Deck 1: The Nature of Econometrics

ملء الشاشة (f)
exit full mode
سؤال
Given Yi5.5Xi3.5141.2102.3117.8\begin{array} { c c } \frac { \mathrm { Yi } } { 5.5 } & \frac { \mathrm { Xi } } { 3.5 } \\14 & - 1.2 \\- 10 & - 2.3 \\11 & 7.8\end{array}
Yi = β^0\hat { \beta } _ { 0 } - β^1\hat { \beta } _ { 1 }
Xi + ei β^0\hat { \beta } _ { 0 } = 2.97
β^1\hat { \beta } _ { 1 } = 1.10
Calculate the value of the four ei's.
Show your work making the details of your calculations apparent."
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Yi=45.3316.20Xi+ei (9.14) (14.27) standard errors  SER =45.03Yˉ=75.01r2=0.77n=44\begin{array} { |l| } \hline\mathrm { Y } _ { \mathrm { i } } = 45.33 - 16.20 \mathrm { X } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } } \\\text { (9.14) } ( 14.27 ) \leftarrow \text { standard errors } \\\text { SER } = 45.03 \quad \bar { Y } = 75.01 \quad \mathrm { r } ^ { 2 } = 0.77 \quad \mathrm { n } = 44 \\\hline\end{array}

A) Interpret the structural parameters of the regression in the box above.
B) How many observations were used to estimate the structural parameters?
C) What is the estimated distance of an observation from the population regression line on average?
D) Interpret the standard error of the constant term.
E) If the structural parameters of this regression were re-calculated using a fresh set of data, would you be surprised if turned out to be -29.00? Explain.
F) According to the SER, is the fit of this regression line adequate? Explain.
سؤال
Answer any 5 of the following A through F:

A) Briefly explain in words how diplomatic parking fines can be used to predict the level of corruption in a nation. Also, write the econometric model used to make this prediction.
B) Define psychometrics.
C) Explain why minimizing the squared error terms is the premier method for fitting a line between observations considering that other options are available.
D) Give 3 distinct reasons why a student may not reduce their study time given the information in the box on the right. GPAi=3.1+0.02STi+ei\mathrm { GPA } _ { \mathrm { i } } = 3.1 + 0.02 \mathrm { ST } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } }
(0.14) (0.08) \leftarrow standard errors
where GPA is grade point average
ST is hours of study time on a typical day.
r2=0.0002n=289\mathrm { r } ^ { 2 } = 0.0002 \quad \mathrm { n } = 289
E) Prove
Σ(XiXˉ)2=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F.
F. Prove
Σ(YiYˉ)=0\Sigma \left( Y _ { i } - \bar { Y } \right) = 0
سؤال
If r2 = 0.77, then 33% of the variation in Y is explained by variables other than the one in the regression.
سؤال
In some instances, a regression with r2 = .002 can be considered a good fit.
سؤال
Unless all the observations lie on a straight line, it is impossible to fit a line such that ei2\sum e _ { i } ^ { 2 } = 0.
سؤال
Regression analysis and ordinary least-squares are the same method.
سؤال
Σ(Yiβ^0β^1Xi)2β^0\frac { \partial \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ^ { 2 } } { \partial \hat { \beta } _ { 0 } } = 2Σ(Yiβ^0β^1Xi)(1)2 \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ( - 1 )
سؤال
Σ(XiXˉ)(YiYˉ)=ΣYiXiYˉΣXi\Sigma \left( X _ { i } - \bar { X } \right) \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } X _ { i } - \bar { Y } \Sigma X _ { i }
سؤال
Equation 4 below is for the SER2.
سؤال
Equation 2 below is similar to the equation for β^1\hat { \beta } _ { 1 }
, but not 100% correct.
سؤال
Equation 3 below is the standard error of β^1\hat { \beta } _ { 1 }
سؤال
Equation 1 below is similar to the equation for r2, but not 100% correct.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/13
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 1: The Nature of Econometrics
1
Given Yi5.5Xi3.5141.2102.3117.8\begin{array} { c c } \frac { \mathrm { Yi } } { 5.5 } & \frac { \mathrm { Xi } } { 3.5 } \\14 & - 1.2 \\- 10 & - 2.3 \\11 & 7.8\end{array}
Yi = β^0\hat { \beta } _ { 0 } - β^1\hat { \beta } _ { 1 }
Xi + ei β^0\hat { \beta } _ { 0 } = 2.97
β^1\hat { \beta } _ { 1 } = 1.10
Calculate the value of the four ei's.
Show your work making the details of your calculations apparent."
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = 5.5 - (2.97 + (1.10 x 3.5)) = -1.33 (6.38)
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = 14 - (2.97 + (-1.10 x -1.2)) = 12.35 (9.71)
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta} _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = -10 - (2.97 + (-1.10 x -2.3)) = -10.44 (-15.50)
ei = Yi - Y^i\hat { Y } _ { i } = Yi - ( β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } Xi) = 11 - (2.97 + (-1.10 x 7.8)) = -0.58 (16.61)
2
Yi=45.3316.20Xi+ei (9.14) (14.27) standard errors  SER =45.03Yˉ=75.01r2=0.77n=44\begin{array} { |l| } \hline\mathrm { Y } _ { \mathrm { i } } = 45.33 - 16.20 \mathrm { X } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } } \\\text { (9.14) } ( 14.27 ) \leftarrow \text { standard errors } \\\text { SER } = 45.03 \quad \bar { Y } = 75.01 \quad \mathrm { r } ^ { 2 } = 0.77 \quad \mathrm { n } = 44 \\\hline\end{array}

