Deck 16: Series and Taylor Polynomials Web

ملء الشاشة (f)
exit full mode
سؤال
Find the indicated term of the sequence. an=(1)n(3n1)a16=\begin{array} { l } a _ { n } = ( - 1 ) ^ { n } ( 3 n - 1 ) \\a _ { 16 } = \square\end{array}

A)-44
B)47
C)49
D)-2
E)45
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that n begins with 1.) αn=27n\alpha _ { n } = - 2 - 7 n

A)7
B)2
C)-2
D)-7
E)not arithmetic
سؤال
Determine whether the sequence is arithmetic. If so, find the common difference. 2, 1, 0, -1, -2

A)3
B)-1
C)2
D)1
E)not arithmetic
سؤال
Determine whether the sequence is arithmetic. If so, find the common difference. 3, 9, 27, 81, 243

A)3
B)3n
C)3n - 3n-1
D)-3
E)not arithmetic
سؤال
Write an expression for the most apparent nth term of the sequence. (Assume that nn begins with 1.) 13,19,127,181,1243, K\frac { 1 } { 3 } , - \frac { 1 } { 9 } , \frac { 1 } { 27 } , - \frac { 1 } { 81 } , \frac { 1 } { 243 } , \mathrm {~K}

A) an=(1)n3na _ { n } = \frac { ( - 1 ) ^ { n } } { 3 ^ { n } }
B) an=(1)n+13na _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 3 ^ { n } }
C) an=(1)n+12na _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 2 ^ { n } }
D) an=(1)n2na _ { n } = \frac { ( - 1 ) ^ { n } } { 2 ^ { n } }
E) an=12na _ { n } = \frac { 1 } { 2 ^ { n } }
سؤال
A deposit of $2000 is made in an account that earns 6% interest compounded monthly. The balance in the account after n months is given by An=2000(1+0.0612)n,n=1,2,3, KA _ { n } = 2000 \left( 1 + \frac { 0.06 } { 12 } \right) ^ { n } , n = 1,2,3 , \mathrm {~K} Find the balance in the account after 11 years by finding the 132th term of the sequence. Round to the nearest penny.

A)$4,379,295.09
B)$3863.23
C)$3844.01
D)$265,320.00
E)$3882.54
سؤال
Write an expression for the apparent nth term of the sequence. (Assume that n begins with 1.) 9, 12, 15, 18, 21

A) an=6n+3a _ { n } = 6 n + 3
B) an=(1)n(3n+6)a _ { n } = ( - 1 ) ^ { n } ( 3 n + 6 )
C) an=3na _ { n } = 3 n
D) an=3n+6a _ { n } = 3 ^ { n } + 6
E) an=3n+6a _ { n } = 3 n + 6
سؤال
Write the first five terms of the sequence. (Assume that n begins with 1.) an=3n+7a _ { n } = 3 n + 7

A)-4, -1, 2, 5, 8
B)7, 10, 13, 16, 19
C)10, 6, 9, 12, 15
D)10, 13, 16, 19, 22
E)10, 17, 24, 31, 38
سؤال
Find the fifth term of the sequence that has the given nth term. an=(n+2)!n!a _ { n } = \frac { ( n + 2 ) ! } { n ! }

A) 4242
B) 3030
C) 1212
D) 2020
E) 66
سؤال
Evaluate the series. i=14(4i+3)(3i4)\sum _ { i = 1 } ^ { 4 } ( 4 i + 3 ) ( 3 i - 4 )

A) 1515
B) 242242
C) 873873
D) 495495
E) 21002100
سؤال
Suppose the ratio ana _ { n } of alligators to pythons in a marshland from 2001 to 2008 can be approximated by the model an=243.5n+0.34n2a _ { n } = 24 - 3.5 n + 0.34 n ^ { 2 } n=1,2, K,8n = 1,2 , \mathrm {~K} , 8 where nn is the year, with n=1,2, K,8n = 1,2 , \mathrm {~K} , 8 corresponding to 2001,2002, K,20082001,2002 , \mathrm {~K} , 2008 In 2006, the total number of alligators and pythons in the marsh was about 900. In that year, how many were pythons?

A)848
B)55
C)844
D)52
E)845
سؤال
Match the sequence with the graph of its first 10 terms. an=3nn+1a _ { n } = \frac { 3 n } { n + 1 }

A)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Write an expression for the apparent nth term of the sequence. (Assume that n begins with 1.) 521,522,523,524,525,- 5 - \frac { 2 } { 1 } , - 5 - \frac { 2 } { 2 } , - 5 - \frac { 2 } { 3 } , - 5 - \frac { 2 } { 4 } , - 5 - \frac { 2 } { 5 } ,

A) an=5n2a _ { n } = - 5 - \frac { n } { 2 }
B) an=25na _ { n } = 2 - \frac { - 5 } { n }
C) an=2n5a _ { n } = 2 - \frac { n } { - 5 }
D) an=52na _ { n } = - 5 - \frac { 2 } { n }
E) an=52n+1a _ { n } = - 5 - \frac { 2 } { n + 1 }
سؤال
Find a formula for an for the arithmetic sequence. a3=8,a7=36a _ { 3 } = 8 , a _ { 7 } = 36

A) an=6+7na _ { n } = - 6 + 7 n
B) an=136na _ { n } = 13 - 6 n
C) an=76na _ { n } = 7 - 6 n
D) an=6(7)na _ { n } = - 6 ( 7 ) ^ { n }
E) an=13+7na _ { n } = - 13 + 7 n
سؤال
Suppose that the annual payroll ana _ { n } (in billions of dollars) of new car dealerships in the United States from 2000 to 2005 can be approximated by the model an=44.7+1.51n0.108n2,a _ { n } = 44.7 + 1.51 n - 0.108 n ^ { 2 }, n=0,1,2,3,4,5n = 0,1,2,3,4,5 where nn represents the year, with n=0n = 0 corresponding to 2000. Find the total payroll from 2000 to 2005 by evaluating the sum n=05(44.7+1.51n0.108n2)\sum _ { n = 0 } ^ { 5 } \left( 44.7 + 1.51 n - 0.108 n ^ { 2 } \right) Round your answer to the nearest ten million dollars.

A)$334.78 billion
B)$284.91 billion
C)$377.86 billion
D)$290.08 billion
E)$235.36 billion
سؤال
Write the given series in summation notation. 15+140+1135+1320+1625+11080\frac { 1 } { 5 } + \frac { 1 } { 40 } + \frac { 1 } { 135 } + \frac { 1 } { 320 } + \frac { 1 } { 625 } + \frac { 1 } { 1080 }

A) i=1615i4\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 5 i ^ { 4 } }
B) i=1615i3\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 5 i ^ { 3 } }
C) i=1615i5\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 5 i ^ { 5 } }
D) i=1613i3\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 3 i ^ { 3 } }
E) i=1613i4\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 3 i ^ { 4 } }
سؤال
Simplify the factorial expression. 14!12!\frac { 14 ! } { 12 ! }

A)2184
B)182
C) 76\frac { 7 } { 6 }
D)14
E)2730
سؤال
Find the sum. i=13(3i5)\sum _ { i = 1 } ^ { 3 } ( 3 i - 5 )

A)-1
B)-2
C)3
D)4
E)18
سؤال
Write the given series in summation notation. 24+816+3264+1282 - 4 + 8 - 16 + 32 - 64 + 128

A) i=174i(1)i\sum _ { i = 1 } ^ { 7 } 4 ^ { i } ( - 1 ) ^ { i }
B) i=174i(1)i+1\sum _ { i = 1 } ^ { 7 } 4 ^ { i } ( - 1 ) ^ { i + 1 }
C) i=172i(1)i+1\sum _ { i = 1 } ^ { 7 } 2 ^ { i } ( - 1 ) ^ { i + 1 }
D) i=172i(1)i\sum _ { i = 1 } ^ { 7 } 2 ^ { i } ( - 1 ) ^ { i }
E) i=173i(1)i\sum _ { i = 1 } ^ { 7 } 3 ^ { i } ( - 1 ) ^ { i }
سؤال
Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that n begins with 1.) an=8(15)na _ { n } = - 8 \left( \frac { 1 } { 5 } \right) ^ { n }

A)-8
B)5
C) 15\frac { 1 } { 5 }
D)8
E)not arithmetic
سؤال
The annual sales ana _ { n } (in millions of dollars) for a certain company from 2001 to 2006 can be approximated by the model an=500.7+161.52n,a _ { n } = 500.7 + 161.52 n, n=0,1,K,5n = 0,1 , K , 5 where nn represents the year, with n=0n = 0 corresponding to 2001. Find the total sales from 2001 to 2004. Round to the nearest million.

A)$2972 million
B)$4119 million
C)$1987 million
D)$2229 million
E)$1502 million
سؤال
Find the sum of the integers from 5 to 27.

