Deck 6: Applications of Integration

ملء الشاشة (f)
exit full mode
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the x-axis.

A) 6 π\pi
B) 7 π\pi
C) 8 π\pi
D) 9 π\pi
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the y-axis.

A) 33.27 π\pi
B) 46.27 π\pi
C) 53.27 π\pi
D) 36.27 π\pi
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the vertical line x = 5.

A) 15.07 π\pi
B) 17.07 π\pi
C) 14.07 π\pi
D) 12.07 π\pi
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the horizontal line y = -1.

A) 18.77 π\pi
B) 28.77 π\pi
C) 22.77 π\pi
D) 15.77 π\pi
سؤال
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk /washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 15.73 π\pi
B) 19.73 π\pi
C) 13.73 π\pi
D) 11.73 π\pi
سؤال
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 10 π\pi
B) 14 π\pi
C) 16 π\pi
D) 12 π\pi
سؤال
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = -1.

A) 19.33 π\pi
B) 16.33 π\pi
C) 21.33 π\pi
D) 23.33 π\pi
سؤال
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 4.66 π\pi
B) 6.66 π\pi
C) 8.66 π\pi
D) 9.66 π\pi
سؤال
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = -1.

A) 20.07 π\pi
B) 21.07 π\pi
C) 23.07 π\pi
D) 18.07 π\pi
سؤال
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = 5.

A) 23.93 π\pi
B) 32.93 π\pi
C) 27.93 π\pi
D) 29.93 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 2 π\pi
B) 2.5 π\pi
C) 3 π\pi
D) 1.5 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 4.37 π\pi
B) 3.47 π\pi
C) 2.47 π\pi
D) 5.47 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 1.

A) 1.16 π\pi
B) 2.16 π\pi
C) 1.96 π\pi
D) 2.67 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 2.38 π\pi
B) 2.83 π\pi
C) 3.83 π\pi
D) 4.83 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = 2.

A) 1.87 π\pi
B) 2.87 π\pi
C) 3.87 π\pi
D) 0.87 π\pi
سؤال
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 11.5 π\pi
B) 12.5 π\pi
C) 13.5 π\pi
D) 14.5 π\pi
سؤال
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 42.6 π\pi
B) 32.4 π\pi
C) 24.7 π\pi
D) 38.6 π\pi
سؤال
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = -1.

A) 44.4 π\pi
B) 34.4 π\pi
C) 41.4 π\pi
D) 24.1 π\pi
سؤال
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 4.

A) 12.5 π\pi
B) 20.5 π\pi
C) 18.5 π\pi
D) 22.5 π\pi
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1, 5].

-Using four shells approximate the volume of the solid that is obtained by revolving this region around the x-axis.

A) 9.25 π\pi
B) 8.25 π\pi
C) 10.25 π\pi
D) 7.25 π\pi
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1, 5].

-Using four shells approximate the volume of the solid that is obtained by revolving this region around the y-axis.

A) 32.15 π\pi
B) 30.15 π\pi
C) 36.15 π\pi
D) 41.15 π\pi
سؤال
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1, 5].

-Using four shells approximate the volume of the solid that is obtained by revolving this region around the vertical line x = 5.

A) 15.68 π\pi
B) 17.68 π\pi
C) 13.68 π\pi
D) 19.68 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) π\pi
B) 2 π\pi
C) 1.5 π\pi
D) 2.5 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 2.47 π\pi
B) 3.47 π\pi
C) 1.47 π\pi
D) 4.47 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 1.

A) 1.16 π\pi
B) 2.16 π\pi
C) 1.96 π\pi
D) 2.67 π\pi
سؤال
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 2.38 π\pi
B) 2.83 π\pi
C) 3.83 π\pi
D) 4.83 π\pi
سؤال
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 14.66 π\pi
B) 10.66 π\pi
C) 8.66 π\pi
D) 15.66 π\pi
سؤال
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 13.67 π\pi
B) 15.67 π\pi
C) 18.67 π\pi
D) 11.67 π\pi
سؤال
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 10.33 π\pi
B) 11.33 π\pi
C) 12.33 π\pi
D) 13.33 π\pi
سؤال
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = 4.

