Deck 33: Electromagnetic Waves

ملء الشاشة (f)
exit full mode
سؤال
The Maxwell-Ampere Law can be written as Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t } . The term in the equation that relates to the magnetic field produced by the so-called displacement current is

A) Bds\oint \vec { B } \cdot d \vec { s }
B) μ0I\mu _ { 0 } I
C) μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
D) No term in this equation is related to the displacement current.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The Maxwell-Ampere Law can be written as; Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t } . The term in the equation that relates to the magnetic field produced by an electric current is

A) Bds\oint \vec { B } \cdot d \vec { s }
B) μ0I\mu _ { 0 } I
C) μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
D) No term in this equation is related to the displacement current.
سؤال
Maxwell's equations are a compilation of the fundamental laws needed for a complete mathematical description of the behavior of electric and magnetic fields. The equation that mathematically reflects that there are no isolated magnetic poles is

A) EdA=Qinside ε0\oint \vec { E } \cdot d \vec { A } = \frac { Q _ { \text {inside } } } { \varepsilon _ { 0 } }
B) BdA=0\oint \vec { B } \cdot d \vec { A } = 0
C) Eds=dΦBdt\oint \vec { E } \cdot d \vec { s } = - \frac { d \Phi _ { B } } { d t }
D) Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
سؤال
Maxwell's equations are a compilation of the fundamental laws needed for a complete mathematical description of the behavior of electric and magnetic fields. The equation that mathematically reflects that a changing magnetic flux induces an electric field is

A) EdA=Qinside ε0\oint \vec { E } \cdot d \vec { A } = \frac { Q _ { \text {inside } } } { \varepsilon _ { 0 } }
B) BdA=0\oint \vec { B } \cdot d \vec { A } = 0
C) Eds=dΦBdt\oint \vec { E } \cdot d \vec { s } = - \frac { d \Phi _ { B } } { d t }
D) Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
سؤال
A 4.0-A current is charging a 10.0-mF capacitor. The total displacement current between the capacitor plates is

A) 4.0 A.
B) -4.0 A.
C) 0 A.
D) Not enough information is given to solve this problem.
سؤال
A current is used to charge a capacitor. After the capacitor has been charged, the magnetic field between the plates is

A) given by B=μ0I2πrB = \frac { \mu _ { 0 } I } { 2 \pi r }
B) given by B=μ0I22πrB = \frac { \mu _ { 0 } I ^ { 2 } } { 2 \pi r }
C) given by B=μ0I2πr2B = \frac { \mu _ { 0 } I } { 2 \pi r ^ { 2 } }
D) zero.
سؤال
Given that the sun's intensity at the Earth's surface is 1350 W/m2, the amount of electrical energy in a cubic meter at the Earth's surface is

A) 1.5×106 J1.5 \times 10 ^ { - 6 } \mathrm {~J}
B) 3.0×106 J3.0 \times 10 ^ { - 6 } \mathrm {~J}
C) 4.5×106 J4.5 \times 10 ^ { - 6 } \mathrm {~J}
D) 6.0×106 J6.0 \times 10 ^ { - 6 } \mathrm {~J}
سؤال
A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is

A) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)   <div style=padding-top: 35px>
سؤال
A charge undergoes an acceleration. The tangential component of the electric field produced during the acceleration is

A) a maximum in the direction of the acceleration.
B) larger than the radial component.
C) decreasing in a manner that is proportional to 1/r2 from the source.
D) All of the above answers are correct.
E) None of the above answers is correct.
سؤال
The functional dependence of the transverse component of the radiation field produced by an accelerating charge as a function of distance from the charge is proportional to

A) r.
B) 1/r.
C) r2.
D) 1/r2.
E) none of the above.
سؤال
The functional dependence of the radial component of the field produced by an accelerating charge as a function of distance from the charge is proportional to

A) r.
B) 1/r.
C) r2.
D) 1/r2.
E) none of the above.
سؤال
Given a wave pulse that is traveling in the i^\hat { i } direction while its electric field is in the k^- \hat { k } direction, the magnetic field is in the