A)378
B)22
C)736
D)368
E)756
سؤال
Determine whether the sequence is geometric. If so, find the common ratio. 1, -3, 9, -27, ...

A)-3
B)1
C) 13- \frac { 1 } { 3 }
D)3
E)not geometric
سؤال
The seating section in a theater has 29 seats in the first row, 34 seats in the second row, and so on, increasing by 5 seats each row for a total of 15 rows. How many seats are in the thirteenth row?

A) 7979
B) 8989
C) 8484
D) 5959
E) 5454
سؤال
Use summation notation to write the sum below. 2+4+6+8+10+K+2002 + 4 + 6 + 8 + 10 + \mathrm { K } + 200

A) n=11505n\sum _ { n = 1 } ^ { 150 } 5 n
B) n=11004n\sum _ { n = 1 } ^ { 100 } 4 n
C) n=11504n\sum _ { n = 1 } ^ { 150 } 4 n
D) n=11502n\sum _ { n = 1 } ^ { 150 } 2 n
E) n=11002n\sum _ { n = 1 } ^ { 100 } 2 n
سؤال
Match the arithmetic sequence with its graph from the choices below. an=353na _ { n } = 35 - 3 n

A)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find a formula for ana _ { n } for the arithmetic sequence below. 2,1,0,1,2,K- 2 , - 1,0,1,2 , \mathbf { K }

A) an=3n+1a _ { n } = 3 n + 1
B) an=3n1a _ { n } = - 3 n - 1
C) an=n3a _ { n } = - n - 3
D) an=n3a _ { n } = n - 3
E) an=n+3a _ { n } = n + 3
سؤال
Find the indicated nth term of the geometric sequence. 7th term: a5=481,a10=419,683a _ { 5 } = \frac { 4 } { 81 } , a _ { 10 } = \frac { 4 } { 19,683 }

A) 42187\frac { 4 } { 2187 }
B) 34096\frac { 3 } { 4096 }
C) 46561\frac { 4 } { 6561 }
D) 4729\frac { 4 } { 729 }
E) 4243\frac { 4 } { 243 }
سؤال
Determine whether the sequence is geometric. If so, find the common ratio. 5, 7, 9, 11, ...

A)2
B)5
C) 12\frac { 1 } { 2 }
D)-2
E)not geometric
سؤال
Find the indicated nth partial sum of the arithmetic sequence. 3.4, 6.2, 9, 11.8, ..., n = 10

A)181
B)188
C)160
D)159.4
E)160.6
سؤال
A heavy object (with negligible air resistance) is dropped from a plane. During the first second of fall, the object falls 17.4 meters; during the second second, it falls 52.2 meters; during the third second, it falls 87.0 meters; and during the fourth second, it falls 121.8 meters. If this pattern continues, how many meters will the object fall in 10 seconds?

A)2505.6 meters
B)1409.4 meters
C)626.4 meters
D)1740.0 meters
E)852.6 meters
سؤال
Find the partial sum. n=1140(4n+1)\sum _ { n = 1 } ^ { 140 } ( - 4 n + 1 )

A)-39,339
B)-38,781
C)-39,620
D)-39,903
E)-39,340
سؤال
Match the geometric sequence with its graph from the choices below. an=12(43)n1a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 }

A)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Use a graphing utility to graph the first 10 terms of the sequence. an=2(0.6)n1a _ { n } = - 2 ( 0.6 ) ^ { n - 1 }

A)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find the nth term of the geometric sequence. 2,52,2.58,K- 2 , - \frac { 5 } { 2 } , - \frac { 2.5 } { 8 } , \mathbf { K }

A) 2(54)n12 \left( - \frac { 5 } { 4 } \right) ^ { n - 1 }
B) 2(54)n12 \left( \frac { 5 } { 4 } \right) ^ { n - 1 }
C) 2(45)n1- 2 \left( - \frac { 4 } { 5 } \right) ^ { n - 1 }
D) 2(54)n1- 2 \left( \frac { 5 } { 4 } \right) ^ { n - 1 }
E) 2(45)n12 \left( - \frac { 4 } { 5 } \right) ^ { n - 1 }
سؤال
Write the first five terms of the arithmetic sequence. a5=19,a15=79a _ { 5 } = 19 , a _ { 15 } = 79

A)-5, -11, -17, -23, -29
B)1, 7, 13, 19, 25
C)-5, 1, 7, 13, 19
D)-5, -30, -180, -1080, -6480
E)-5, 1, -4, -9, -14
سؤال
Write the first five terms of the geometric sequence. a1=1,r=16a _ { 1 } = - 1 , r = - \frac { 1 } { 6 }

A)-1, -7, -13, -19, -25
B)-1, 6, -36, 216, -1296
C) 16,136,1216,11296,17776\frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 } , - \frac { 1 } { 1296 } , \frac { 1 } { 7776 }
D) 1,1,16,136,12161 , - 1 , \frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 }
E) 1,16,136,1216,11296- 1 , \frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 } , - \frac { 1 } { 1296 }
سؤال
Find the nth term of the geometric sequence. 3,12,48, K3 , - 12,48 , \mathrm {~K}

A) 4(3)n1- 4 ( 3 ) ^ { n - 1 }
B) 4(3)n14 ( 3 ) ^ { n - 1 }
C) 3(4)n1- 3 ( 4 ) ^ { n - 1 }
D) 4(3)n14 ( - 3 ) ^ { n - 1 }
E) 3(4)n13 ( - 4 ) ^ { n - 1 }
سؤال
Logs are stacked so that there are 17 logs in the bottom row, 16 logs in the second row from the bottom, and so on, decreasing by 1 log each row. How many logs are there in the first five rows from the bottom?

A)117 logs
B)108 logs
C)75 logs
D)87 logs
E)125 logs
سؤال
Consider a job offer with a starting salary of $43,200 and a given annual raise of $2175. Determine the total compensation from the company through seven full years of employment.

A)$406,500
B)$291,825
C)$185,850
D)$136,125
E)$348,075
سؤال
Write an expression for the nth term of the sequence 13,29,427,881, K\frac { 1 } { 3 } , \frac { 2 } { 9 } , \frac { 4 } { 27 } , \frac { 8 } { 81 } , \mathrm {~K} .

A) an=2n13na _ { n } = \frac { 2 ^ { n - 1 } } { 3 ^ { n } }
B) an=2n+13na _ { n } = \frac { 2 ^ { n + 1 } } { 3 ^ { n } }
C) an=2n3a _ { n } = \frac { 2 ^ { n } } { 3 }
D) an=6n+14n1a _ { n } = \frac { 6 ^ { n + 1 } } { 4 ^ { n - 1 } }
E) an=6n14na _ { n } = \frac { 6 ^ { n - 1 } } { 4 ^ { n } }
سؤال
Find the sum of the finite geometric series. Round to the nearest hundredth. n=16(89)n\sum _ { n = 1 } ^ { 6 } \left( - \frac { 8 } { 9 } \right) ^ { n }

A) 0.24- 0.24
B) 0.10- 0.10
C) 0.33- 0.33
D) 0.80- 0.80
E) 0.63- 0.63
سؤال
Find the rational number representation of the repeating decimal. 0.4370 . \overline { 437 }

A) 4379999\frac { 437 } { 9999 }
B) 43.7999\frac { 43.7 } { 999 }
C) 4379\frac { 437 } { 9 }
D) 437999\frac { 437 } { 999 }
E) 43799\frac { 437 } { 99 }
سؤال
Write the first five terms of the sequence. an = (56)n\left( - \frac { 5 } { 6 } \right) ^ { n }

A) 56,2536,125216,6251296,31257776\frac { 5 } { 6 } , - \frac { 25 } { 36 } , \frac { 125 } { 216 } , - \frac { 625 } { 1296 } , \frac { 3125 } { 7776 }
B) 56,2536,125216,6251296,31257776- \frac { 5 } { 6 } , \frac { 25 } { 36 } , - \frac { 125 } { 216 } , \frac { 625 } { 1296 } , - \frac { 3125 } { 7776 }
C) 56,2536,125216,6251296,31257776\frac { 5 } { 6 } , \frac { 25 } { 36 } , \frac { 125 } { 216 } , \frac { 625 } { 1296 } , \frac { 3125 } { 7776 }
D) 56,2536,125216,6251296,31257776- \frac { 5 } { 6 } , - \frac { 25 } { 36 } , - \frac { 125 } { 216 } , - \frac { 625 } { 1296 } , - \frac { 3125 } { 7776 }
E)none of the above
سؤال
Determine the convergence or divergence of the sequence 945n9 - \frac { 4 } { 5 ^ { n } } . If the sequence converges, use a symbolic algebra utility to find its limit.

