)2=7(x2)( y + 1 ) ^ { 2 } = 7 ( x - 2 )
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  ( y + 1 ) ^ { 2 } = 7 ( x - 2 )    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
16
Graph the equation.
(x2)2=7(y+2)( x - 2 ) ^ { 2 } = 7 ( y + 2 )
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)
A)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)
B)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)
C)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)
D)
 Graph the equation.  ( x - 2 ) ^ { 2 } = 7 ( y + 2 )    A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
17
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The focus has coordinates (0, 19), and the equation of the directrix is y = -19. A) x2=76yx ^ { 2 } = - 76 y
B) x2=76yx ^ { 2 } = 76 y
C) y2=76xy ^ { 2 } = 76 x
D) y2=19xy ^ { 2 } = 19 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the vertex, focus, and directrix of the parabola. Graph the equation.
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4     A) vertex: (0,0)( 0,0 )
focus: (4,0)( - 4,0 )
directrix: x=4x = 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4
B) vertex: (0,0)( 0,0 )
focus: (4,0)( 4,0 )
directrix: x=4x = - 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4

C) vertex: (0,0)( 0,0 )
focus: (0,4)( 0 , - 4 )
directrix: y=4y = 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4
D) vertex: (0,0)( 0,0 )
focus: (0,4)( 0 , - 4 )
directrix: y=4y = 4
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( - 4,0 )  directrix:  x = 4    B) vertex:  ( 0,0 )  focus:  ( 4,0 )  directrix:  x = - 4     C) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4    D) vertex:  ( 0,0 )  focus:  ( 0 , - 4 )  directrix:  y = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
19
Graph the equation.
y2=16xy^{2}=-16 x
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  y^{2}=-16 x    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the vertex, focus, and directrix of the parabola. Graph the equation.
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2      A) vertex: (0,0)( 0,0 )
focus: (2,0)( 2,0 )
directrix: x=2x = - 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2

B) vertex: (0,0)( 0,0 )
focus: (0,2)( 0,2 )
directrix: y=2y = - 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.   A) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2     B) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
21
Graph the ellipse and locate the foci.
4x2+9y2=364 x ^ { 2 } + 9 y ^ { 2 } = 36
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )

A) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )
B) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )
C) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )

D) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } + 9 y ^ { 2 } = 36   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )     D) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
22
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (5, 6), and the focus has coordinates (5, 3). A) (y6)2=8(x5)( y - 6 ) ^ { 2 } = 8 ( x - 5 )
B) (x5)2=12(y6)( x - 5 ) ^ { 2 } = - 12 ( y - 6 )
C) (y6)2=8(x5)( y - 6 ) ^ { 2 } = - 8 ( x - 5 )
D) (x5)2=12(y6)( x - 5 ) ^ { 2 } = 12 ( y - 6 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find the center, foci, and vertices of the ellipse.
4x2+16y2=644 x ^ { 2 } + 16 y ^ { 2 } = 64

A) center at (0,0)( 0,0 )
foci at (4,0)( - 4,0 ) and (4,0)( 4,0 )
vertices at (16,0),(16,0)( - 16,0 ) , ( 16,0 )
B) center at (0,0)( 0,0 )
foci at (0,23)( 0 , - 2 \sqrt { 3 } ) and (0,23)( 0,2 \sqrt { 3 } )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
C) center at (0,0)( 0,0 )
foci at (0,2)( 0 , - 2 ) and (0,2)( 0,2 )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
D) center at (0,0)( 0,0 )
foci at (23,0)( - 2 \sqrt { 3 } , 0 ) and (23,0)( 2 \sqrt { 3 } , 0 )
vertices at (4,0),(4,0)( - 4,0 ) , ( 4,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
24
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (9, -3), and the focus has coordinates (9, -7). A) (y3)2=8(x+9)( y - 3 ) ^ { 2 } = 8 ( x + 9 )
B) (x9)2=16(y+3)( x - 9 ) ^ { 2 } = 16 ( y + 3 )
C) (y3)2=8(x+9)( y - 3 ) ^ { 2 } = - 8 ( x + 9 )
D) (x9)2=16(y+3)( x - 9 ) ^ { 2 } = - 16 ( y + 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
25
Solve the problem.
A reflecting telescope contains a parabolic mirror. If the mirror is 24 inches across at its opening and is 4 feet deep, where will the light be concentrated?

