Deck 9: Factor Analysis

ملء الشاشة (f)
exit full mode
سؤال
Factor analysis is used to describe the underlying structure that explains a set of variables.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The underlying hypothetical (unobservable) variables in factor analysis are called factors.
سؤال
The main set of results obtained from a factor analysis consists of factor loadings.
سؤال
An index provided inn the results of a factor analysis is the list of communalities for each variable.
سؤال
The process by which the factors are determined from a larger set of variables is called extraction.
سؤال
In principal components analysis, only unique variability is analyzed for each observed variable.
سؤال
In factor analysis, unique, shared, and error variability is analyzed for each observed variable.
سؤال
Factor analysis analyzes variance.
سؤال
Principle components analysis analyzes covariance.
سؤال
Principal components analysis is usually the preferred method of factor extraction, especially when the focus of an analysis searching for an underlying structure is explanatory.
سؤال
Kaiser's rule states that only those components in principal components analysis whose eigenvalues are greater than 1 should be retained.
سؤال
An eigenvalue is defined as the amount of total variance explained by each factor, with the total amount of variability in the analysis equal to the number of original variables in the analysis.
سؤال
A scree plot is a graph of the magnitude of each eigenvalue (vertical axis) plotted against its ordinal numbers (horizontal axis).
سؤال
A general rule of thumb is to retain the factors that account for at least 70% of the total variability.
سؤال
A final criterion for retaining components is the assessment of model fit.
سؤال
Rotation is a process by which a factor solution is made more interpretable by altering the underlying mathematical structure.
سؤال
Orthogonal rotation is a rotation of factors that results in factors being correlated with each other.
سؤال
Oblique rotation results in factors being uncorrelated with each other.
سؤال
Varimax is the most commonly used oblique rotation procedure.
سؤال
A factor correlation matrix is produced from an orthogonal rotation.
سؤال
Interpretation of components or factors involves much subjective decision making on the part of the researcher.
سؤال
When interpreting or naming components, one should pay particular attention to the size and direction of each loading.
سؤال
A bipolar factor refers to a component that contains both high positive and high negative loadings.
سؤال
Principal components analysis may be used as a variable reducing scheme for further analysis.
سؤال
Factor scores are estimates of the scores participants would have received on each of the factors had they been measured directly.
سؤال
There are two basic types of factor analytic procedures, based on their overall intended function. They include:

A) Exploratory factor analysis.
B) Explanatory factor analysis.
C) Confirmatory factor analysis.
D) Both (a) and (b) are correct.
سؤال
In exploratory factor analysis, the goal is to:

A) Describe data by grouping together variables that are correlated.
B) Summarize data by grouping together variables that are uncorrelated.
C) Describe and summarize data by grouping together variables that are correlated.
D) Test a theory about latent processes that might occur among variables.
سؤال
Confirmatory factor analysis often used to:

A) Test a theory about underlying, unobservable processes that might occur among variables.
B) Confirm or disconfirm a theory post hoc.
C) Neither (a) nor (b).
D) Both (a) and (b).
سؤال
It is recommended that the following two assumptions be evaluated and any necessary transformations be made to ensure the quality of data and improve the quality of the resulting factor or component solution:

A) All variables, as well as all linear combinations of variables, must be normally distributed.
B) The relationships among all variables must be linear.
C) The relationships among all pairs of variables must be linear.
D) Both (a) and (c) are correct.
سؤال
The underlying, mathematical objective in principal components analysis is to obtain:

A) Correlated linear combinations of the original variables that account for as much of the total variance in the original variables as possible.
B) Uncorrelated linear combinations of the original variables that account for some of the total variance in the original variables.
C) Uncorrelated linear combinations of the original variables that account for as much of the total variance in the original variables as possible.
D) Uncorrelated combinations of the original variables that account for as much of the total variance in the original variables as possible.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/30
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Factor Analysis
1
Factor analysis is used to describe the underlying structure that explains a set of variables.
True
2
The underlying hypothetical (unobservable) variables in factor analysis are called factors.
True
3
The main set of results obtained from a factor analysis consists of factor loadings.
True
4
An index provided inn the results of a factor analysis is the list of communalities for each variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
5
The process by which the factors are determined from a larger set of variables is called extraction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
6
In principal components analysis, only unique variability is analyzed for each observed variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
7
In factor analysis, unique, shared, and error variability is analyzed for each observed variable.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
8
Factor analysis analyzes variance.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
9
Principle components analysis analyzes covariance.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
10
Principal components analysis is usually the preferred method of factor extraction, especially when the focus of an analysis searching for an underlying structure is explanatory.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
11
Kaiser's rule states that only those components in principal components analysis whose eigenvalues are greater than 1 should be retained.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
12
An eigenvalue is defined as the amount of total variance explained by each factor, with the total amount of variability in the analysis equal to the number of original variables in the analysis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
13
A scree plot is a graph of the magnitude of each eigenvalue (vertical axis) plotted against its ordinal numbers (horizontal axis).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
14
A general rule of thumb is to retain the factors that account for at least 70% of the total variability.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
15
A final criterion for retaining components is the assessment of model fit.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
16
Rotation is a process by which a factor solution is made more interpretable by altering the underlying mathematical structure.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
17
Orthogonal rotation is a rotation of factors that results in factors being correlated with each other.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
18
Oblique rotation results in factors being uncorrelated with each other.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
19
Varimax is the most commonly used oblique rotation procedure.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
20
A factor correlation matrix is produced from an orthogonal rotation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
21
Interpretation of components or factors involves much subjective decision making on the part of the researcher.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
22
When interpreting or naming components, one should pay particular attention to the size and direction of each loading.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
23
A bipolar factor refers to a component that contains both high positive and high negative loadings.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
24
Principal components analysis may be used as a variable reducing scheme for further analysis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
25
Factor scores are estimates of the scores participants would have received on each of the factors had they been measured directly.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
26
There are two basic types of factor analytic procedures, based on their overall intended function. They include:

A) Exploratory factor analysis.
B) Explanatory factor analysis.
C) Confirmatory factor analysis.
D) Both (a) and (b) are correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
27
In exploratory factor analysis, the goal is to:

A) Describe data by grouping together variables that are correlated.
B) Summarize data by grouping together variables that are uncorrelated.
C) Describe and summarize data by grouping together variables that are correlated.
D) Test a theory about latent processes that might occur among variables.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
28
Confirmatory factor analysis often used to:

A) Test a theory about underlying, unobservable processes that might occur among variables.
B) Confirm or disconfirm a theory post hoc.
C) Neither (a) nor (b).
D) Both (a) and (b).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
29
It is recommended that the following two assumptions be evaluated and any necessary transformations be made to ensure the quality of data and improve the quality of the resulting factor or component solution:

A) All variables, as well as all linear combinations of variables, must be normally distributed.
B) The relationships among all variables must be linear.
C) The relationships among all pairs of variables must be linear.
D) Both (a) and (c) are correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
30
The underlying, mathematical objective in principal components analysis is to obtain:

A) Correlated linear combinations of the original variables that account for as much of the total variance in the original variables as possible.
B) Uncorrelated linear combinations of the original variables that account for some of the total variance in the original variables.
C) Uncorrelated linear combinations of the original variables that account for as much of the total variance in the original variables as possible.
D) Uncorrelated combinations of the original variables that account for as much of the total variance in the original variables as possible.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 30 في هذه المجموعة.