A) j^- \hat { j } direction.
B) j^ \hat {j }

direction.
C) k^+i^- \hat { k } + \hat { i } direction.
D) k^i^- \hat { k } - \hat { i } direction.
سؤال
A wave pulse is traveling in the j^- \hat { j } direction while its magnetic field is in the k^- \hat { k } direction. The electric field is in the

A) i^- \hat { i } direction.
B) j^ \hat {j } direction.
C) k^\hat { k } direction.
D) k^- \hat { k } direction.
سؤال
The Maxwell-Ampere Law can be written as Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t } . The term in the equation that does not contribute to the theoretical description of the propagation of an electromagnetic wave pulse is

A) Bds\oint \vec { B } \cdot d \vec { s }
B) μ0I\mu _ { 0 } I
C) μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
D) No term in this equation is related to the propagation of the electromagnetic wave pulse.
سؤال
The frequency of an electromagnetic wave is 2.0×1014 Hz2.0 \times 10 ^ { 14 } \mathrm {~Hz} . The wavelength of this wave is

A) 150 nm.
B) 67 mm.
C) 1500 nm.
D) 670 nm.
سؤال
A gamma ray has a wavelength of 5.0×1014 m5.0 \times 10 ^ { - 14 } \mathrm {~m} . The frequency of this wave is

A) 6.0×1021 Hz6.0 \times 10 ^ { 21 } \mathrm {~Hz}
B) 6.0×1020 Hz6.0 \times 10 ^ { 20 } \mathrm {~Hz}
C) 3.0×1021 Hz3.0 \times 10 ^ { 21 } \mathrm {~Hz}
D) 15×1021 Hz15 \times 10 ^ { 21 } \mathrm {~Hz}
سؤال
The amplitude of the electric field of an electromagnetic wave is 6.0 ×\times 10 -3 V/m. The amplitude of the magnetic field of this wave is

A) 1.8 ×\times
106 T.
B) 1.8 ×\times
10-11 T.
C) 1.8 ×\times
10-10 T.
D) 2.0 ×\times
10-11 T.
سؤال
Unpolarized light with an intensity of I0 is traveling in the + x direction. The light is incident on a polarizer whose axis is aligned along the y axis. The light that passes through the polarizer has an intensity that is

A) (1/2)I0 with a polarization along the z axis.
B) (1/2)I0 with a polarization along the y axis.
C) I0 with a polarization along the z axis.
D) I0 with a polarization along the y axis.
سؤال
Initially polarized light is incident on a polarizer. If the intensity of the light after passing through the polarizer is (3/4) of the initial intensity, the angle between the polarizer axis and the original polarization axis of the light is

A) 41.4°.
B) 30°.
C) 48.6°.
D) 60°.
سؤال
Unpolarized light of intensity I0 is incident upon the first of two polarizers. The second polarizer has its preferential direction at 50° with respect to the first polarizer. The final transmitted intensity is

A) (0.21) I0.
B) (0.41) I0.
C) (0.044) I0.
D) (0.59) I0.
سؤال
Unpolarized light of intensity I0 is incident upon the first of two polarizers. The final transmitted intensity is (3/8)I0. With respect to the first polarizer, the second polarizer has its preferential direction at

A) 52°.
B) 41°.
C) 38°.
D) 30°.
سؤال
The following electromagnetic radiation has a wavelength that is closest to the size of automobile:

A) Radio waves
B) Infrared radiation
C) Visible radiation
D) Ultraviolet radiation
سؤال
The unit associated with an energy flux is

A) joule.
B) watt/meter.
C) watt/meter2.
D) joule/meter2.
سؤال
At a given point the electric field is 0.25 V/m. The energy flux at this point is

A) 1.7 ×\times
10-4 W/m2.
B) 2.8 ×\times
10-4 W/m2.
C) 8.2 ×\times
10-4 W/m2.
D) 8.2 ×\times
10-5 W/m2.
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The direction the wave is traveling in is

A) k^\hat { k }
B) j^\hat { j }
C) - j^\hat { j }

D) i^\hat { i }
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The axis of polarization of the wave is

A) k^\hat { k }
B) j^\hat { j }

C) - j^\hat { j }

D) i^\hat { i }
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The frequency of the wave is