A)0.3 in. from the vertex
B)0.8 in. from the vertex
C)0.7 in. from the vertex
D)9 in. from the vertex
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the center, foci, and vertices of the ellipse.
16(x+1)2+9(y3)2=14416 ( x + 1 ) ^ { 2 } + 9 ( y - 3 ) ^ { 2 } = 144

A) center at (1,3)( - 1,3 )
foci at (1,37),(1,3+7)( - 1,3 - \sqrt { 7 } ) , ( - 1,3 + \sqrt { 7 } )
vertices at (1,7),(1,1)( - 1,7 ) , ( - 1 , - 1 )
B) center at (1,3)( 1,3 )
foci at (1,37),(1,3+7)( 1,3 - \sqrt { 7 } ) , ( 1,3 + \sqrt { 7 } )
vertices at (1,7),(1,1)( 1,7 ) , ( 1 , - 1 )
C) center at (0,3)( 0,3 )
foci at (0,37),(0,3+7)( 0,3 - \sqrt { 7 } ) , ( 0,3 + \sqrt { 7 } )
vertices at (0,7),(0,1)( 0,7 ) , ( 0 , - 1 )
D) center at (3,1)( 3 , - 1 )
foci at (3,17),(3,1+7)( 3 , - 1 - \sqrt { 7 } ) , ( 3 , - 1 + \sqrt { 7 } )
vertices at (3,7),(3,1)( 3,7 ) , ( 3 , - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
27
Graph the equation.
(x+2)216+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
28
Solve the problem.
A searchlight is shaped like a parabola. If the light source is located 3 feet from the base along the axis of symmetry and the opening is 8 feet across, how deep should the searchlight be?

A)0.6 ft
B)1.3 ft
C)5.3 ft
D)4 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
29
Graph the ellipse and locate the foci.
x29+y24=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )

A) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
B) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
C) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
D) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the center, foci, and vertices of the ellipse.
x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1

A) center at (0,0)( 0,0 )
foci at (23,0)( - 2 \sqrt { 3 } , 0 ) and (23,0)( 2 \sqrt { 3 } , 0 )
vertices at (4,0),(4,0)( - 4,0 ) , ( 4,0 )
B) center at (0,0)( 0,0 )
foci at (0,4)( 0,4 ) and (2,0)( 2,0 )
vertices at (0,16),(4,0)( 0,16 ) , ( 4,0 )
C) center at (0,0)( 0,0 )
foci at (0,4)( 0 , - 4 ) and (0,4)( 0,4 )
vertices at (0,16),(0,16)( 0 , - 16 ) , ( 0,16 )
D) center at (0,0)( 0,0 )
foci at (0,23)( 0 , - 2 \sqrt { 3 } ) and (0,23)( 0,2 \sqrt { 3 } )
vertices at (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the center, foci, and vertices of the ellipse.
36x2+9y2=32436 x ^ { 2 } + 9 y ^ { 2 } = 324

A) center at (0,0)( 0,0 )
foci at (33,0)( - 3 \sqrt { 3 } , 0 ) and (33,0)( 3 \sqrt { 3 } , 0 )
vertices at (6,0),(6,0)( - 6,0 ) , ( 6,0 )
B) center at (0,0)( 0,0 )
foci at (0,6)( 0 , - 6 ) and (0,6)( 0,6 )
vertices at (0,36),(0,36)( 0 , - 36 ) , ( 0,36 )
C) center at (0,0)( 0,0 )
foci at (0,33)( 0 , - 3 \sqrt { 3 } ) and (0,33)( 0,3 \sqrt { 3 } )
vertices at (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
D) center at (0,0)( 0,0 )
foci at (0,6)( 0,6 ) and (3,0)( 3,0 )
vertices at (0,36)( 0,36 ) and (9,0)( 9,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the vertex, focus, and directrix of the parabola. Graph the equation.
y2+10y=12x+23y^{2}+10 y=12 x+23
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7

A) vertex: (4,5)( - 4 , - 5 )
focus: (4,8)( - 4 , - 8 )
directrix: y=2y = - 2
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7
B) vertex: (4,5)( - 4 , - 5 )
focus: (4,2)( - 4 , - 2 )
directrix: y=8y = - 8
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7
C) vertex: (4,5)( - 4 , - 5 )
focus: (7,5)( - 7 , - 5 )
directrix: x=1x = - 1
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7
D) vertex: (4,5)( - 4 , - 5 )
focus: (1,5)( - 1 , - 5 )
directrix: x=7x = - 7
 <strong>Find the vertex, focus, and directrix of the parabola. Graph the equation.  y^{2}+10 y=12 x+23   </strong> A) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 8 )  directrix:  y = - 2    B) vertex:  ( - 4 , - 5 )  focus:  ( - 4 , - 2 )  directrix:  y = - 8    C) vertex:  ( - 4 , - 5 )  focus:  ( - 7 , - 5 )  directrix:  x = - 1    D) vertex:  ( - 4 , - 5 )  focus:  ( - 1 , - 5 )  directrix:  x = - 7

فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
33
Determine if each ordered pair is a solution to the given system of inequalities in two variables.
The vertex has coordinates (3, -5), and the focus has coordinates (4, -5). A) (x+3)2=4(y5)( x + 3 ) ^ { 2 } = 4 ( y - 5 )
B) (y+5)2=4(x3)( y + 5 ) ^ { 2 } = - 4 ( x - 3 )
C) (y+5)2=4(x3)( y + 5 ) ^ { 2 } = 4 ( x - 3 )
D) (x+3)2=4(y5)( x + 3 ) ^ { 2 } = - 4 ( y - 5 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
34
Graph the ellipse and locate the foci.
x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )

A) foci at (0,23)( 0,2 \sqrt { 3 } ) and (0,23)( 0 , - 2 \sqrt { 3 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )
B) foci at (21,0)( \sqrt { 21 } , 0 ) and (21,0)( - \sqrt { 21 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )
C) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )
D) foci at (25,0)( 2 \sqrt { 5 } , 0 ) and (25,0)( - 2 \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1   </strong> A) foci at  ( 0,2 \sqrt { 3 } )  and  ( 0 , - 2 \sqrt { 3 } )    B) foci at  ( \sqrt { 21 } , 0 )  and  ( - \sqrt { 21 } , 0 )    C) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    D) foci at  ( 2 \sqrt { 5 } , 0 )  and  ( - 2 \sqrt { 5 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the center, foci, and vertices of the ellipse.
x281+y29=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 9 } = 1

A) center at (0,0)( 0,0 )
foci at (0,3)( 0 , - 3 ) and (0,3)( 0,3 )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )
B) center at (0,0)( 0,0 )
foci at (0,62)( 0 , - 6 \sqrt { 2 } ) and (0,62)( 0,6 \sqrt { 2 } )
vertices at (0,9),(0,9)( 0 , - 9 ) , ( 0,9 )
C) center at (0,0)( 0,0 )
foci at (62,0)( - 6 \sqrt { 2 } , 0 ) and (62,0)( 6 \sqrt { 2 } , 0 )
vertices at (9,0),(9,0)( - 9,0 ) , ( 9,0 )
D) center at (0,0)( 0,0 )
foci at (9,0)( - 9,0 ) and (9,0)( 9,0 )
vertices at (81,0),(81,0)( - 81,0 ) , ( 81,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
36
Find the vertex, focus, and directrix of the parabola. Graph the equation.
x212x=12y96x ^ { 2 } - 12 x = 12 y - 96
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2
A) vertex: (6,5)( 6,5 )
focus: (3,5)( 3,5 )
directrix: x=9x = 9
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2

B) vertex: (6,5)( 6,5 )
focus: (6,8)( 6,8 )
directrix: y=2y = 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2
 Find the vertex, focus, and directrix of the parabola. Graph the equation.  x ^ { 2 } - 12 x = 12 y - 96    A) vertex:  ( 6,5 )  focus:  ( 3,5 )  directrix:  x = 9     B) vertex:  ( 6,5 )  focus:  ( 6,8 )  directrix:  y = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the center, foci, and vertices of the ellipse.
(x2)236+(y+3)29=1\frac { ( x - 2 ) ^ { 2 } } { 36 } + \frac { ( y + 3 ) ^ { 2 } } { 9 } = 1

A) center at (3,2)( - 3,2 )
foci at (3+33,2),(333,2)( - 3 + 3 \sqrt { 3 } , 2 ) , ( - 3 - 3 \sqrt { 3 } , 2 )
vertices at (4,3),(8,3)( - 4 , - 3 ) , ( 8 , - 3 )
B) center at (2,3)( 2 , - 3 )
foci at (2+33,2),(233,2)( 2 + 3 \sqrt { 3 } , 2 ) , ( 2 - 3 \sqrt { 3 } , 2 )
vertices at (6,3),(6,3)( 6 , - 3 ) , ( - 6 , - 3 )
C) center at (2,3)( 2 , - 3 )
foci at (33,3),(33,3)( - 3 \sqrt { 3 } , - 3 ) , ( 3 \sqrt { 3 } , - 3 )
vertices at (6,3),(6,3)( 6 , - 3 ) , ( - 6 , - 3 )
D) center at (2,3)( 2 , - 3 )
foci at (2+33,3),(233,3)( 2 + 3 \sqrt { 3 } , - 3 ) , ( 2 - 3 \sqrt { 3 } , - 3 )
vertices at (4,3),(8,3)( - 4 , - 3 ) , ( 8 , - 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
38
Graph the equation.
(x+2)29+(y2)216=1\frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  \frac { ( x + 2 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
39
Graph the ellipse and locate the foci.
9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )

A) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )
B) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )
C) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )
D) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    C) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    D) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
40
Solve the problem.
A bridge is built in the shape of a parabolic arch. The bridge arch has a span of 160 feet and a maximum height of 40 feet. Find the height of the arch at 10 feet from its center.