A)9
B)4
C)5
D) - \infty
E)The sequence diverges.
سؤال
Find the sum of the finite geometric series. n=143(3)n\sum _ { n = 1 } ^ { 4 } 3 ( - 3 ) ^ { n }

A) 180180
B) 63- 63
C) 16381638
D) 132,858132,858
E) 549- 549
سؤال
Use summation notation to write the sum. 48+16K+644 - 8 + 16 - K + 64

A) n=044(2)n1\sum _ { n = 0 } ^ { 4 } 4 ( - 2 ) ^ { n - 1 }
B) n=134(2)n\sum _ { n = 1 } ^ { 3 } 4 ( - 2 ) ^ { n }
C) n=154(2)n1\sum _ { n = 1 } ^ { 5 } 4 ( - 2 ) ^ { n - 1 }
D) n=134(2)n1\sum _ { n = 1 } ^ { 3 } 4 ( - 2 ) ^ { n - 1 }
E) n=144(2)n+1\sum _ { n = 1 } ^ { 4 } 4 ( - 2 ) ^ { n + 1 }
سؤال
Write an expression for the nth term of the sequence 2, 8, 26, 80, ....

A) an=13na_ { n } = 1 - 3 ^ { n }
B) an=4n+1a _ { n } = 4 ^ { n } + 1
C) an=3n1a _ { n } = 3 ^ { n } - 1
D) an=4n5a _ { n } = 4 ^ { n } - 5
E) αn=1+3n\alpha _ { n } = 1 + 3 ^ { n }
سؤال
Find the limit of the sequence an=1n9/2a _ { n } = \frac { 1 } { n ^ { 9 / 2 } } .

A) \infty
B) 11
C) 00
D) 12\frac { 1 } { 2 }
E)The sequence diverges.
سؤال
Write the first five terms of the sequence. an = 25n7n22 - \frac { 5 } { n } - \frac { 7 } { n ^ { 2 } }

A) 10,94,49,516,- 10 , - \frac { 9 } { 4 } , - \frac { 4 } { 9 } , \frac { 5 } { 16 }, 1825\frac { 18 } { 25 }
B) 10,132,163,194,- 10 , - \frac { 13 } { 2 } , - \frac { 16 } { 3 } , - \frac { 19 } { 4 }, 225- \frac { 22 } { 5 }
C) 10,194,349,5516,- 10 , - \frac { 19 } { 4 } , - \frac { 34 } { 9 } , - \frac { 55 } { 16 }, 8225- \frac { 82 } { 25 }
D) 10,194,349,5516,- 10 , \frac { 19 } { 4 } , - \frac { 34 } { 9 } , \frac { 55 } { 16 }, 8225- \frac { 82 } { 25 }
E) 10,94,49,516,- 10 , \frac { 9 } { 4 } , - \frac { 4 } { 9 } , - \frac { 5 } { 16 }, 1825\frac { 18 } { 25 }
سؤال
Find the limit of the following sequence. an=n225n+5a _ { n } = \frac { n ^ { 2 } - 25 } { n + 5 }

A) \infty
B) 00
C) 0.50.5
D) - \infty
E)The sequence diverges.
سؤال
Find the sum of the finite geometric sequence. n=173(25)n1\sum _ { n = 1 } ^ { 7 } 3 \left( \frac { 2 } { 5 } \right) ^ { n - 1 }

A) 390,36931,250\frac { 390,369 } { 31,250 }
B) 1925\frac { 192 } { 5 }
C) 25,99925,999
D) 51873125\frac { 5187 } { 3125 }
E) 77,99715,625\frac { 77,997 } { 15,625 }
سؤال
Find the limit of the following sequence. an=(n2)!n!a _ { n } = \frac { ( n - 2 ) ! } { n ! }

A)3
B)1
C) 00
D)-3
E)The sequence diverges.
سؤال
The annual profit ana _ { n } (in millions of dollars) for a certain company from 2000 to 2005 can be approximated by the model an=302.58e0.196n,a _ { n } = 302.58 e ^ { 0.196 n }, n=0,1,K,5n = 0,1 , K , 5 where nn represents the year, with n=0n = 0 corresponding to 2000. Use the formula for the sum of a finite geometric sequence to approximate the total profit earned during this six-year period. Round to the nearest ten-thousand dollars.

A)$3810.36 million
B)$4112.94 million
C)$3132.16 million
D)$2829.58 million
E)$2325.95 million
سؤال
Write the rational number 0.810 . \overline { 81 } as the quotient of two integers in simplest form.

A) 911\frac { 9 } { 11 }
B) 411\frac { 4 } { 11 }
C) 511\frac { 5 } { 11 }
D) 1011\frac { 10 } { 11 }
E) 811\frac { 8 } { 11 }
سؤال
Find the sum of the infinite geometric series. n=1(13)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { 1 } { 3 } \right) ^ { n }

A) 32\frac { 3 } { 2 }
B) 34\frac { 3 } { 4 }
C) 14- \frac { 1 } { 4 }
D) 12- \frac { 1 } { 2 }
E) 34- \frac { 3 } { 4 }
سؤال
Write an expression for the nth term of the sequence. 9,94,99,916, L9 , - \frac { 9 } { 4 } , \frac { 9 } { 9 } , - \frac { 9 } { 16 } , \mathrm {~L}

A) 91n+1n2\frac { 9 - 1 ^ { n + 1 } } { n ^ { 2 } }
B) 9(1)nn2\frac { 9 ( - 1 ) ^ { n } } { n ^ { 2 } }
C) 9(1)n1n2\frac { 9 ( - 1 ) ^ { n - 1 } } { n ^ { 2 } }
D) 1n19n2\frac { - 1 ^ { n - 1 } } { 9 n ^ { 2 } }
E) (1)n9n2\frac { ( - 1 ) ^ { n } } { 9 n ^ { 2 } }
سؤال
Find the sum of the infinite geometric series below. n=1(18)n1\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { 8 } \right) ^ { n - 1 }

A) 1110\frac { 11 } { 10 }
B) 87\frac { 8 } { 7 }
C) 32\frac { 3 } { 2 }
D) 109\frac { 10 } { 9 }
E) 65\frac { 6 } { 5 }
سؤال
Find the sum of the infinite geometric series. n=04(12)n\sum _ { n = 0 } ^ { \infty } 4 \left( - \frac { 1 } { 2 } \right) ^ { n }

A) 83- \frac { 8 } { 3 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D) 43- \frac { 4 } { 3 }
E)undefined
سؤال
Find the limit of the following sequence. an=1+(1)na _ { n } = 1 + ( - 1 ) ^ { n }

A) \infty
B)1
C)2
D) - \infty
E)The sequence diverges.
سؤال
The repeating decimal 0.20 . \overline { 2 } is expressed as a geometric series 0.2+0.02+0.002+0.0002+0.2 + 0.02 + 0.002 + 0.0002 + \ldots . Write the decimal 0.20 . \overline { 2 } as the ratio of two integers.

A) 299\frac { 2 } { 99 }
B) 733\frac { 7 } { 33 }
C) 29\frac { 2 } { 9 }
D) 511\frac { 5 } { 11 }
E) 92\frac { 9 } { 2 }
سؤال
A deposit of $\$ 200 is made each month in an account that earns 8.4% interest, compounded monthly. The balance in the account after n months is given by An=200(201)[(1.007)n1]A _ { n } = 200 ( 201 ) \left[ ( 1.007 ) ^ { n } - 1 \right] . Find the balance after 22 years by computing the 264th term of the sequence. Round your answer to two decimal places.

A)$213,316.53
B)$293,716.53
C)$6,667.78
D)$86,634.61
E)$281.40
سؤال
A ball is dropped from a height of 14 feet, and on each rebound it rises to 25\frac { 2 } { 5 } its preceding height. Write an expression for the height of the nth rebound.

A) hn=(25)n14h _ { n } = \frac { \left( \frac { 2 } { 5 } \right) ^ { n } } { 14 }
B) hn=14(25)nh _ { n } = 14 \left( \frac { 2 } { 5 } \right) ^ { n }
C) hn=14(52)nh _ { n } = 14 \left( \frac { 5 } { 2 } \right) ^ { n }
D) hn=14(25)nh _ { n } = \frac { 14 } { \left( \frac { 2 } { 5 } \right) ^ { n } }
E) hn=(1452)nh _ { n } = \left( 14 \frac { 5 } { 2 } \right) ^ { n }
سؤال
Find the sum of the convergent series. n=09(89)n\sum _ { n = 0 } ^ { \infty } 9 \left( \frac { 8 } { 9 } \right) ^ { n }

A) 8181
B) 6363
C) 7272
D)9
E)8
سؤال
Determine the convergence or divergence of the following series. Use a symbolic algebra utility to verify your result. n=042n\sum _ { n = 0 } ^ { \infty } \frac { 4 } { 2 ^ { n } }

A)The series diverges.
B)The series converges.
سؤال
Determine whether the series n=1n4/5\sum _ { n = 1 } ^ { \infty } n ^ { - 4 / 5 } is a p-series.