A) 9.42×1015 Hz9.42 \times 10 ^ { 15 } \mathrm {~Hz}
B) 9.42×1015rad/s9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s }
C) 1.5×1015 Hz1.5 \times 10 ^ { 15 } \mathrm {~Hz}
D) 9.0×105 V/m9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m }
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The wavelength of the wave is

A) 2.0×107 m2.0 \times 10 ^ { - 7 } \mathrm {~m}
B) 2.0×107 m2.0 \times 10 ^ { 7 } \mathrm {~m}
C) 9.99×106 m9.99 \times 10 ^ { 6 } \mathrm {~m}
D) 3.1×107 m3.1 \times 10 ^ { 7 } \mathrm {~m}
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The wave number of the magnetic field associated with this wave is

A) 3.1×107 m13.1 \times 10 ^ { 7 } \mathrm {~m} ^ { - 1 }
B) 3.0×103 m13.0 \times 10 ^ { - 3 } \mathrm {~m} ^ { - 1 }
C) 3.0×105 m3.0 \times 10 ^ { 5 } \mathrm {~m}
D) 3.1×107 m3.1 \times 10 ^ { 7 } \mathrm {~m}
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The magnitude of the magnetic field associated with this wave is

A) 1.0×103 T1.0 \times 10 ^ { - 3 } \mathrm {~T}
B) 2.0×103 T2.0 \times 10 ^ { - 3 } \mathrm {~T}
C) 3.0×103 T3.0 \times 10 ^ { - 3 } \mathrm {~T}
D) 6.0×103 T6.0 \times 10 ^ { - 3 } \mathrm {~T}
سؤال
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The direction of the polarization of the magnetic field associated with this wave is

A) j^\hat { j }

B) k^\hat { k }
C) i^\hat { i }
D) Hold on. The wave is not polarized.
سؤال
The speed of radio waves traveling in a vacuum depends on

A) the wavelength of the waves.
B) the frequency of the waves.
C) the polarization of the waves.
D) none of the above.
سؤال
A pressure of 15×106 N/m215 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 } is due to sunlight being reflected from a surface of a "solar sail." The energy flux incident on the surface is

A) 1125 W/m2.
B) 2250 W/m2.
C) 4500 W/m2.
D) 9000 W/m2.
سؤال
A pressure of 15×106 N/m215 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 } is due to sunlight being absorbed by a surface of a "solar sail." The energy flux incident on the surface is

A) 1125 W/m2.
B) 2250 W/m2.
C) 4500 W/m2.
D) 9000 W/m2.
سؤال
A wave has double the amplitude of a second wave. The energy density of the second wave is

A) four times that of the first wave.
B) double that of the first wave.
C) equal to that of the first wave.
D) half that of the first wave.
E) one-quarter that of the first wave.
سؤال
An electromagnetic wave with an electric field amplitude of 0.15 V/m has an intensity of

A) 1.0×105 W/m21.0 \times 10 ^ { - 5 } \mathrm {~W} / \mathrm { m } ^ { 2 }
B) 3.0×106 W/m23.0 \times 10 ^ { - 6 } \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 1.0×105 W/m21.0 \times 10 ^ { - 5 } \mathrm {~W} / \mathrm { m } ^ { 2 } .
D) 3.0×105 W/m23.0 \times 10 ^ { - 5 } \mathrm {~W} / \mathrm { m } ^ { 2 } .
سؤال
A spherical wave spreads out from a source, and the total power at a distance of R0 is P0. At a distance of 2R0 the power is

A) P0/8.
B) P0/4.
C) P0/2.
D) P0.
سؤال
A spherical wave spreads out from a source, and the energy flux at a distance of R0 is S0. At a distance of 2R0 the energy flux is

A) S0/8.
B) S0/4.
C) S0/2.
D) S0.
سؤال
An electromagnetic wave consists of

A) only an electric field.
B) only a magnetic field.
C) an electric field and a magnetic field oriented parallel to each other.
D) an electric field and a magnetic field oriented perpendicular to each other.
سؤال
The direction of propagation of an electromagnetic wave is given by

A) EB\vec { E } \cdot \vec { B }
B) EB- \vec { E } \cdot \vec { B }
C) E×B\vec { E } \times \vec { B }
D) B×E\vec { B } \times \vec { E }
سؤال
Stationary charges produce