A)2.5 ft
B)39.4 ft
C)0.2 ft
D)5 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find an equation for the ellipse described.
Foci at (1, 4)and (-5, 4); vertex at (-8, 4) A) (x+2)227+(y4)236=1\frac { ( x + 2 ) ^ { 2 } } { 27 } + \frac { ( y - 4 ) ^ { 2 } } { 36 } = 1
B) (x4)236+(y+2)227=1\frac { ( x - 4 ) ^ { 2 } } { 36 } + \frac { ( y + 2 ) ^ { 2 } } { 27 } = 1
C) (x4)227+(y+2)236=1\frac { ( x - 4 ) ^ { 2 } } { 27 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
D) (x+2)236+(y4)227=1\frac { ( x + 2 ) ^ { 2 } } { 36 } + \frac { ( y - 4 ) ^ { 2 } } { 27 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find an equation for the ellipse described.
Foci at (1, 4)and (7, 4); length of major axis is 10 A) (x+4)225+(y+4)216=1\frac { ( x + 4 ) ^ { 2 } } { 25 } + \frac { ( y + 4 ) ^ { 2 } } { 16 } = 1
В) (y+4)225+(x4)216=1\frac { ( y + 4 ) ^ { 2 } } { 25 } + \frac { ( x - 4 ) ^ { 2 } } { 16 } = 1
C) (x4)225+(y4)216=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
D) (x4)225+(x+4)216=1\frac { ( x - 4 ) ^ { 2 } } { 25 } + \frac { ( x + 4 ) ^ { 2 } } { 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find an equation for the ellipse described.
Focus at (-2, 0); vertices at (-8, 0)and (8, 0) A) x24+y260=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 60 } = 1
B) x260+y264=1\frac { x ^ { 2 } } { 60 } + \frac { y ^ { 2 } } { 64 } = 1
C) x24+y264=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 64 } = 1
D) x264+y260=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 60 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the equation in standard form of the parabola described.
Center at (-4, 5); focus at (-6, 5); contains the point (-9, 5) A) (x+5)221+(y4)225=1\frac { ( x + 5 ) ^ { 2 } } { 21 } + \frac { ( y - 4 ) ^ { 2 } } { 25 } = 1
B) (x+5)225+(y4)221=1\frac { ( x + 5 ) ^ { 2 } } { 25 } + \frac { ( y - 4 ) ^ { 2 } } { 21 } = 1
(x+4)221+(y5)225=1\frac { ( x + 4 ) ^ { 2 } } { 21 } + \frac { ( y - 5 ) ^ { 2 } } { 25 } = 1
D) (x+4)225+(y5)221=1\frac { ( x + 4 ) ^ { 2 } } { 25 } + \frac { ( y - 5 ) ^ { 2 } } { 21 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find an equation for the ellipse described.
Vertices at (5, -4)and (5, 8); length of minor axis is 6 A) (x5)236+(y2)29=1\frac { ( x - 5 ) ^ { 2 } } { 36 } + \frac { ( y - 2 ) ^ { 2 } } { 9 } = 1
B) (x+5)236+(y+2)29=1\frac { ( x + 5 ) ^ { 2 } } { 36 } + \frac { ( y + 2 ) ^ { 2 } } { 9 } = 1
C) (x5)29+(y2)236=1\frac { ( x - 5 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
D) (x+5)29(y+2)236=1\frac { ( x + 5 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find the equation in standard form of the parabola described.
4x2+25y28x+150y+129=04 x ^ { 2 } + 25 y ^ { 2 } - 8 x + 150 y + 129 = 0

A) (x+3)225+(y1)24=1\frac { ( x + 3 ) ^ { 2 } } { 25 } + \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
B) (x+1)225+(y3)24=1\frac { ( x + 1 ) ^ { 2 } } { 25 } + \frac { ( y - 3 ) ^ { 2 } } { 4 } = 1
C) (x1)24+(y+3)225=1\frac { ( x - 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1
D) (x1)225+(y+3)24=1\frac { ( x - 1 ) ^ { 2 } } { 25 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find an equation for the ellipse described.
Center at (0, 0); focus at (-2, 0); vertex at (3, 0) A) x29+y25=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 5 } = 1
B) x24+y25=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 5 } = 1
C) x25+y29=1\frac { x ^ { 2 } } { 5 } + \frac { y ^ { 2 } } { 9 } = 1
D) x24+y29=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 9 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find an equation for the ellipse described.
Foci at (-3, 4)and (-3, -2); length of major axis is 10 A) (y1)225+(x3)216=1\frac { ( y - 1 ) ^ { 2 } } { 25 } + \frac { ( x - 3 ) ^ { 2 } } { 16 } = 1
B) (x1)225+(y3)216=1\frac { ( x - 1 ) ^ { 2 } } { 25 } + \frac { ( y - 3 ) ^ { 2 } } { 16 } = 1
C) (y1)225+(x+3)216=1\frac { ( y - 1 ) ^ { 2 } } { 25 } + \frac { ( x + 3 ) ^ { 2 } } { 16 } = 1
D) (x1)216+(y3)225=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 25 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find an equation for the ellipse described.
Foci at (0, -3)and (0, 3); length of the major axis is 12 A) x236+y227=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 27 } = 1
B) x227+y26=1\frac { x ^ { 2 } } { 27 } + \frac { y ^ { 2 } } { 6 } = 1
C) x236+y26=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 6 } = 1
D) x227+y236=1\frac { x ^ { 2 } } { 27 } + \frac { y ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find an equation for the ellipse described.
Center at (3, 3); focus at (9, 3); vertex at (11, 3) A) (x+3)236(y3)222=1\frac { ( x + 3 ) ^ { 2 } } { 36 } - \frac { ( y - 3 ) ^ { 2 } } { 22 } = 1
B) (x3)264+(y3)228=1\frac { ( x - 3 ) ^ { 2 } } { 64 } + \frac { ( y - 3 ) ^ { 2 } } { 28 } = 1
C) (x+3)264+(y+3)228=1\frac { ( x + 3 ) ^ { 2 } } { 64 } + \frac { ( y + 3 ) ^ { 2 } } { 28 } = 1
D) (x3)2121+(y+3)210=2\frac { ( x - 3 ) ^ { 2 } } { 121 } + \frac { ( y + 3 ) ^ { 2 } } { 10 } = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
51
Graph the equation.
9(x+2)2+4(y+1)2=369 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  9 ( x + 2 ) ^ { 2 } + 4 ( y + 1 ) ^ { 2 } = 36   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
52
Write an equation for the graph.
 <strong>Write an equation for the graph.  </strong> A)  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1  B)  \frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1  C)  \frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1  D)  \frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1

