Deck 2: Introduction to Number Theory

ملء الشاشة (f)
exit full mode
سؤال
For many cryptographic algorithms, it is necessary to select one or more very large prime numbers.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
One of the useful features of the Chinese remainder theorem is that it provides a way to manipulate potentially very large numbers mod M in terms of tuples of smaller numbers.
سؤال
the algorithm credited to Euclid for easily finding the greatest
common divisor of two integers has broad significance in cryptography.
سؤال
Unlike ordinary addition, there is not an additive inverse to each
integer in modular arithmetic.
سؤال
If b|a we say that b is a divisor of A.
سؤال
the first assertion of the CRt, concerning arithmetic operations,
follows from the rules for modular arithmetic.
سؤال
the scheme where you can find the greatest common divisor of
two integers by repetitive application of the division algorithm is
known as the Brady algorithm.
سؤال
the Chinese Remainder theorem is believed to have been
discovered by the Chinese mathematician Agrawal in 100 A.D.
سؤال
All integers have primitive roots.
سؤال
the primitive roots for the prime number 19 are 2, 3, 10, 13, 14
and 15.
سؤال
two integers a and b are said to be congruent modulo n, if
(a mod n) = (b mod n).
سؤال
Basic concepts from number theory that are needed for understanding finite fields include divisibility, the Euclidian algorithm, and modular arithmetic.
سؤال
the rules for ordinary arithmetic involving addition, subtraction,
and multiplication carry over into modular arithmetic.
9.two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/13
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 2: Introduction to Number Theory
1
For many cryptographic algorithms, it is necessary to select one or more very large prime numbers.
True
2
One of the useful features of the Chinese remainder theorem is that it provides a way to manipulate potentially very large numbers mod M in terms of tuples of smaller numbers.
True
3
the algorithm credited to Euclid for easily finding the greatest
common divisor of two integers has broad significance in cryptography.
True
4
Unlike ordinary addition, there is not an additive inverse to each
integer in modular arithmetic.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
5
If b|a we say that b is a divisor of A.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
6
the first assertion of the CRt, concerning arithmetic operations,
follows from the rules for modular arithmetic.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
7
the scheme where you can find the greatest common divisor of
two integers by repetitive application of the division algorithm is
known as the Brady algorithm.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
8
the Chinese Remainder theorem is believed to have been
discovered by the Chinese mathematician Agrawal in 100 A.D.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
9
All integers have primitive roots.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
10
the primitive roots for the prime number 19 are 2, 3, 10, 13, 14
and 15.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
11
two integers a and b are said to be congruent modulo n, if
(a mod n) = (b mod n).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
12
Basic concepts from number theory that are needed for understanding finite fields include divisibility, the Euclidian algorithm, and modular arithmetic.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
13
the rules for ordinary arithmetic involving addition, subtraction,
and multiplication carry over into modular arithmetic.
9.two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.