A) electromagnetic waves.
B) only magnetic fields.
C) only electric fields.
D) both electric and magnetic fields.
سؤال
Accelerating charges produce

A) electromagnetic standing waves.
B) only magnetic fields.
C) only electric fields.
D) both electric and magnetic fields.
سؤال
ε0\varepsilon _ { 0 } is related to the speed of light and the permeability of free space through the relation

A) ε0=c2μ0\varepsilon _ { 0 } = c ^ { 2 } \mu _ { 0 }
B) ε0=c2μ0\varepsilon _ { 0 } = \frac { c ^ { 2 } } { \mu _ { 0 } }
C) ε0=1c2μ0\varepsilon _ { 0 } = \frac { 1 } { c ^ { 2 } \mu _ { 0 } }
D) ε0=μ0c2\varepsilon _ { 0 } = \frac { \mu _ { 0 } } { c ^ { 2 } }
سؤال
A satellite 300 km above the surface of the Earth emits a radio wave pulse ( λ\lambda = 25m). The transit time for the wave to reach the surface of the Earth is

A) 1 μ\mu s.
B) 10 μ\mu s.
C) 100 μ\mu s.
D) 1 ms.
سؤال
Consider a 150-W incandescent lightbulb that radiates light in all directions. At a distance of 1.5 m the time-averaged energy flux emitted by the bulb is

A) 7.9 W/m2.
B) 5.3 W/m2.
C) 100 W/m2.
D) 67 W/m2.
سؤال
Consider a 150-W incandescent lightbulb that radiates light in all directions. At a distance of 1.5 m the amplitude of the oscillating electric field E0 is

A) 77 V/m.
B) 63 V/m.
C) 225 V/m.
D) 39 V/m.
سؤال
Consider a 150-W incandescent lightbulb that radiates light in all directions. At a distance of 1.5 m the amplitude of the oscillating magnetic field B0 is

A) 2.6×107 T2.6 \times 10 ^ { - 7 } \mathrm {~T}
B) 2.1×107 T2.1 \times 10 ^ { - 7 } \mathrm {~T}
C) 7.5×107 T7.5 \times 10 ^ { - 7 } \mathrm {~T}
D) 1.3×107 T1.3 \times 10 ^ { - 7 } \mathrm {~T}
سؤال
The electric field component of an electromagnetic wave is 130 V/m. The electric energy density of the wave is

A) 7.5×108 J7.5 \times 10 ^ { - 8 } \mathrm {~J}
B) 7.5×108 J/m7.5 \times 10 ^ { - 8 } \mathrm {~J} / \mathrm { m }
C) 7.5×108 J/m27.5 \times 10 ^ { - 8 } \mathrm {~J} / \mathrm { m } ^ { 2 }
D) 7.5×108 J/m37.5 \times 10 ^ { - 8 } \mathrm {~J} / \mathrm { m } ^ { 3 }
سؤال
The magnetic field component of an electromagnetic wave is 25 μT\mu \mathrm { T } . The electric energy density of the wave is

A) 2.5×104 J/m32.5 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
B) 2.5×104 J/m22.5 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 2 }
C) 2.5×102 J/m32.5 \times 10 ^ { - 2 } \mathrm {~J} / \mathrm { m } ^ { 3 }
D) 2.5×102 J/m22.5 \times 10 ^ { - 2 } \mathrm {~J} / \mathrm { m } ^ { 2 }
سؤال
Radiation from a source is striking a surface at a rate of 50 W/m2. The peak value of the electric field is

A) 110 V/m.
B) 150 V/m.
C) 190 V/m.
D) 250 V/m.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 33: Electromagnetic Waves
1
The Maxwell-Ampere Law can be written as Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t } . The term in the equation that relates to the magnetic field produced by the so-called displacement current is

A) Bds\oint \vec { B } \cdot d \vec { s }
B) μ0I\mu _ { 0 } I
C) μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
D) No term in this equation is related to the displacement current.
μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
2
The Maxwell-Ampere Law can be written as; Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t } . The term in the equation that relates to the magnetic field produced by an electric current is