A) (x+2)216+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
B) (x1)216+(y2)24=1\frac { ( x - 1 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 4 } = 1
C) (x+1)216+(y+2)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 4 } = 1
D) (x+1)24+(y+2)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find an equation for the ellipse described.
Focus at (0, -6); vertices at (0, -7)and (0, 7) A) x213+y249=1\frac { x ^ { 2 } } { 13 } + \frac { y ^ { 2 } } { 49 } = 1
B) x249+y213=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 13 } = 1
C) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1
D) x236+y213=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 13 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find an equation for the ellipse described.
Center at (0, 0); focus at (0, -5); vertex at (0, 8) A) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1
B) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1
C) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
D) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
55
Graph the equation.
4(x2)2+16(y+1)2=644 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)

A)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)
B)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)
C)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)
D)
 <strong>Graph the equation.  4 ( x - 2 ) ^ { 2 } + 16 ( y + 1 ) ^ { 2 } = 64   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find an equation for the ellipse described.
Center (0, 0); major axis horizontal with length 8; length of minor axis is 4 A) x264+y216=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 16 } = 1
B) x24+y216=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 16 } = 1
C) x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
D) x28+y24=1\frac { x ^ { 2 } } { 8 } + \frac { y ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find an equation for the ellipse described.
Center at (0, 0); focus at (-5, 0); vertex at (8, 0) A) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1
B) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
C) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
D) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find an equation for the ellipse described.
Vertices at (-6, 2)and (14, 2); focus at (12, 2) A) (x2)281+(y4)235=1\frac { ( x - 2 ) ^ { 2 } } { 81 } + \frac { ( y - 4 ) ^ { 2 } } { 35 } = 1
B) (x4)2144(y+2)244=1\frac { ( x - 4 ) ^ { 2 } } { 144 } - \frac { ( y + 2 ) ^ { 2 } } { 44 } = 1
C) (x4)2100+(y2)236=1\frac { ( x - 4 ) ^ { 2 } } { 100 } + \frac { ( y - 2 ) ^ { 2 } } { 36 } = 1
D) (x+4)264+(y+2)236=1\frac { ( x + 4 ) ^ { 2 } } { 64 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
59
Find an equation for the ellipse described.
Center at (0, 0); focus at (5, 0); vertex at (8, 0) A) x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
B) x225+y239=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 39 } = 1
C) x264+y239=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 39 } = 1
D) x239+y264=1\frac { x ^ { 2 } } { 39 } + \frac { y ^ { 2 } } { 64 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find an equation for the ellipse described.
Center (0, 0); major axis vertical with length 12; length of minor axis is 8 A) x28+y236=1\frac { x ^ { 2 } } { 8 } + \frac { y ^ { 2 } } { 36 } = 1
В) x236+y216=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 16 } = 1
C) x264+y2144=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 144 } = 1
D) x216+y236=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 36 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
4x216y2=644 x ^ { 2 } - 16 y ^ { 2 } = 64

A) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
B) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
D) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
asymptotes of y=12xy = - \frac { 1 } { 2 } x and y=12xy = \frac { 1 } { 2 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
62
Graph the hyperbola.
25x24y2=10025 x^{2}-4 y^{2}=100
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  25 x^{2}-4 y^{2}=100    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
63
Graph the hyperbola.
y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
64
Graph the hyperbola.
36y24x2=14436 y^{2}-4 x^{2}=144
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  36 y^{2}-4 x^{2}=144    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the center, transverse axis, vertices, and foci of the hyperbola.
16x2100y2=160016 x ^ { 2 } - 100 y ^ { 2 } = 1600

A) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,229),(0,229)( 0 , - 2 \sqrt { 29 } ) , ( 0,2 \sqrt { 29 } )
B) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (221,0),(221,0)( - 2 \sqrt { 21 } , 0 ) , ( 2 \sqrt { 21 } , 0 )
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (229,0),(229,0)( - 2 \sqrt { 29 } , 0 ) , ( 2 \sqrt { 29 } , 0 )
D) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (229,0),(229,0)( - 2 \sqrt { 29 } , 0 ) , ( 2 \sqrt { 29 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
66
Find the equation in standard form of the parabola described.
16x2+4y2+32x+24y12=016 x ^ { 2 } + 4 y ^ { 2 } + 32 x + 24 y - 12 = 0

A) (x+3)24+(y+1)216=1\frac { ( x + 3 ) ^ { 2 } } { 4 } + \frac { ( y + 1 ) ^ { 2 } } { 16 } = 1
B) (x+1)24+(y+3)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
C) (x1)24+(y3)216=1\frac { ( x - 1 ) ^ { 2 } } { 4 } + \frac { ( y - 3 ) ^ { 2 } } { 16 } = 1
D) (x+1)216+(y+3)24=1\frac { ( x + 1 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 4 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(y+2)29(x4)2=9( y + 2 ) ^ { 2 } - 9 ( x - 4 ) ^ { 2 } = 9

A) center: (4,2)( 4 , - 2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (4,5)( 4 , - 5 ) and (4,1)( 4,1 )
foci: (4,210)( 4 , - 2 - \sqrt { 10 } ) and (4,2+10)( 4 , - 2 + \sqrt { 10 } )
asymptotes of y+2=3(x4)y + 2 = - 3 ( x - 4 ) and y+2=3(x4)y + 2 = 3 ( x - 4 )
B) center: (4,2)( - 4,2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (4,1)( - 4 , - 1 ) and (4,5)( - 4,5 )
foci: (4,210)( - 4,2 - \sqrt { 10 } ) and (4,2+10)( - 4,2 + \sqrt { 10 } )
asymptotes of y+2=3(x4)y + 2 = - 3 ( x - 4 ) and y+2=3(x4)y + 2 = 3 ( x - 4 )
C) center: (4,2)( 4 , - 2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (5,4)( 5 , - 4 ) and (5,2)( 5,2 )
foci: (5,110)( 5 , - 1 - \sqrt { 10 } ) and (5,1+10)( 5 , - 1 + \sqrt { 10 } )
asymptotes of y+2=13(x4)y + 2 = - \frac { 1 } { 3 } ( x - 4 ) and y+2=13(x4)y + 2 = \frac { 1 } { 3 } ( x - 4 )
D) center: (4,2)( 4 , - 2 )
transverse axis is parallel to x\mathrm { x } -axis
vertices: (4,3)( - 4 , - 3 ) and (4,3)( 4,3 )
foci: (4,10)( 4 , - \sqrt { 10 } ) and (4,10)( 4 , \sqrt { 10 } )
asymptotes of y+2=3(x4)y + 2 = - 3 ( x - 4 ) and y+2=3(x4)y + 2 = 3 ( x - 4 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
68
Graph the hyperbola.
(x+1)29(y+2)216=1\frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 9 } - \frac { ( y + 2 ) ^ { 2 } } { 16 } = 1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
69
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(x+4)216(y+3)236=1\frac { ( x + 4 ) ^ { 2 } } { 16 } - \frac { ( y + 3 ) ^ { 2 } } { 36 } = 1