A) n=1n4/5\sum _ { n = 1 } ^ { \infty } n ^ { - 4 / 5 } is not a pp - series.
B) n=1n4/5\sum _ { n = 1 } ^ { \infty } n ^ { - 4 / 5 } is a pp - series.
سؤال
What are the next three terms in the arithmetic sequence 7,3,1,7,3 , - 1 , \ldots ?

A) 5,9,13- 5 , - 9 , - 13  <strong>What are the next three terms in the arithmetic sequence  7,3 , - 1 , \ldots  ?</strong> A)  - 5 , - 9 , - 13    B)  11,15,19  C)  20 , - 80,320  D)  28,35,42    E)  - 1 , - 5 , - 9  <div style=padding-top: 35px>
B) 11,15,1911,15,19
C) 20,80,32020 , - 80,320
D) 28,35,4228,35,42  <strong>What are the next three terms in the arithmetic sequence  7,3 , - 1 , \ldots  ?</strong> A)  - 5 , - 9 , - 13    B)  11,15,19  C)  20 , - 80,320  D)  28,35,42    E)  - 1 , - 5 , - 9  <div style=padding-top: 35px>
E) 1,5,9- 1 , - 5 , - 9
سؤال
Determine the convergence or divergence of the series n=0(0.650)n\sum _ { n = 0 } ^ { \infty } ( 0.650 ) ^ { n } . Use a symbolic algebra utility to verify your result.

A)The series converges.
B)The series diverges.
سؤال
Determine the convergence or divergence of the series n=16n900\sum _ { n = 1 } ^ { \infty } \frac { 6 ^ { n } } { 900 } . Use a symbolic algebra utility to verify your result.

A)The series converges.
B)The series diverges.
سؤال
Find the next three terms of the geometric sequence. 5,15,45,5,15,45 , \ldots

A) 55,65,75,55,65,75 , \ldots
B) 135,405,1215,135,405,1215 , \ldots
C) 75,105,135,75,105,135 , \ldots
D) 48,51,54,48,51,54 , \ldots
E) 45,135,405,45,135,405 , \ldots
سؤال
Express the value of the given repeating decimal as a fraction. [Hint: Write as an infinite series.] 0.480 . \overline { 48 }

A) 4999\frac { 49 } { 99 }
B) 49100\frac { 49 } { 100 }
C) 45\frac { 4 } { 5 }
D) 1633\frac { 16 } { 33 }
E) 1225\frac { 12 } { 25 }
سؤال
Write the first five terms of the sequence of partial sums. 2+24+29+216+225+L2 + \frac { 2 } { 4 } + \frac { 2 } { 9 } + \frac { 2 } { 16 } + \frac { 2 } { 25 } + L

A) 2,53,4916,20566,526916002 , \frac { 5 } { 3 } , \frac { 49 } { 16 } , \frac { 205 } { 66 } , \frac { 5269 } { 1600 }
B) 2,12,29,18,2252 , \frac { 1 } { 2 } , \frac { 2 } { 9 } , \frac { 1 } { 8 } , \frac { 2 } { 25 }
C) 2,52,4918,20572,526918002 , \frac { 5 } { 2 } , \frac { 49 } { 18 } , \frac { 205 } { 72 } , \frac { 5269 } { 1800 }
D) 2,72,5518,21572,53182 , \frac { 7 } { 2 } , \frac { 55 } { 18 } , \frac { 215 } { 72 } , \frac { 53 } { 18 }
E) 2,11,4516,10033,105322 , \frac { 1 } { 1 } , \frac { 45 } { 16 } , \frac { 100 } { 33 } , \frac { 105 } { 32 }
سؤال
The annual spending by tourists in a resort city is 200 million dollars. Approximately 75% of that revenue is again spent in the resort city, and of that amount approximately 75% is again spent in the resort city. If this pattern continues, write the geometric series that gives the total amount of spending generated by the 200 million dollars (including the initial outlay of 200 million dollars) and find the sum of the series.

A)The geometric series is n=1200(75)n+1\sum _ { n = 1 } ^ { \infty } 200 ( 75 ) ^ { n + 1 } .The sum of the series is $\$ 800.00 million.
B)The geometric series is n=1200(0.25)n\sum _ { n = 1 } ^ { \infty } 200 ( 0.25 ) ^ { n } .The sum of the series is $\$ 15,000 million.
C)The geometric series is n=0200(0.75)n\sum _ { n = 0 } ^ { \infty } 200 ( 0.75 ) ^ { n } .The sum of the series is $\$ 800.00 million.
D)The geometric series is n=0200(0.75)n\sum _ { n = 0 } ^ { \infty } 200 ( 0.75 ) ^ { n } .The sum of the series is $\$ 15,000 million.
E)The geometric series is n=1200(25)n+1\sum _ { n = 1 } ^ { \infty } 200 ( 25 ) ^ { n + 1 } .The sum of the series is $\$ 150.00 million.
سؤال
You accept a job that pays a salary of $\$ 50,000 the first year. During the next 39 years, you will receive a 4% raise each year. What would be your total compensation over the 40-year period? Round your answer to the nearest integer.

A) $\$ 4,751,276
B) $\$ 1,250,000
C) $\$ 48,000
D) $\$ 200,000
E) $\$ 2,000
سؤال
Consider the sequence (An) whose nth term is given by An =P[1+r12]n= P \left[ 1 + \frac { r } { 12 } \right] ^ { n } where P is the principal, An is the amount of compound interest after n months, and r is the annual percentage rate. Write the first four terms of the sequence for P = $\$ 8,000 and r = 0.04. Round your answer to two decimal places.

A)8026.67, 8063.49, 8101.43, 8107.20
B)8027.67, 8063.49, 8101.43, 8135.19
C)8026.67, 8053.42, 8080.27, 8107.20
D)8027.67, 8063.49, 8080.27, 8107.20
E)8027.67, 8053.42, 8080.27, 8135.19
سؤال
A factory is polluting a river such that at every mile down river from the factory an environmental expert finds 20% less pollutant than at the preceding mile. If the pollutant's concentration is 700 ppm (parts per million) at the factory, what is its concentration 15 miles down river?

A)140.00 ppm
B)300.00 ppm
C)24.63 ppm
D)875.00 ppm
E)30.79 ppm
سؤال
Find the sum of the convergent series. n=09(78)n\sum _ { n = 0 } ^ { \infty } 9 \left( - \frac { 7 } { 8 } \right) ^ { n }

A) 275\frac { 27 } { 5 }
B) 215\frac { 21 } { 5 }
C) 7213\frac { 72 } { 13 }
D) 245\frac { 24 } { 5 }
E) 8113\frac { 81 } { 13 }
سؤال
A company produces a new product for which it estimates the annual sales to be 5000 units. Suppose that in any given year 1010 % of the units (regardless of age) will become inoperative. How many units will be in use after n years?

A) 50,000(10.9n)50,000 \left( 1 - 0.9 ^ { n } \right)
B) 50,000(0.1n)50,000 \left( 0.1 ^ { n } \right)
C) 5000(10.9n)5000 \left( 1 - 0.9 ^ { n } \right)
D) 5000(0.9n)5000 \left( 0.9 ^ { n } \right)
E) 50,000(10.1n)50,000 \left( 1 - 0.1 ^ { n } \right)
سؤال
Give an example of a sequence that converges to 14\frac { 1 } { 4 } .

A) an=8n452n46a _ { n } = \frac { 8 n ^ { 4 } - 5 } { 2 n ^ { 4 } - 6 }
B) an=2+5n48+6n4a _ { n } = \frac { 2 + 5 n ^ { 4 } } { 8 + 6 n ^ { 4 } }
C) an=3n459n46a _ { n } = \frac { 3 n ^ { 4 } - 5 } { 9 n ^ { 4 } - 6 }
D) an=2n458n46a _ { n } = \frac { 2 n ^ { 4 } - 5 } { 8 n ^ { 4 } - 6 }
E) an=3+5n49+6n4a _ { n } = \frac { 3 + 5 n ^ { 4 } } { 9 + 6 n ^ { 4 } }
سؤال
Bouncing Ball. A ball dropped from a height of 35 feet bounces to 1/21 / 2 of its former height with each bounce. Find the total vertical distance that the ball travels.