A) Bds\oint \vec { B } \cdot d \vec { s }
B) μ0I\mu _ { 0 } I
C) μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
D) No term in this equation is related to the displacement current.
μ0I\mu _ { 0 } I
3
Maxwell's equations are a compilation of the fundamental laws needed for a complete mathematical description of the behavior of electric and magnetic fields. The equation that mathematically reflects that there are no isolated magnetic poles is

A) EdA=Qinside ε0\oint \vec { E } \cdot d \vec { A } = \frac { Q _ { \text {inside } } } { \varepsilon _ { 0 } }
B) BdA=0\oint \vec { B } \cdot d \vec { A } = 0
C) Eds=dΦBdt\oint \vec { E } \cdot d \vec { s } = - \frac { d \Phi _ { B } } { d t }
D) Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
BdA=0\oint \vec { B } \cdot d \vec { A } = 0
4
Maxwell's equations are a compilation of the fundamental laws needed for a complete mathematical description of the behavior of electric and magnetic fields. The equation that mathematically reflects that a changing magnetic flux induces an electric field is

A) EdA=Qinside ε0\oint \vec { E } \cdot d \vec { A } = \frac { Q _ { \text {inside } } } { \varepsilon _ { 0 } }
B) BdA=0\oint \vec { B } \cdot d \vec { A } = 0
C) Eds=dΦBdt\oint \vec { E } \cdot d \vec { s } = - \frac { d \Phi _ { B } } { d t }
D) Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
5
A 4.0-A current is charging a 10.0-mF capacitor. The total displacement current between the capacitor plates is

A) 4.0 A.
B) -4.0 A.
C) 0 A.
D) Not enough information is given to solve this problem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
6
A current is used to charge a capacitor. After the capacitor has been charged, the magnetic field between the plates is

A) given by B=μ0I2πrB = \frac { \mu _ { 0 } I } { 2 \pi r }
B) given by B=μ0I22πrB = \frac { \mu _ { 0 } I ^ { 2 } } { 2 \pi r }
C) given by B=μ0I2πr2B = \frac { \mu _ { 0 } I } { 2 \pi r ^ { 2 } }
D) zero.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
7
Given that the sun's intensity at the Earth's surface is 1350 W/m2, the amount of electrical energy in a cubic meter at the Earth's surface is

A) 1.5×106 J1.5 \times 10 ^ { - 6 } \mathrm {~J}
B) 3.0×106 J3.0 \times 10 ^ { - 6 } \mathrm {~J}
C) 4.5×106 J4.5 \times 10 ^ { - 6 } \mathrm {~J}
D) 6.0×106 J6.0 \times 10 ^ { - 6 } \mathrm {~J}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
8
A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is

A) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)
B) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)
C) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)
D) <strong>A parallel-plate capacitor consists of circular plates with a radius of one unit. During the charging process the magnitude of the magnetic field as a function of radius is</strong> A)   B)   C)   D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
9
A charge undergoes an acceleration. The tangential component of the electric field produced during the acceleration is

A) a maximum in the direction of the acceleration.
B) larger than the radial component.
C) decreasing in a manner that is proportional to 1/r2 from the source.
D) All of the above answers are correct.
E) None of the above answers is correct.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
10
The functional dependence of the transverse component of the radiation field produced by an accelerating charge as a function of distance from the charge is proportional to

A) r.
B) 1/r.
C) r2.
D) 1/r2.
E) none of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
11
The functional dependence of the radial component of the field produced by an accelerating charge as a function of distance from the charge is proportional to

A) r.
B) 1/r.
C) r2.
D) 1/r2.
E) none of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
12
Given a wave pulse that is traveling in the i^\hat { i } direction while its electric field is in the k^- \hat { k } direction, the magnetic field is in the

A) j^- \hat { j } direction.
B) j^ \hat {j }

direction.
C) k^+i^- \hat { k } + \hat { i } direction.
D) k^i^- \hat { k } - \hat { i } direction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
13
A wave pulse is traveling in the j^- \hat { j } direction while its magnetic field is in the k^- \hat { k } direction. The electric field is in the