A) center at (4,3)( - 4 , - 3 )
transverse axis is parallel to xx -axis
vertices at (10,3)( - 10 , - 3 ) and (2,3)( 2 , - 3 )
foci at (4213,3)( - 4 - 2 \sqrt { 13 } , - 3 ) and (4+213,3)( - 4 + 2 \sqrt { 13 } , - 3 )
asymptotes of y+3=23(x+4)y + 3 = - \frac { 2 } { 3 } ( x + 4 ) and y+3=23(x+4)y + 3 = \frac { 2 } { 3 } ( x + 4 )
B) center at (4,3)( - 4 , - 3 )
transverse axis is parallel to xx -axis
vertices at (8,3)( - 8 , - 3 ) and (0,3)( 0 , - 3 )
foci at (4213,3)( - 4 - 2 \sqrt { 13 } , - 3 ) and (4+213,3)( - 4 + 2 \sqrt { 13 } , - 3 )
asymptotes of y+3=32(x+4)y + 3 = - \frac { 3 } { 2 } ( x + 4 ) and y+3=32(x+4)y + 3 = \frac { 3 } { 2 } ( x + 4 )
C) center at (3,4)( - 3 , - 4 )
transverse axis is parallel to xx -axis
vertices at (7,4)( - 7 , - 4 ) and (1,4)( 1 , - 4 )
foci at (3213,4)( - 3 - 2 \sqrt { 13 } , - 4 ) and (3+213,4)( - 3 + 2 \sqrt { 13 } , - 4 )
asymptotes of y+4=32(x+3)y + 4 = - \frac { 3 } { 2 } ( x + 3 ) and y+4=32(x+3)y + 4 = \frac { 3 } { 2 } ( x + 3 )
D) center at (4,3)( - 4 , - 3 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (4,7)( - 4 , - 7 ) and (4,1)( - 4,1 )
foci at (4,3213)( - 4 , - 3 - 2 \sqrt { 13 } ) and (4,3+213)( - 4 , - 3 + 2 \sqrt { 13 } )
asymptotes of y3=23(x4)y - 3 = - \frac { 2 } { 3 } ( x - 4 ) and y3=23(x4)y - 3 = \frac { 2 } { 3 } ( x - 4 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
70
Graph the hyperbola.
36y2=9x2+32436 y^{2}=9 x^{2}+324
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  36 y^{2}=9 x^{2}+324    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
71
Graph the hyperbola.
x24y225=1\frac{x^{2}}{4}-\frac{y^{2}}{25}=1
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  \frac{x^{2}}{4}-\frac{y^{2}}{25}=1   </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(x1)24(y2)2=4( x - 1 ) ^ { 2 } - 4 ( y - 2 ) ^ { 2 } = 4

A) center at (1,2)( 1,2 )
transverse axis is parallel to y\mathrm { y } -axis
vertices at (1,0)( 1,0 ) and (1,4)( 1,4 ) ,
foci at (1,25)( 1,2 - \sqrt { 5 } ) and (1,2+5)( 1,2 + \sqrt { 5 } ) ,
asymptotes of y+2=2(x+1)y + 2 = - 2 ( x + 1 ) and y+2=2(x+1)y + 2 = 2 ( x + 1 )
B) center at (1,2)( 1,2 )
transverse axis is parallel to xx -axis
vertices at (0,2)( 0,2 ) and (2,2)( 2,2 )
foci at (15,2)( 1 - \sqrt { 5 } , 2 ) and (1+5,2)( 1 + \sqrt { 5 } , 2 )
asymptotes of y2=2(x1)y - 2 = - 2 ( x - 1 ) and y2=2(x1)y - 2 = 2 ( x - 1 )
C) center at (1,2)( 1,2 )
transverse axis is parallel to xx -axis
vertices at (1,2)( - 1,2 ) and (3,2)( 3,2 )
foci at (15,2)( 1 - \sqrt { 5 } , 2 ) and (1+5,2)( 1 + \sqrt { 5 } , 2 )
asymptotes of y2=12(x1)y - 2 = - \frac { 1 } { 2 } ( x - 1 ) and y2=12(x1)y - 2 = \frac { 1 } { 2 } ( x - 1 )
D) center at (2,1)( 2,1 )
transverse axis is parallel to xx -axis
vertices at (0,1)( 0,1 ) and (4,1)( 4,1 )
foci at (25,1)( 2 - \sqrt { 5 } , 1 ) and (2+5,1)( 2 + \sqrt { 5 } , 1 )
asymptotes of y1=12(x2)y - 1 = - \frac { 1 } { 2 } ( x - 2 ) and y1=12(x2)y - 1 = \frac { 1 } { 2 } ( x - 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
(y1)24(x3)249=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 3 ) ^ { 2 } } { 49 } = 1

A) center: (3,1)( 3,1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (3,153)( 3,1 - \sqrt { 53 } ) and (3,1+53)( 3,1 + \sqrt { 53 } ) ;
foci: (3,1)( 3 , - 1 ) and (3,3)( 3,3 )
asymptotes of y1=72(x3)y - 1 = - \frac { 7 } { 2 } ( x - 3 ) and y1=72(x3)y - 1 = \frac { 7 } { 2 } ( x - 3 )
B) center: (3,1)( 3,1 )
transverse axis is parallel to y\mathrm { y } -axis
vertices: (1,0)( 1,0 ) and (4,4)( 4,4 )
foci: (1,253)( 1,2 - \sqrt { 53 } ) and (4,2+53)( 4,2 + \sqrt { 53 } )
asymptotes of y1=72(x3)y - 1 = - \frac { 7 } { 2 } ( x - 3 ) and y1=72(x3)y - 1 = \frac { 7 } { 2 } ( x - 3 )
C) center: (3,1)( 3,1 )
transverse axis is parallel to yy -axis
vertices: (3,1)( 3 , - 1 ) and (3,3)( 3,3 )
foci: (3,153)( 3,1 - \sqrt { 53 } ) and (3,1+53)( 3,1 + \sqrt { 53 } )
asymptotes of y1=27(x3)\mathrm { y } - 1 = - \frac { 2 } { 7 } ( x - 3 ) and y1=27(x3)y - 1 = \frac { 2 } { 7 } ( x - 3 )
D) center: (3,1)( - 3 , - 1 )
transverse axis is parallel to xx -axis
vertices: (3,3)( - 3 , - 3 ) and (3,1)( - 3,1 )
foci: (3,153)( - 3 , - 1 - \sqrt { 53 } ) and (3,1+53)( - 3 , - 1 + \sqrt { 53 } )
asymptotes of y1=27(x3)y - 1 = - \frac { 2 } { 7 } ( x - 3 ) and y1=27(x3)y - 1 = \frac { 2 } { 7 } ( x - 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
74
Graph the hyperbola.
25x2=9y2+22525 x^{2}=9 y^{2}+225
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)