A)105 feet
B)140 feet
C)64 feet
D)53 feet
E)70 feet
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/127
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 16: Series and Taylor Polynomials Web
1
Find the indicated term of the sequence. an=(1)n(3n1)a16=\begin{array} { l } a _ { n } = ( - 1 ) ^ { n } ( 3 n - 1 ) \\a _ { 16 } = \square\end{array}

A)-44
B)47
C)49
D)-2
E)45
47
2
Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that n begins with 1.) αn=27n\alpha _ { n } = - 2 - 7 n

A)7
B)2
C)-2
D)-7
E)not arithmetic
-7
3
Determine whether the sequence is arithmetic. If so, find the common difference. 2, 1, 0, -1, -2

A)3
B)-1
C)2
D)1
E)not arithmetic
-1
4
Determine whether the sequence is arithmetic. If so, find the common difference. 3, 9, 27, 81, 243

A)3
B)3n
C)3n - 3n-1
D)-3
E)not arithmetic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
5
Write an expression for the most apparent nth term of the sequence. (Assume that nn begins with 1.) 13,19,127,181,1243, K\frac { 1 } { 3 } , - \frac { 1 } { 9 } , \frac { 1 } { 27 } , - \frac { 1 } { 81 } , \frac { 1 } { 243 } , \mathrm {~K}

A) an=(1)n3na _ { n } = \frac { ( - 1 ) ^ { n } } { 3 ^ { n } }
B) an=(1)n+13na _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 3 ^ { n } }
C) an=(1)n+12na _ { n } = \frac { ( - 1 ) ^ { n + 1 } } { 2 ^ { n } }
D) an=(1)n2na _ { n } = \frac { ( - 1 ) ^ { n } } { 2 ^ { n } }
E) an=12na _ { n } = \frac { 1 } { 2 ^ { n } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
6
A deposit of $2000 is made in an account that earns 6% interest compounded monthly. The balance in the account after n months is given by An=2000(1+0.0612)n,n=1,2,3, KA _ { n } = 2000 \left( 1 + \frac { 0.06 } { 12 } \right) ^ { n } , n = 1,2,3 , \mathrm {~K} Find the balance in the account after 11 years by finding the 132th term of the sequence. Round to the nearest penny.

A)$4,379,295.09
B)$3863.23
C)$3844.01
D)$265,320.00
E)$3882.54
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
7
Write an expression for the apparent nth term of the sequence. (Assume that n begins with 1.) 9, 12, 15, 18, 21

A) an=6n+3a _ { n } = 6 n + 3
B) an=(1)n(3n+6)a _ { n } = ( - 1 ) ^ { n } ( 3 n + 6 )
C) an=3na _ { n } = 3 n
D) an=3n+6a _ { n } = 3 ^ { n } + 6
E) an=3n+6a _ { n } = 3 n + 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
8
Write the first five terms of the sequence. (Assume that n begins with 1.) an=3n+7a _ { n } = 3 n + 7

A)-4, -1, 2, 5, 8
B)7, 10, 13, 16, 19
C)10, 6, 9, 12, 15
D)10, 13, 16, 19, 22
E)10, 17, 24, 31, 38
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the fifth term of the sequence that has the given nth term. an=(n+2)!n!a _ { n } = \frac { ( n + 2 ) ! } { n ! }

A) 4242
B) 3030
C) 1212
D) 2020
E) 66
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
10
Evaluate the series. i=14(4i+3)(3i4)\sum _ { i = 1 } ^ { 4 } ( 4 i + 3 ) ( 3 i - 4 )

A) 1515
B) 242242
C) 873873
D) 495495
E) 21002100
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
11
Suppose the ratio ana _ { n } of alligators to pythons in a marshland from 2001 to 2008 can be approximated by the model an=243.5n+0.34n2a _ { n } = 24 - 3.5 n + 0.34 n ^ { 2 } n=1,2, K,8n = 1,2 , \mathrm {~K} , 8 where nn is the year, with n=1,2, K,8n = 1,2 , \mathrm {~K} , 8 corresponding to 2001,2002, K,20082001,2002 , \mathrm {~K} , 2008 In 2006, the total number of alligators and pythons in the marsh was about 900. In that year, how many were pythons?

A)848
B)55
C)844
D)52
E)845
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
12
Match the sequence with the graph of its first 10 terms. an=3nn+1a _ { n } = \frac { 3 n } { n + 1 }

A)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)
B)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)
C)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)
D)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)
E)  <strong>Match the sequence with the graph of its first 10 terms.  a _ { n } = \frac { 3 n } { n + 1 } </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
13
Write an expression for the apparent nth term of the sequence. (Assume that n begins with 1.) 521,522,523,524,525,- 5 - \frac { 2 } { 1 } , - 5 - \frac { 2 } { 2 } , - 5 - \frac { 2 } { 3 } , - 5 - \frac { 2 } { 4 } , - 5 - \frac { 2 } { 5 } ,

A) an=5n2a _ { n } = - 5 - \frac { n } { 2 }
B) an=25na _ { n } = 2 - \frac { - 5 } { n }
C) an=2n5a _ { n } = 2 - \frac { n } { - 5 }
D) an=52na _ { n } = - 5 - \frac { 2 } { n }
E) an=52n+1a _ { n } = - 5 - \frac { 2 } { n + 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find a formula for an for the arithmetic sequence. a3=8,a7=36a _ { 3 } = 8 , a _ { 7 } = 36

A) an=6+7na _ { n } = - 6 + 7 n
B) an=136na _ { n } = 13 - 6 n
C) an=76na _ { n } = 7 - 6 n
D) an=6(7)na _ { n } = - 6 ( 7 ) ^ { n }
E) an=13+7na _ { n } = - 13 + 7 n
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
15
Suppose that the annual payroll ana _ { n } (in billions of dollars) of new car dealerships in the United States from 2000 to 2005 can be approximated by the model an=44.7+1.51n0.108n2,a _ { n } = 44.7 + 1.51 n - 0.108 n ^ { 2 }, n=0,1,2,3,4,5n = 0,1,2,3,4,5 where nn represents the year, with n=0n = 0 corresponding to 2000. Find the total payroll from 2000 to 2005 by evaluating the sum n=05(44.7+1.51n0.108n2)\sum _ { n = 0 } ^ { 5 } \left( 44.7 + 1.51 n - 0.108 n ^ { 2 } \right) Round your answer to the nearest ten million dollars.

A)$334.78 billion
B)$284.91 billion
C)$377.86 billion
D)$290.08 billion
E)$235.36 billion
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
16
Write the given series in summation notation. 15+140+1135+1320+1625+11080\frac { 1 } { 5 } + \frac { 1 } { 40 } + \frac { 1 } { 135 } + \frac { 1 } { 320 } + \frac { 1 } { 625 } + \frac { 1 } { 1080 }

A) i=1615i4\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 5 i ^ { 4 } }
B) i=1615i3\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 5 i ^ { 3 } }
C) i=1615i5\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 5 i ^ { 5 } }
D) i=1613i3\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 3 i ^ { 3 } }
E) i=1613i4\sum _ { i = 1 } ^ { 6 } \frac { 1 } { 3 i ^ { 4 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
17
Simplify the factorial expression. 14!12!\frac { 14 ! } { 12 ! }

A)2184
B)182
C) 76\frac { 7 } { 6 }
D)14
E)2730
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the sum. i=13(3i5)\sum _ { i = 1 } ^ { 3 } ( 3 i - 5 )

A)-1
B)-2
C)3
D)4
E)18
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
19
Write the given series in summation notation. 24+816+3264+1282 - 4 + 8 - 16 + 32 - 64 + 128

A) i=174i(1)i\sum _ { i = 1 } ^ { 7 } 4 ^ { i } ( - 1 ) ^ { i }
B) i=174i(1)i+1\sum _ { i = 1 } ^ { 7 } 4 ^ { i } ( - 1 ) ^ { i + 1 }
C) i=172i(1)i+1\sum _ { i = 1 } ^ { 7 } 2 ^ { i } ( - 1 ) ^ { i + 1 }
D) i=172i(1)i\sum _ { i = 1 } ^ { 7 } 2 ^ { i } ( - 1 ) ^ { i }
E) i=173i(1)i\sum _ { i = 1 } ^ { 7 } 3 ^ { i } ( - 1 ) ^ { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
20
Determine whether the sequence is arithmetic. If so, find the common difference. (Assume that n begins with 1.) an=8(15)na _ { n } = - 8 \left( \frac { 1 } { 5 } \right) ^ { n }

A)-8
B)5
C) 15\frac { 1 } { 5 }
D)8
E)not arithmetic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
21
The annual sales ana _ { n } (in millions of dollars) for a certain company from 2001 to 2006 can be approximated by the model an=500.7+161.52n,a _ { n } = 500.7 + 161.52 n, n=0,1,K,5n = 0,1 , K , 5 where nn represents the year, with n=0n = 0 corresponding to 2001. Find the total sales from 2001 to 2004. Round to the nearest million.