A) i^- \hat { i } direction.
B) j^ \hat {j } direction.
C) k^\hat { k } direction.
D) k^- \hat { k } direction.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
14
The Maxwell-Ampere Law can be written as Bds=μ0I+μ0ε0dΦEdt\oint \vec { B } \cdot d \vec { s } = \mu _ { 0 } I + \mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t } . The term in the equation that does not contribute to the theoretical description of the propagation of an electromagnetic wave pulse is

A) Bds\oint \vec { B } \cdot d \vec { s }
B) μ0I\mu _ { 0 } I
C) μ0ε0dΦEdt\mu _ { 0 } \varepsilon _ { 0 } \frac { d \Phi _ { E } } { d t }
D) No term in this equation is related to the propagation of the electromagnetic wave pulse.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
15
The frequency of an electromagnetic wave is 2.0×1014 Hz2.0 \times 10 ^ { 14 } \mathrm {~Hz} . The wavelength of this wave is

A) 150 nm.
B) 67 mm.
C) 1500 nm.
D) 670 nm.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
16
A gamma ray has a wavelength of 5.0×1014 m5.0 \times 10 ^ { - 14 } \mathrm {~m} . The frequency of this wave is

A) 6.0×1021 Hz6.0 \times 10 ^ { 21 } \mathrm {~Hz}
B) 6.0×1020 Hz6.0 \times 10 ^ { 20 } \mathrm {~Hz}
C) 3.0×1021 Hz3.0 \times 10 ^ { 21 } \mathrm {~Hz}
D) 15×1021 Hz15 \times 10 ^ { 21 } \mathrm {~Hz}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
17
The amplitude of the electric field of an electromagnetic wave is 6.0 ×\times 10 -3 V/m. The amplitude of the magnetic field of this wave is

A) 1.8 ×\times
106 T.
B) 1.8 ×\times
10-11 T.
C) 1.8 ×\times
10-10 T.
D) 2.0 ×\times
10-11 T.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
18
Unpolarized light with an intensity of I0 is traveling in the + x direction. The light is incident on a polarizer whose axis is aligned along the y axis. The light that passes through the polarizer has an intensity that is

A) (1/2)I0 with a polarization along the z axis.
B) (1/2)I0 with a polarization along the y axis.
C) I0 with a polarization along the z axis.
D) I0 with a polarization along the y axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
19
Initially polarized light is incident on a polarizer. If the intensity of the light after passing through the polarizer is (3/4) of the initial intensity, the angle between the polarizer axis and the original polarization axis of the light is

A) 41.4°.
B) 30°.
C) 48.6°.
D) 60°.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
20
Unpolarized light of intensity I0 is incident upon the first of two polarizers. The second polarizer has its preferential direction at 50° with respect to the first polarizer. The final transmitted intensity is

A) (0.21) I0.
B) (0.41) I0.
C) (0.044) I0.
D) (0.59) I0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
21
Unpolarized light of intensity I0 is incident upon the first of two polarizers. The final transmitted intensity is (3/8)I0. With respect to the first polarizer, the second polarizer has its preferential direction at

A) 52°.
B) 41°.
C) 38°.
D) 30°.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
22
The following electromagnetic radiation has a wavelength that is closest to the size of automobile:

A) Radio waves
B) Infrared radiation
C) Visible radiation
D) Ultraviolet radiation
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
23
The unit associated with an energy flux is

A) joule.
B) watt/meter.
C) watt/meter2.
D) joule/meter2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
24
At a given point the electric field is 0.25 V/m. The energy flux at this point is

A) 1.7 ×\times
10-4 W/m2.
B) 2.8 ×\times
10-4 W/m2.
C) 8.2 ×\times
10-4 W/m2.
D) 8.2 ×\times
10-5 W/m2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
25
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The direction the wave is traveling in is

A) k^\hat { k }
B) j^\hat { j }
C) - j^\hat { j }

D) i^\hat { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
26
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The axis of polarization of the wave is

A) k^\hat { k }
B) j^\hat { j }

C) - j^\hat { j }

D) i^\hat { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
27
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The frequency of the wave is