A) Interpret the structural parameters of the regression in the box above.
B) How many observations were used to estimate the structural parameters?
C) What is the estimated distance of an observation from the population regression line on average?
D) Interpret the standard error of the constant term.
E) If the structural parameters of this regression were re-calculated using a fresh set of data, would you be surprised if turned out to be -29.00? Explain.
F) According to the SER, is the fit of this regression line adequate? Explain.
A)If X=0, then Y is expected to = 45.33
If X↑ 1 unti,then Y is expected to↓ 16.20 units
B)44
C) 45.03
D) In repeated sampling β^0\hat { \beta } _ { 0 } typically varies by 9.14
E) No, since (-16.20 - 14.27) < -29.00
F)The fit is not adequate since SER > ½ Y-bar
3
Answer any 5 of the following A through F:

A) Briefly explain in words how diplomatic parking fines can be used to predict the level of corruption in a nation. Also, write the econometric model used to make this prediction.
B) Define psychometrics.
C) Explain why minimizing the squared error terms is the premier method for fitting a line between observations considering that other options are available.
D) Give 3 distinct reasons why a student may not reduce their study time given the information in the box on the right. GPAi=3.1+0.02STi+ei\mathrm { GPA } _ { \mathrm { i } } = 3.1 + 0.02 \mathrm { ST } _ { \mathrm { i } } + \mathrm { e } _ { \mathrm { i } }
(0.14) (0.08) \leftarrow standard errors
where GPA is grade point average
ST is hours of study time on a typical day.
r2=0.0002n=289\mathrm { r } ^ { 2 } = 0.0002 \quad \mathrm { n } = 289
E) Prove
Σ(XiXˉ)2=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F.
F. Prove
Σ(YiYˉ)=0\Sigma \left( Y _ { i } - \bar { Y } \right) = 0
A) When diplomats rack up parking fines and don't pay them it may be a marker for the level of corruption in their home country. Diplomats from corrupt countries rack up more parking fines than those from less corrupt countries.
Level of Corruptioni = β^0\hat { \beta } _ { 0 } + β^1\hat { \beta } _ { 1 } unpaid parking fines per diplomati + ei
B) The empirical determination of psychological laws.
C) This technique yields 1) a unique line that has 2) desirable statistical qualities.
D) 1) The variables may be poorly measured.
2) Other factors aside from study time may come into play.
3) These results are for typical students and I'm not typical.
E) Σ(XiXˉ)2=Σ(XiXˉ)(XiXˉ)=ΣXi2XˉΣXiXˉΣXi+nXˉ2=ΣXi2XˉΣXi=ΣXi2nXˉ2\Sigma \left( X _ { i } - \bar { X } \right) ^ { 2 } = \Sigma \left( X _ { i } - \bar { X } \right) \left( X _ { i } - \bar { X } \right) = \Sigma X _ { i } { } ^ { 2 } - \bar { X } \Sigma X _ { i } - \bar { X } \Sigma X _ { i } + n \bar { X } ^ { 2 } = \Sigma X _ { i } ^ { 2 } - \bar { X } \Sigma X _ { i } = \Sigma X _ { i } { } ^ { 2 } - n \bar { X } ^ { 2 } F) Σ(YiYˉ)=ΣYiΣYˉ=nYˉnYˉ=0\Sigma \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } - \Sigma \bar { Y } = n \bar { Y } - n \bar { Y } = 0
4
If r2 = 0.77, then 33% of the variation in Y is explained by variables other than the one in the regression.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
5
In some instances, a regression with r2 = .002 can be considered a good fit.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
6
Unless all the observations lie on a straight line, it is impossible to fit a line such that ei2\sum e _ { i } ^ { 2 } = 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
7
Regression analysis and ordinary least-squares are the same method.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
8
Σ(Yiβ^0β^1Xi)2β^0\frac { \partial \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ^ { 2 } } { \partial \hat { \beta } _ { 0 } } = 2Σ(Yiβ^0β^1Xi)(1)2 \Sigma \left( Y _ { i } - \hat { \beta } _ { 0 } - \hat { \beta } _ { 1 } X _ { i } \right) ( - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
9
Σ(XiXˉ)(YiYˉ)=ΣYiXiYˉΣXi\Sigma \left( X _ { i } - \bar { X } \right) \left( Y _ { i } - \bar { Y } \right) = \Sigma Y _ { i } X _ { i } - \bar { Y } \Sigma X _ { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
10
Equation 4 below is for the SER2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
11
Equation 2 below is similar to the equation for β^1\hat { \beta } _ { 1 }
, but not 100% correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
12
Equation 3 below is the standard error of β^1\hat { \beta } _ { 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
13
Equation 1 below is similar to the equation for r2, but not 100% correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.