A)$2972 million
B)$4119 million
C)$1987 million
D)$2229 million
E)$1502 million
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the sum of the integers from 5 to 27.

A)378
B)22
C)736
D)368
E)756
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
23
Determine whether the sequence is geometric. If so, find the common ratio. 1, -3, 9, -27, ...

A)-3
B)1
C) 13- \frac { 1 } { 3 }
D)3
E)not geometric
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
24
The seating section in a theater has 29 seats in the first row, 34 seats in the second row, and so on, increasing by 5 seats each row for a total of 15 rows. How many seats are in the thirteenth row?

A) 7979
B) 8989
C) 8484
D) 5959
E) 5454
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
25
Use summation notation to write the sum below. 2+4+6+8+10+K+2002 + 4 + 6 + 8 + 10 + \mathrm { K } + 200

A) n=11505n\sum _ { n = 1 } ^ { 150 } 5 n
B) n=11004n\sum _ { n = 1 } ^ { 100 } 4 n
C) n=11504n\sum _ { n = 1 } ^ { 150 } 4 n
D) n=11502n\sum _ { n = 1 } ^ { 150 } 2 n
E) n=11002n\sum _ { n = 1 } ^ { 100 } 2 n
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
26
Match the arithmetic sequence with its graph from the choices below. an=353na _ { n } = 35 - 3 n

A)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)
B)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)
C)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)
D)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)
E)  <strong>Match the arithmetic sequence with its graph from the choices below.  a _ { n } = 35 - 3 n </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
27
Find a formula for ana _ { n } for the arithmetic sequence below. 2,1,0,1,2,K- 2 , - 1,0,1,2 , \mathbf { K }

A) an=3n+1a _ { n } = 3 n + 1
B) an=3n1a _ { n } = - 3 n - 1
C) an=n3a _ { n } = - n - 3
D) an=n3a _ { n } = n - 3
E) an=n+3a _ { n } = n + 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the indicated nth term of the geometric sequence. 7th term: a5=481,a10=419,683a _ { 5 } = \frac { 4 } { 81 } , a _ { 10 } = \frac { 4 } { 19,683 }

A) 42187\frac { 4 } { 2187 }
B) 34096\frac { 3 } { 4096 }
C) 46561\frac { 4 } { 6561 }
D) 4729\frac { 4 } { 729 }
E) 4243\frac { 4 } { 243 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
29
Determine whether the sequence is geometric. If so, find the common ratio. 5, 7, 9, 11, ...

A)2
B)5
C) 12\frac { 1 } { 2 }
D)-2
E)not geometric
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the indicated nth partial sum of the arithmetic sequence. 3.4, 6.2, 9, 11.8, ..., n = 10

A)181
B)188
C)160
D)159.4
E)160.6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
31
A heavy object (with negligible air resistance) is dropped from a plane. During the first second of fall, the object falls 17.4 meters; during the second second, it falls 52.2 meters; during the third second, it falls 87.0 meters; and during the fourth second, it falls 121.8 meters. If this pattern continues, how many meters will the object fall in 10 seconds?

A)2505.6 meters
B)1409.4 meters
C)626.4 meters
D)1740.0 meters
E)852.6 meters
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the partial sum. n=1140(4n+1)\sum _ { n = 1 } ^ { 140 } ( - 4 n + 1 )

A)-39,339
B)-38,781
C)-39,620
D)-39,903
E)-39,340
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
33
Match the geometric sequence with its graph from the choices below. an=12(43)n1a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 }

A)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
B)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
C)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
D)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
E)  <strong>Match the geometric sequence with its graph from the choices below.  a _ { n } = 12 \left( - \frac { 4 } { 3 } \right) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
34
Use a graphing utility to graph the first 10 terms of the sequence. an=2(0.6)n1a _ { n } = - 2 ( 0.6 ) ^ { n - 1 }

A)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
B)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
C)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
D)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
E)  <strong>Use a graphing utility to graph the first 10 terms of the sequence.  a _ { n } = - 2 ( 0.6 ) ^ { n - 1 } </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the nth term of the geometric sequence. 2,52,2.58,K- 2 , - \frac { 5 } { 2 } , - \frac { 2.5 } { 8 } , \mathbf { K }

A) 2(54)n12 \left( - \frac { 5 } { 4 } \right) ^ { n - 1 }
B) 2(54)n12 \left( \frac { 5 } { 4 } \right) ^ { n - 1 }
C) 2(45)n1- 2 \left( - \frac { 4 } { 5 } \right) ^ { n - 1 }
D) 2(54)n1- 2 \left( \frac { 5 } { 4 } \right) ^ { n - 1 }
E) 2(45)n12 \left( - \frac { 4 } { 5 } \right) ^ { n - 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
36
Write the first five terms of the arithmetic sequence. a5=19,a15=79a _ { 5 } = 19 , a _ { 15 } = 79

A)-5, -11, -17, -23, -29
B)1, 7, 13, 19, 25
C)-5, 1, 7, 13, 19
D)-5, -30, -180, -1080, -6480
E)-5, 1, -4, -9, -14
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
37
Write the first five terms of the geometric sequence. a1=1,r=16a _ { 1 } = - 1 , r = - \frac { 1 } { 6 }

A)-1, -7, -13, -19, -25
B)-1, 6, -36, 216, -1296
C) 16,136,1216,11296,17776\frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 } , - \frac { 1 } { 1296 } , \frac { 1 } { 7776 }
D) 1,1,16,136,12161 , - 1 , \frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 }
E) 1,16,136,1216,11296- 1 , \frac { 1 } { 6 } , - \frac { 1 } { 36 } , \frac { 1 } { 216 } , - \frac { 1 } { 1296 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the nth term of the geometric sequence. 3,12,48, K3 , - 12,48 , \mathrm {~K}

A) 4(3)n1- 4 ( 3 ) ^ { n - 1 }
B) 4(3)n14 ( 3 ) ^ { n - 1 }
C) 3(4)n1- 3 ( 4 ) ^ { n - 1 }
D) 4(3)n14 ( - 3 ) ^ { n - 1 }
E) 3(4)n13 ( - 4 ) ^ { n - 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
39
Logs are stacked so that there are 17 logs in the bottom row, 16 logs in the second row from the bottom, and so on, decreasing by 1 log each row. How many logs are there in the first five rows from the bottom?

A)117 logs
B)108 logs
C)75 logs
D)87 logs
E)125 logs
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
40
Consider a job offer with a starting salary of $43,200 and a given annual raise of $2175. Determine the total compensation from the company through seven full years of employment.

A)$406,500
B)$291,825
C)$185,850
D)$136,125
E)$348,075
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
41
Write an expression for the nth term of the sequence 13,29,427,881, K\frac { 1 } { 3 } , \frac { 2 } { 9 } , \frac { 4 } { 27 } , \frac { 8 } { 81 } , \mathrm {~K} .

A) an=2n13na _ { n } = \frac { 2 ^ { n - 1 } } { 3 ^ { n } }
B) an=2n+13na _ { n } = \frac { 2 ^ { n + 1 } } { 3 ^ { n } }
C) an=2n3a _ { n } = \frac { 2 ^ { n } } { 3 }
D) an=6n+14n1a _ { n } = \frac { 6 ^ { n + 1 } } { 4 ^ { n - 1 } }
E) an=6n14na _ { n } = \frac { 6 ^ { n - 1 } } { 4 ^ { n } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the sum of the finite geometric series. Round to the nearest hundredth. n=16(89)n\sum _ { n = 1 } ^ { 6 } \left( - \frac { 8 } { 9 } \right) ^ { n }

A) 0.24- 0.24
B) 0.10- 0.10
C) 0.33- 0.33
D) 0.80- 0.80
E) 0.63- 0.63
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find the rational number representation of the repeating decimal. 0.4370 . \overline { 437 }

A) 4379999\frac { 437 } { 9999 }
B) 43.7999\frac { 43.7 } { 999 }
C) 4379\frac { 437 } { 9 }
D) 437999\frac { 437 } { 999 }
E) 43799\frac { 437 } { 99 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
44
Write the first five terms of the sequence. an = (56)n\left( - \frac { 5 } { 6 } \right) ^ { n }

A) 56,2536,125216,6251296,31257776\frac { 5 } { 6 } , - \frac { 25 } { 36 } , \frac { 125 } { 216 } , - \frac { 625 } { 1296 } , \frac { 3125 } { 7776 }
B) 56,2536,125216,6251296,31257776- \frac { 5 } { 6 } , \frac { 25 } { 36 } , - \frac { 125 } { 216 } , \frac { 625 } { 1296 } , - \frac { 3125 } { 7776 }
C) 56,2536,125216,6251296,31257776\frac { 5 } { 6 } , \frac { 25 } { 36 } , \frac { 125 } { 216 } , \frac { 625 } { 1296 } , \frac { 3125 } { 7776 }
D) 56,2536,125216,6251296,31257776- \frac { 5 } { 6 } , - \frac { 25 } { 36 } , - \frac { 125 } { 216 } , - \frac { 625 } { 1296 } , - \frac { 3125 } { 7776 }
E)none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
45
Determine the convergence or divergence of the sequence 945n9 - \frac { 4 } { 5 ^ { n } } . If the sequence converges, use a symbolic algebra utility to find its limit.