A)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)
B)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)
C)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)
D)
 <strong>Graph the hyperbola.  25 x^{2}=9 y^{2}+225    </strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find the center, transverse axis, vertices, and foci of the hyperbola.
25y236x2=90025 y ^ { 2 } - 36 x ^ { 2 } = 900

A) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
foci: (61,0),(61,0)( - \sqrt { 61 } , 0 ) , ( \sqrt { 61 } , 0 )
B) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
foci: (61,0),(61,0)( - \sqrt { 61 } , 0 ) , ( \sqrt { 61 } , 0 )
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
D) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices at (0,6)( 0 , - 6 ) and (0,6)( 0,6 )
foci at (0,61)( 0 , - \sqrt { 61 } ) and (0,61)( 0 , \sqrt { 61 } )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find the center, transverse axis, vertices, foci, and asymptotes of the hyperbola.
y236x281=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 81 } = 1

A) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
foci: (313,0),(313,0)( - 3 \sqrt { 13 } , 0 ) , ( 3 \sqrt { 13 } , 0 )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
B) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 )
foci: (0,313),(0,313)( 0 , - 3 \sqrt { 13 } ) , ( 0,3 \sqrt { 13 } )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
C) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
foci: (313,0),(313,0)( - 3 \sqrt { 13 } , 0 ) , ( 3 \sqrt { 13 } , 0 )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
D) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (9,0),(9,0)( - 9,0 ) , ( 9,0 )
asymptotes of y=23xy = - \frac { 2 } { 3 } x and y=23xy = \frac { 2 } { 3 } x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
77
Solve the problem.
An arch for a bridge over a highway is in the form of a semiellipse. The top of the arch is 35 feet above ground (the major axis). What should the span of the bridge be (the length of its minor axis)if the height 27 feet from the center is to be 16 feet above ground?

A)60.72 ft
B)30.36 ft
C)50.29 ft
D)118.13 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find the center, transverse axis, vertices, and foci of the hyperbola.
y24x2121=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 121 } = 1

A) center at (0,0)( 0,0 )
transverse axis is y\mathrm { y } -axis
vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
oci: (0,55),(0,55)( 0 , - 5 \sqrt { 5 } ) , ( 0,5 \sqrt { 5 } )
B) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 ) f
foci: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
C) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (55,0),(55,0)( - 5 \sqrt { 5 } , 0 ) , ( 5 \sqrt { 5 } , 0 )
D) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
foci: (55,0),(55,0)( - 5 \sqrt { 5 } , 0 ) , ( 5 \sqrt { 5 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
79
Solve the problem.
A bridge is built in the shape of a semielliptical arch. It has a span of 102 feet. The height of the arch 27 feet from the center is to be 11 feet. Find the height of the arch at its center.

A)11.41 ft
B)20.78 ft
C)12.97 ft
D)27.65 ft
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find the center, transverse axis, vertices, and foci of the hyperbola.
x2121y225=1\frac { x ^ { 2 } } { 121 } - \frac { y ^ { 2 } } { 25 } = 1

A) center at (0,0)( 0,0 )
transverse axis is yy -axis
vertices at (0,11)( 0 , - 11 ) and (0,11)( 0,11 )
foci at (146,0)( - \sqrt { 146 } , 0 ) and (146,0)( \sqrt { 146 } , 0 )
B) center at (0,0)( 0,0 )
transverse axis is x\mathrm { x } -axis
vertices at (11,0)( - 11,0 ) and (11,0)( 11,0 )
foci at (5,0)( - 5,0 ) and (5,0)( 5,0 )
C) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices at (5,0)( - 5,0 ) and (5,0)( 5,0 )
foci at (146,0)( - \sqrt { 146 } , 0 ) and (146,0)( \sqrt { 146 } , 0 )
D) center at (0,0)( 0,0 )
transverse axis is xx -axis
vertices at (11,0)( - 11,0 ) and (11,0)( 11,0 )
foci at (146,0)( - \sqrt { 146 } , 0 ) and (146,0)( \sqrt { 146 } , 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.