A) 9.42×1015 Hz9.42 \times 10 ^ { 15 } \mathrm {~Hz}
B) 9.42×1015rad/s9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s }
C) 1.5×1015 Hz1.5 \times 10 ^ { 15 } \mathrm {~Hz}
D) 9.0×105 V/m9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
28
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The wavelength of the wave is

A) 2.0×107 m2.0 \times 10 ^ { - 7 } \mathrm {~m}
B) 2.0×107 m2.0 \times 10 ^ { 7 } \mathrm {~m}
C) 9.99×106 m9.99 \times 10 ^ { 6 } \mathrm {~m}
D) 3.1×107 m3.1 \times 10 ^ { 7 } \mathrm {~m}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
29
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The wave number of the magnetic field associated with this wave is

A) 3.1×107 m13.1 \times 10 ^ { 7 } \mathrm {~m} ^ { - 1 }
B) 3.0×103 m13.0 \times 10 ^ { - 3 } \mathrm {~m} ^ { - 1 }
C) 3.0×105 m3.0 \times 10 ^ { 5 } \mathrm {~m}
D) 3.1×107 m3.1 \times 10 ^ { 7 } \mathrm {~m}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
30
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The magnitude of the magnetic field associated with this wave is

A) 1.0×103 T1.0 \times 10 ^ { - 3 } \mathrm {~T}
B) 2.0×103 T2.0 \times 10 ^ { - 3 } \mathrm {~T}
C) 3.0×103 T3.0 \times 10 ^ { - 3 } \mathrm {~T}
D) 6.0×103 T6.0 \times 10 ^ { - 3 } \mathrm {~T}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
31
An electromagnetic wave has an electric field given by E=(9.0×105 V/m)j^cos[(9.42×1015rad/s)tkz]\vec { E } = - \left( 9.0 \times 10 ^ { 5 } \mathrm {~V} / \mathrm { m } \right) \hat { j } \cos \left[ \left( 9.42 \times 10 ^ { 15 } \mathrm { rad } / \mathrm { s } \right) t - k z \right] . The direction of the polarization of the magnetic field associated with this wave is

A) j^\hat { j }

B) k^\hat { k }
C) i^\hat { i }
D) Hold on. The wave is not polarized.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
32
The speed of radio waves traveling in a vacuum depends on

A) the wavelength of the waves.
B) the frequency of the waves.
C) the polarization of the waves.
D) none of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
33
A pressure of 15×106 N/m215 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 } is due to sunlight being reflected from a surface of a "solar sail." The energy flux incident on the surface is

A) 1125 W/m2.
B) 2250 W/m2.
C) 4500 W/m2.
D) 9000 W/m2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
34
A pressure of 15×106 N/m215 \times 10 ^ { - 6 } \mathrm {~N} / \mathrm { m } ^ { 2 } is due to sunlight being absorbed by a surface of a "solar sail." The energy flux incident on the surface is

A) 1125 W/m2.
B) 2250 W/m2.
C) 4500 W/m2.
D) 9000 W/m2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
35
A wave has double the amplitude of a second wave. The energy density of the second wave is

A) four times that of the first wave.
B) double that of the first wave.
C) equal to that of the first wave.
D) half that of the first wave.
E) one-quarter that of the first wave.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
36
An electromagnetic wave with an electric field amplitude of 0.15 V/m has an intensity of

A) 1.0×105 W/m21.0 \times 10 ^ { - 5 } \mathrm {~W} / \mathrm { m } ^ { 2 }
B) 3.0×106 W/m23.0 \times 10 ^ { - 6 } \mathrm {~W} / \mathrm { m } ^ { 2 }
C) 1.0×105 W/m21.0 \times 10 ^ { - 5 } \mathrm {~W} / \mathrm { m } ^ { 2 } .
D) 3.0×105 W/m23.0 \times 10 ^ { - 5 } \mathrm {~W} / \mathrm { m } ^ { 2 } .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
37
A spherical wave spreads out from a source, and the total power at a distance of R0 is P0. At a distance of 2R0 the power is

A) P0/8.
B) P0/4.
C) P0/2.
D) P0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
38
A spherical wave spreads out from a source, and the energy flux at a distance of R0 is S0. At a distance of 2R0 the energy flux is