A)9
B)4
C)5
D) - \infty
E)The sequence diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find the sum of the finite geometric series. n=143(3)n\sum _ { n = 1 } ^ { 4 } 3 ( - 3 ) ^ { n }

A) 180180
B) 63- 63
C) 16381638
D) 132,858132,858
E) 549- 549
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
47
Use summation notation to write the sum. 48+16K+644 - 8 + 16 - K + 64

A) n=044(2)n1\sum _ { n = 0 } ^ { 4 } 4 ( - 2 ) ^ { n - 1 }
B) n=134(2)n\sum _ { n = 1 } ^ { 3 } 4 ( - 2 ) ^ { n }
C) n=154(2)n1\sum _ { n = 1 } ^ { 5 } 4 ( - 2 ) ^ { n - 1 }
D) n=134(2)n1\sum _ { n = 1 } ^ { 3 } 4 ( - 2 ) ^ { n - 1 }
E) n=144(2)n+1\sum _ { n = 1 } ^ { 4 } 4 ( - 2 ) ^ { n + 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
48
Write an expression for the nth term of the sequence 2, 8, 26, 80, ....

A) an=13na_ { n } = 1 - 3 ^ { n }
B) an=4n+1a _ { n } = 4 ^ { n } + 1
C) an=3n1a _ { n } = 3 ^ { n } - 1
D) an=4n5a _ { n } = 4 ^ { n } - 5
E) αn=1+3n\alpha _ { n } = 1 + 3 ^ { n }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the limit of the sequence an=1n9/2a _ { n } = \frac { 1 } { n ^ { 9 / 2 } } .

A) \infty
B) 11
C) 00
D) 12\frac { 1 } { 2 }
E)The sequence diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
50
Write the first five terms of the sequence. an = 25n7n22 - \frac { 5 } { n } - \frac { 7 } { n ^ { 2 } }

A) 10,94,49,516,- 10 , - \frac { 9 } { 4 } , - \frac { 4 } { 9 } , \frac { 5 } { 16 }, 1825\frac { 18 } { 25 }
B) 10,132,163,194,- 10 , - \frac { 13 } { 2 } , - \frac { 16 } { 3 } , - \frac { 19 } { 4 }, 225- \frac { 22 } { 5 }
C) 10,194,349,5516,- 10 , - \frac { 19 } { 4 } , - \frac { 34 } { 9 } , - \frac { 55 } { 16 }, 8225- \frac { 82 } { 25 }
D) 10,194,349,5516,- 10 , \frac { 19 } { 4 } , - \frac { 34 } { 9 } , \frac { 55 } { 16 }, 8225- \frac { 82 } { 25 }
E) 10,94,49,516,- 10 , \frac { 9 } { 4 } , - \frac { 4 } { 9 } , - \frac { 5 } { 16 }, 1825\frac { 18 } { 25 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the limit of the following sequence. an=n225n+5a _ { n } = \frac { n ^ { 2 } - 25 } { n + 5 }

A) \infty
B) 00
C) 0.50.5
D) - \infty
E)The sequence diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the sum of the finite geometric sequence. n=173(25)n1\sum _ { n = 1 } ^ { 7 } 3 \left( \frac { 2 } { 5 } \right) ^ { n - 1 }

A) 390,36931,250\frac { 390,369 } { 31,250 }
B) 1925\frac { 192 } { 5 }
C) 25,99925,999
D) 51873125\frac { 5187 } { 3125 }
E) 77,99715,625\frac { 77,997 } { 15,625 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the limit of the following sequence. an=(n2)!n!a _ { n } = \frac { ( n - 2 ) ! } { n ! }

A)3
B)1
C) 00
D)-3
E)The sequence diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
54
The annual profit ana _ { n } (in millions of dollars) for a certain company from 2000 to 2005 can be approximated by the model an=302.58e0.196n,a _ { n } = 302.58 e ^ { 0.196 n }, n=0,1,K,5n = 0,1 , K , 5 where nn represents the year, with n=0n = 0 corresponding to 2000. Use the formula for the sum of a finite geometric sequence to approximate the total profit earned during this six-year period. Round to the nearest ten-thousand dollars.

A)$3810.36 million
B)$4112.94 million
C)$3132.16 million
D)$2829.58 million
E)$2325.95 million
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
55
Write the rational number 0.810 . \overline { 81 } as the quotient of two integers in simplest form.

A) 911\frac { 9 } { 11 }
B) 411\frac { 4 } { 11 }
C) 511\frac { 5 } { 11 }
D) 1011\frac { 10 } { 11 }
E) 811\frac { 8 } { 11 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the sum of the infinite geometric series. n=1(13)n\sum _ { n = 1 } ^ { \infty } \left( - \frac { 1 } { 3 } \right) ^ { n }

A) 32\frac { 3 } { 2 }
B) 34\frac { 3 } { 4 }
C) 14- \frac { 1 } { 4 }
D) 12- \frac { 1 } { 2 }
E) 34- \frac { 3 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
57
Write an expression for the nth term of the sequence. 9,94,99,916, L9 , - \frac { 9 } { 4 } , \frac { 9 } { 9 } , - \frac { 9 } { 16 } , \mathrm {~L}

A) 91n+1n2\frac { 9 - 1 ^ { n + 1 } } { n ^ { 2 } }
B) 9(1)nn2\frac { 9 ( - 1 ) ^ { n } } { n ^ { 2 } }
C) 9(1)n1n2\frac { 9 ( - 1 ) ^ { n - 1 } } { n ^ { 2 } }
D) 1n19n2\frac { - 1 ^ { n - 1 } } { 9 n ^ { 2 } }
E) (1)n9n2\frac { ( - 1 ) ^ { n } } { 9 n ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find the sum of the infinite geometric series below. n=1(18)n1\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { 8 } \right) ^ { n - 1 }

A) 1110\frac { 11 } { 10 }
B) 87\frac { 8 } { 7 }
C) 32\frac { 3 } { 2 }
D) 109\frac { 10 } { 9 }
E) 65\frac { 6 } { 5 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
59
Find the sum of the infinite geometric series. n=04(12)n\sum _ { n = 0 } ^ { \infty } 4 \left( - \frac { 1 } { 2 } \right) ^ { n }

A) 83- \frac { 8 } { 3 }
B) 83\frac { 8 } { 3 }
C) 43\frac { 4 } { 3 }
D) 43- \frac { 4 } { 3 }
E)undefined
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find the limit of the following sequence. an=1+(1)na _ { n } = 1 + ( - 1 ) ^ { n }

A) \infty
B)1
C)2
D) - \infty
E)The sequence diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
61
The repeating decimal 0.20 . \overline { 2 } is expressed as a geometric series 0.2+0.02+0.002+0.0002+0.2 + 0.02 + 0.002 + 0.0002 + \ldots . Write the decimal 0.20 . \overline { 2 } as the ratio of two integers.

A) 299\frac { 2 } { 99 }
B) 733\frac { 7 } { 33 }
C) 29\frac { 2 } { 9 }
D) 511\frac { 5 } { 11 }
E) 92\frac { 9 } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
62
A deposit of $\$ 200 is made each month in an account that earns 8.4% interest, compounded monthly. The balance in the account after n months is given by An=200(201)[(1.007)n1]A _ { n } = 200 ( 201 ) \left[ ( 1.007 ) ^ { n } - 1 \right] . Find the balance after 22 years by computing the 264th term of the sequence. Round your answer to two decimal places.

A)$213,316.53
B)$293,716.53
C)$6,667.78
D)$86,634.61
E)$281.40
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
63
A ball is dropped from a height of 14 feet, and on each rebound it rises to 25\frac { 2 } { 5 } its preceding height. Write an expression for the height of the nth rebound.

A) hn=(25)n14h _ { n } = \frac { \left( \frac { 2 } { 5 } \right) ^ { n } } { 14 }
B) hn=14(25)nh _ { n } = 14 \left( \frac { 2 } { 5 } \right) ^ { n }
C) hn=14(52)nh _ { n } = 14 \left( \frac { 5 } { 2 } \right) ^ { n }
D) hn=14(25)nh _ { n } = \frac { 14 } { \left( \frac { 2 } { 5 } \right) ^ { n } }
E) hn=(1452)nh _ { n } = \left( 14 \frac { 5 } { 2 } \right) ^ { n }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the sum of the convergent series. n=09(89)n\sum _ { n = 0 } ^ { \infty } 9 \left( \frac { 8 } { 9 } \right) ^ { n }

A) 8181
B) 6363
C) 7272
D)9
E)8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
65
Determine the convergence or divergence of the following series. Use a symbolic algebra utility to verify your result. n=042n\sum _ { n = 0 } ^ { \infty } \frac { 4 } { 2 ^ { n } }

A)The series diverges.
B)The series converges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
66
Determine whether the series n=1n4/5\sum _ { n = 1 } ^ { \infty } n ^ { - 4 / 5 } is a p-series.

