Deck 8: Relations

ملء الشاشة (f)
exit full mode
سؤال
 <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
An RSA cipher has public key pq = 65 and e = 7.
(a) Translate the message YES into its numeric equivalent, and use the formula An RSA cipher has public key pq = 65 and e = 7. (a) Translate the message YES into its numeric equivalent, and use the formula   (mod pq) to encrypt the message. (b) Decrypt the ciphertext 50 16 and translate the result into letters of the alphabet to discover the message.<div style=padding-top: 35px>
(mod pq) to encrypt the message.
(b) Decrypt the ciphertext 50 16 and translate the result into letters of the alphabet to
discover the message.
سؤال
Find a positive inverse for 7 modulo 48. (That is, find a positive integer n such that 7n ≡ 1
(mod 48).)
سؤال
 <div style=padding-top: 35px>
سؤال
Let S be the set of all strings of 0's and 1's of length 3. Define a relation R on S as follows:
for all strings s and t in S, Let S be the set of all strings of 0's and 1's of length 3. Define a relation R on S as follows: for all strings s and t in S,   (a) Prove that R is an equivalence relation on S. (b) Find the distinct equivalence classes of R.<div style=padding-top: 35px>
(a) Prove that R is an equivalence relation on S.
(b) Find the distinct equivalence classes of R.
سؤال
Let R be the relation defined on the set of all integers Z as follows: for all integers m and n, Let R be the relation defined on the set of all integers Z as follows: for all integers m and n,   (a) Is R reflexive? Prove or give a counterexample. (b) Is R symmetric? Prove or give a counterexample. (c) Is R transitive? Prove or give a counterexample.<div style=padding-top: 35px>
(a) Is R reflexive? Prove or give a counterexample.
(b) Is R symmetric? Prove or give a counterexample.
(c) Is R transitive? Prove or give a counterexample.
سؤال
 <div style=padding-top: 35px>
سؤال
Define a relation S on the set of positive integers as follows: for all positive integers m and n, Define a relation S on the set of positive integers as follows: for all positive integers m and n,   (a) Is S reflexive? Justify your answer. (b) Is S symmetric? Justify your answer.<div style=padding-top: 35px>
(a) Is S reflexive? Justify your answer.
(b) Is S symmetric? Justify your answer.
سؤال
 <div style=padding-top: 35px>
سؤال
 <div style=padding-top: 35px>
سؤال
Let A = {1, 2, 3, 4}. The following relation R is an equivalence relation on A:
R = {(1, 1), (1, 3), (1, 4), (2, 2), (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4)}.
(a) Draw the directed graph of R.
(b) Find the distinct equivalence classes of R.
سؤال
 <div style=padding-top: 35px>
سؤال
 <div style=padding-top: 35px>
سؤال
 <div style=padding-top: 35px>
سؤال
 <div style=padding-top: 35px>
سؤال
 <div style=padding-top: 35px>
سؤال
  (a) Prove that T is an equivalence relation on R. (b) Find the distinct equivalence classes of T.<div style=padding-top: 35px>
(a) Prove that T is an equivalence relation on R.
(b) Find the distinct equivalence classes of T.
سؤال
  Is U transitive? Justify your answer.<div style=padding-top: 35px>
Is U transitive? Justify your answer.
سؤال
  (a) Is 6 R 3? Is 4 R 6? (b) Draw the directed graph of R.<div style=padding-top: 35px>
(a) Is 6 R 3? Is 4 R 6?
(b) Draw the directed graph of R.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/19
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 8: Relations
1
2
An RSA cipher has public key pq = 65 and e = 7.
(a) Translate the message YES into its numeric equivalent, and use the formula An RSA cipher has public key pq = 65 and e = 7. (a) Translate the message YES into its numeric equivalent, and use the formula   (mod pq) to encrypt the message. (b) Decrypt the ciphertext 50 16 and translate the result into letters of the alphabet to discover the message.
(mod pq) to encrypt the message.
(b) Decrypt the ciphertext 50 16 and translate the result into letters of the alphabet to
discover the message.
3
Find a positive inverse for 7 modulo 48. (That is, find a positive integer n such that 7n ≡ 1
(mod 48).)
4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
5
Let S be the set of all strings of 0's and 1's of length 3. Define a relation R on S as follows:
for all strings s and t in S, Let S be the set of all strings of 0's and 1's of length 3. Define a relation R on S as follows: for all strings s and t in S,   (a) Prove that R is an equivalence relation on S. (b) Find the distinct equivalence classes of R.
(a) Prove that R is an equivalence relation on S.
(b) Find the distinct equivalence classes of R.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
6
Let R be the relation defined on the set of all integers Z as follows: for all integers m and n, Let R be the relation defined on the set of all integers Z as follows: for all integers m and n,   (a) Is R reflexive? Prove or give a counterexample. (b) Is R symmetric? Prove or give a counterexample. (c) Is R transitive? Prove or give a counterexample.
(a) Is R reflexive? Prove or give a counterexample.
(b) Is R symmetric? Prove or give a counterexample.
(c) Is R transitive? Prove or give a counterexample.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
8
Define a relation S on the set of positive integers as follows: for all positive integers m and n, Define a relation S on the set of positive integers as follows: for all positive integers m and n,   (a) Is S reflexive? Justify your answer. (b) Is S symmetric? Justify your answer.
(a) Is S reflexive? Justify your answer.
(b) Is S symmetric? Justify your answer.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
11
Let A = {1, 2, 3, 4}. The following relation R is an equivalence relation on A:
R = {(1, 1), (1, 3), (1, 4), (2, 2), (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4)}.
(a) Draw the directed graph of R.
(b) Find the distinct equivalence classes of R.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
13
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
14
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
15
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
17
  (a) Prove that T is an equivalence relation on R. (b) Find the distinct equivalence classes of T.
(a) Prove that T is an equivalence relation on R.
(b) Find the distinct equivalence classes of T.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
18
  Is U transitive? Justify your answer.
Is U transitive? Justify your answer.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
19
  (a) Is 6 R 3? Is 4 R 6? (b) Draw the directed graph of R.
(a) Is 6 R 3? Is 4 R 6?
(b) Draw the directed graph of R.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 19 في هذه المجموعة.