A) S0/8.
B) S0/4.
C) S0/2.
D) S0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
39
An electromagnetic wave consists of

A) only an electric field.
B) only a magnetic field.
C) an electric field and a magnetic field oriented parallel to each other.
D) an electric field and a magnetic field oriented perpendicular to each other.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
40
The direction of propagation of an electromagnetic wave is given by

A) EB\vec { E } \cdot \vec { B }
B) EB- \vec { E } \cdot \vec { B }
C) E×B\vec { E } \times \vec { B }
D) B×E\vec { B } \times \vec { E }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
41
Stationary charges produce

A) electromagnetic waves.
B) only magnetic fields.
C) only electric fields.
D) both electric and magnetic fields.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
42
Accelerating charges produce

A) electromagnetic standing waves.
B) only magnetic fields.
C) only electric fields.
D) both electric and magnetic fields.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
43
ε0\varepsilon _ { 0 } is related to the speed of light and the permeability of free space through the relation

A) ε0=c2μ0\varepsilon _ { 0 } = c ^ { 2 } \mu _ { 0 }
B) ε0=c2μ0\varepsilon _ { 0 } = \frac { c ^ { 2 } } { \mu _ { 0 } }
C) ε0=1c2μ0\varepsilon _ { 0 } = \frac { 1 } { c ^ { 2 } \mu _ { 0 } }
D) ε0=μ0c2\varepsilon _ { 0 } = \frac { \mu _ { 0 } } { c ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
44
A satellite 300 km above the surface of the Earth emits a radio wave pulse ( λ\lambda = 25m). The transit time for the wave to reach the surface of the Earth is

A) 1 μ\mu s.
B) 10 μ\mu s.
C) 100 μ\mu s.
D) 1 ms.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
45
Consider a 150-W incandescent lightbulb that radiates light in all directions. At a distance of 1.5 m the time-averaged energy flux emitted by the bulb is

A) 7.9 W/m2.
B) 5.3 W/m2.
C) 100 W/m2.
D) 67 W/m2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
46
Consider a 150-W incandescent lightbulb that radiates light in all directions. At a distance of 1.5 m the amplitude of the oscillating electric field E0 is

A) 77 V/m.
B) 63 V/m.
C) 225 V/m.
D) 39 V/m.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
47
Consider a 150-W incandescent lightbulb that radiates light in all directions. At a distance of 1.5 m the amplitude of the oscillating magnetic field B0 is

A) 2.6×107 T2.6 \times 10 ^ { - 7 } \mathrm {~T}
B) 2.1×107 T2.1 \times 10 ^ { - 7 } \mathrm {~T}
C) 7.5×107 T7.5 \times 10 ^ { - 7 } \mathrm {~T}
D) 1.3×107 T1.3 \times 10 ^ { - 7 } \mathrm {~T}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
48
The electric field component of an electromagnetic wave is 130 V/m. The electric energy density of the wave is

A) 7.5×108 J7.5 \times 10 ^ { - 8 } \mathrm {~J}
B) 7.5×108 J/m7.5 \times 10 ^ { - 8 } \mathrm {~J} / \mathrm { m }
C) 7.5×108 J/m27.5 \times 10 ^ { - 8 } \mathrm {~J} / \mathrm { m } ^ { 2 }
D) 7.5×108 J/m37.5 \times 10 ^ { - 8 } \mathrm {~J} / \mathrm { m } ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
49
The magnetic field component of an electromagnetic wave is 25 μT\mu \mathrm { T } . The electric energy density of the wave is

A) 2.5×104 J/m32.5 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 3 }
B) 2.5×104 J/m22.5 \times 10 ^ { - 4 } \mathrm {~J} / \mathrm { m } ^ { 2 }
C) 2.5×102 J/m32.5 \times 10 ^ { - 2 } \mathrm {~J} / \mathrm { m } ^ { 3 }
D) 2.5×102 J/m22.5 \times 10 ^ { - 2 } \mathrm {~J} / \mathrm { m } ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
50
Radiation from a source is striking a surface at a rate of 50 W/m2. The peak value of the electric field is

A) 110 V/m.
B) 150 V/m.
C) 190 V/m.
D) 250 V/m.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 50 في هذه المجموعة.