A) n=1n4/5\sum _ { n = 1 } ^ { \infty } n ^ { - 4 / 5 } is not a pp - series.
B) n=1n4/5\sum _ { n = 1 } ^ { \infty } n ^ { - 4 / 5 } is a pp - series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
67
What are the next three terms in the arithmetic sequence 7,3,1,7,3 , - 1 , \ldots ?

A) 5,9,13- 5 , - 9 , - 13  <strong>What are the next three terms in the arithmetic sequence  7,3 , - 1 , \ldots  ?</strong> A)  - 5 , - 9 , - 13    B)  11,15,19  C)  20 , - 80,320  D)  28,35,42    E)  - 1 , - 5 , - 9
B) 11,15,1911,15,19
C) 20,80,32020 , - 80,320
D) 28,35,4228,35,42  <strong>What are the next three terms in the arithmetic sequence  7,3 , - 1 , \ldots  ?</strong> A)  - 5 , - 9 , - 13    B)  11,15,19  C)  20 , - 80,320  D)  28,35,42    E)  - 1 , - 5 , - 9
E) 1,5,9- 1 , - 5 , - 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
68
Determine the convergence or divergence of the series n=0(0.650)n\sum _ { n = 0 } ^ { \infty } ( 0.650 ) ^ { n } . Use a symbolic algebra utility to verify your result.

A)The series converges.
B)The series diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
69
Determine the convergence or divergence of the series n=16n900\sum _ { n = 1 } ^ { \infty } \frac { 6 ^ { n } } { 900 } . Use a symbolic algebra utility to verify your result.

A)The series converges.
B)The series diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find the next three terms of the geometric sequence. 5,15,45,5,15,45 , \ldots

A) 55,65,75,55,65,75 , \ldots
B) 135,405,1215,135,405,1215 , \ldots
C) 75,105,135,75,105,135 , \ldots
D) 48,51,54,48,51,54 , \ldots
E) 45,135,405,45,135,405 , \ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
71
Express the value of the given repeating decimal as a fraction. [Hint: Write as an infinite series.] 0.480 . \overline { 48 }

A) 4999\frac { 49 } { 99 }
B) 49100\frac { 49 } { 100 }
C) 45\frac { 4 } { 5 }
D) 1633\frac { 16 } { 33 }
E) 1225\frac { 12 } { 25 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
72
Write the first five terms of the sequence of partial sums. 2+24+29+216+225+L2 + \frac { 2 } { 4 } + \frac { 2 } { 9 } + \frac { 2 } { 16 } + \frac { 2 } { 25 } + L

A) 2,53,4916,20566,526916002 , \frac { 5 } { 3 } , \frac { 49 } { 16 } , \frac { 205 } { 66 } , \frac { 5269 } { 1600 }
B) 2,12,29,18,2252 , \frac { 1 } { 2 } , \frac { 2 } { 9 } , \frac { 1 } { 8 } , \frac { 2 } { 25 }
C) 2,52,4918,20572,526918002 , \frac { 5 } { 2 } , \frac { 49 } { 18 } , \frac { 205 } { 72 } , \frac { 5269 } { 1800 }
D) 2,72,5518,21572,53182 , \frac { 7 } { 2 } , \frac { 55 } { 18 } , \frac { 215 } { 72 } , \frac { 53 } { 18 }
E) 2,11,4516,10033,105322 , \frac { 1 } { 1 } , \frac { 45 } { 16 } , \frac { 100 } { 33 } , \frac { 105 } { 32 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
73
The annual spending by tourists in a resort city is 200 million dollars. Approximately 75% of that revenue is again spent in the resort city, and of that amount approximately 75% is again spent in the resort city. If this pattern continues, write the geometric series that gives the total amount of spending generated by the 200 million dollars (including the initial outlay of 200 million dollars) and find the sum of the series.

A)The geometric series is n=1200(75)n+1\sum _ { n = 1 } ^ { \infty } 200 ( 75 ) ^ { n + 1 } .The sum of the series is $\$ 800.00 million.
B)The geometric series is n=1200(0.25)n\sum _ { n = 1 } ^ { \infty } 200 ( 0.25 ) ^ { n } .The sum of the series is $\$ 15,000 million.
C)The geometric series is n=0200(0.75)n\sum _ { n = 0 } ^ { \infty } 200 ( 0.75 ) ^ { n } .The sum of the series is $\$ 800.00 million.
D)The geometric series is n=0200(0.75)n\sum _ { n = 0 } ^ { \infty } 200 ( 0.75 ) ^ { n } .The sum of the series is $\$ 15,000 million.
E)The geometric series is n=1200(25)n+1\sum _ { n = 1 } ^ { \infty } 200 ( 25 ) ^ { n + 1 } .The sum of the series is $\$ 150.00 million.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
74
You accept a job that pays a salary of $\$ 50,000 the first year. During the next 39 years, you will receive a 4% raise each year. What would be your total compensation over the 40-year period? Round your answer to the nearest integer.

A) $\$ 4,751,276
B) $\$ 1,250,000
C) $\$ 48,000
D) $\$ 200,000
E) $\$ 2,000
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
75
Consider the sequence (An) whose nth term is given by An =P[1+r12]n= P \left[ 1 + \frac { r } { 12 } \right] ^ { n } where P is the principal, An is the amount of compound interest after n months, and r is the annual percentage rate. Write the first four terms of the sequence for P = $\$ 8,000 and r = 0.04. Round your answer to two decimal places.

A)8026.67, 8063.49, 8101.43, 8107.20
B)8027.67, 8063.49, 8101.43, 8135.19
C)8026.67, 8053.42, 8080.27, 8107.20
D)8027.67, 8063.49, 8080.27, 8107.20
E)8027.67, 8053.42, 8080.27, 8135.19
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
76
A factory is polluting a river such that at every mile down river from the factory an environmental expert finds 20% less pollutant than at the preceding mile. If the pollutant's concentration is 700 ppm (parts per million) at the factory, what is its concentration 15 miles down river?

A)140.00 ppm
B)300.00 ppm
C)24.63 ppm
D)875.00 ppm
E)30.79 ppm
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
77
Find the sum of the convergent series. n=09(78)n\sum _ { n = 0 } ^ { \infty } 9 \left( - \frac { 7 } { 8 } \right) ^ { n }

A) 275\frac { 27 } { 5 }
B) 215\frac { 21 } { 5 }
C) 7213\frac { 72 } { 13 }
D) 245\frac { 24 } { 5 }
E) 8113\frac { 81 } { 13 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
78
A company produces a new product for which it estimates the annual sales to be 5000 units. Suppose that in any given year 1010 % of the units (regardless of age) will become inoperative. How many units will be in use after n years?

A) 50,000(10.9n)50,000 \left( 1 - 0.9 ^ { n } \right)
B) 50,000(0.1n)50,000 \left( 0.1 ^ { n } \right)
C) 5000(10.9n)5000 \left( 1 - 0.9 ^ { n } \right)
D) 5000(0.9n)5000 \left( 0.9 ^ { n } \right)
E) 50,000(10.1n)50,000 \left( 1 - 0.1 ^ { n } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
79
Give an example of a sequence that converges to 14\frac { 1 } { 4 } .

A) an=8n452n46a _ { n } = \frac { 8 n ^ { 4 } - 5 } { 2 n ^ { 4 } - 6 }
B) an=2+5n48+6n4a _ { n } = \frac { 2 + 5 n ^ { 4 } } { 8 + 6 n ^ { 4 } }
C) an=3n459n46a _ { n } = \frac { 3 n ^ { 4 } - 5 } { 9 n ^ { 4 } - 6 }
D) an=2n458n46a _ { n } = \frac { 2 n ^ { 4 } - 5 } { 8 n ^ { 4 } - 6 }
E) an=3+5n49+6n4a _ { n } = \frac { 3 + 5 n ^ { 4 } } { 9 + 6 n ^ { 4 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
80
Bouncing Ball. A ball dropped from a height of 35 feet bounces to 1/21 / 2 of its former height with each bounce. Find the total vertical distance that the ball travels.

A)105 feet
B)140 feet
C)64 feet
D)53 feet
E)70 feet
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 127 في هذه المجموعة.