Deck 13: Measurements in Fluid Mechanics

ملء الشاشة (f)
exit full mode
سؤال
Air is flowing straight toward a building. What expression would provide p/x if x\text {Air is flowing straight toward a building. What expression would provide \(\partial p / \partial x\) if \(x\)} is measured perpendicular to the building? Neglect viscous and gravity effects and assume\text { is measured perpendicular to the building? Neglect viscous and gravity effects and assume} steady flow.\text {steady flow.}
(A) p/x=ρ(uu/xvv/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial v / \partial y )
(B) p/x=ρuu/x\partial p / \partial x = - \rho u \partial u / \partial x
(C) p/x=ρvu/x\partial p / \partial x = - \rho v \partial u / \partial x
(D) p/x=ρ(uu/xvu/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial u / \partial y )
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Euler's equation integrated along a streamline results in Bernoulli's equation providing the flow is:

A) Incompressible, inviscid, steady, in an inertial reference frame
B) Constant density, steady, along a streamline, in an inertial reference frame
C) Incompressible, steady, along a streamline, in an inertial reference frame
D) Constant density, steady, along a streamline, inviscid, in an inertial reference frame
سؤال
 If the stress component σxx is given by σxx=p+2μu/x, the incompressible fluid is: \text { If the stress component } \sigma _ { x x } \text { is given by } \sigma _ { x x } = - p + 2 \mu \partial u / \partial x \text {, the incompressible fluid is: }

A) Linear and isotropic
B) Isotropic and homogeneous
C) Linear and homogeneous
D) Linear, isotropic, and homogeneous
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/3
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 13: Measurements in Fluid Mechanics
Air is flowing straight toward a building. What expression would provide p/x if x\text {Air is flowing straight toward a building. What expression would provide \(\partial p / \partial x\) if \(x\)} is measured perpendicular to the building? Neglect viscous and gravity effects and assume\text { is measured perpendicular to the building? Neglect viscous and gravity effects and assume} steady flow.\text {steady flow.}
(A) p/x=ρ(uu/xvv/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial v / \partial y )
(B) p/x=ρuu/x\partial p / \partial x = - \rho u \partial u / \partial x
(C) p/x=ρvu/x\partial p / \partial x = - \rho v \partial u / \partial x
(D) p/x=ρ(uu/xvu/y)\partial p / \partial x = - \rho ( u \partial u / \partial x - v \partial u / \partial y )
B
p/x=ρuu/x\partial p / \partial x = - \rho u \partial u / \partial x
The x-component N-S equation (5.3.14), ignoring the viscous and gravity terms for a\text {The \(x\)-component N-S equation (5.3.14), ignoring the viscous and gravity terms for a} steady flow, is\text { steady flow, is}
ρDuDt=px or ρ(uux+vuy)=px\rho \frac { D u } { D t } = - \frac { \partial p } { \partial x } \quad \text { or } \quad \rho \left( u \frac { \partial u } { \partial x } + v \frac { \partial u } { \partial y } \right) = - \frac { \partial p } { \partial x }
Along the line that passes through the stagnation point, the y-component of the velocity \text {Along the line that passes through the stagnation point, the \(y\)-component of the velocity }v is zero. The pressure gradient is then\text {\(v\) is zero. The pressure gradient is then}
px=ρuux\frac { \partial p } { \partial x } = - \rho u \frac { \partial u } { \partial x }
Euler's equation integrated along a streamline results in Bernoulli's equation providing the flow is:

A) Incompressible, inviscid, steady, in an inertial reference frame
B) Constant density, steady, along a streamline, in an inertial reference frame
C) Incompressible, steady, along a streamline, in an inertial reference frame
D) Constant density, steady, along a streamline, inviscid, in an inertial reference frame
Constant density, steady, along a streamline, inviscid, in an inertial reference frame
 If the stress component σxx is given by σxx=p+2μu/x, the incompressible fluid is: \text { If the stress component } \sigma _ { x x } \text { is given by } \sigma _ { x x } = - p + 2 \mu \partial u / \partial x \text {, the incompressible fluid is: }

A) Linear and isotropic
B) Isotropic and homogeneous
C) Linear and homogeneous
D) Linear, isotropic, and homogeneous
Linear and isotropic
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 3 في هذه المجموعة.