A) 20.33 π\pi
B) 25.33 π\pi
C) 29.33 π\pi
D) 21.33 π\pi
سؤال
Find the exact value of the arc length of the function f(x)=3xf ( x ) = 3 - x on the interval [1, 4] using a definite integral.

A) 424 \sqrt { 2 }
B) 323 \sqrt { 2 }
C) 525 \sqrt { 2 }
D) 434 \sqrt { 3 }
سؤال
Find the exact value of the arc length of the function f(x)=2x+3f ( x ) = 2 x + 3 on the interval [-2, 3] using a definite integral.

A) 353 \sqrt { 5 }
B) 454 \sqrt { 5 }
C) 555 \sqrt { 5 }
D) 545 \sqrt { 4 }
سؤال
Find the exact value of the arc length of the function f(x)=4x2f ( x ) = \sqrt { 4 - x ^ { 2 } } on the interval [-2, 2] using a definite integral.
سؤال
Find the exact value of the arc length of the function f(x)=2x3/2f ( x ) = 2 x ^ { 3 / 2 } on the interval [0, 2] using a definite integral.
سؤال
Find the exact value of the arc length of the function f(x)=ln(sinx)f ( x ) = \ln ( \sin x ) on the interval [ π\pi /4, π\pi /2] using a definite integral.
سؤال
Find the exact value of the arc length of the function f(x)=x2f ( x ) = x ^ { 2 } on the interval [-1, 2] using a definite integral.
سؤال
Find the exact value of the arc length of the function f(x)=3cosxf ( x ) = 3 \cos x on the interval [0, π\pi ] using a definite integral.
سؤال
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=2xf ( x ) = 2 x around the x-axis on the interval [0, 2].

A) 85π8 \sqrt { 5 } \pi
B) 58π5 \sqrt { 8 } \pi
C) 83π8 \sqrt { 3 } \pi
D) 65π6 \sqrt { 5 } \pi
سؤال
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=1xf ( x ) = \frac { 1 } { x } around the x-axis on the interval [1, 4].

A) 2.33 π\pi
B) 3.99 π\pi
C) 2.99 π\pi
D) 3.33 π\pi
سؤال
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=exf ( x ) = e ^ { x } around the x-axis on the interval [-1, 1].

A) 4.45 π\pi
B) 8.85 π\pi
C) 6.85 π\pi
D) 7.65 π\pi
سؤال
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=exf ( x ) = e ^ { - x } around the x-axis on the interval [-1, 2].

A) 6.33 π\pi
B) 8.33 π\pi
C) 9.33 π\pi
D) 10.33 π\pi
سؤال
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=sinxf ( x ) = \sin x around the x-axis on the interval [ π\pi , 2 π\pi ].

A) 5.59 π\pi
B) 4.59 π\pi
C) 6.59 π\pi
D) 3.59 π\pi
سؤال
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=cosxf ( x ) = \cos x around the x-axis on the interval [ π\pi /2, 3 π\pi /2].

A) 5.59 π\pi
B) 6.59 π\pi
C) 3.59 π\pi
D) 4.59 π\pi
سؤال
Find the mass of a cylindrical rod with a radius of 5 centimeters and a length of 30 centimeters, made of two metals in such a way that the density of the rod × centimeters from the left end is ρ(x)=100.05x\rho ( x ) = 10 - 0.05 x grams per cubic centimeter.

A) 6525 π\pi
B) 6975.5 π\pi
C) 6937.5 π\pi
D) 6637.5 π\pi
سؤال
Find the mass of a 20-inch rod whose cross section is a 2 × 2 inch square, with density × inches from the left end given by ρ(x)=3.6+0.6x0.03x2\rho ( x ) = 3.6 + 0.6 x - 0.03 x ^ { 2 } grams per cubic inch.

A) 440
B) 224
C) 446
D) 448
سؤال
Find the work required to pump all of the water out of the top of an upright conical tank with top radius 4 feet and height 6 feet.
سؤال
A cone-shaped water tank with top radius 4 feet and height 6 feet is on an 8-ft-high platform. Find the work done to fill this depot completely through an opening at the bottom of the tank if we pump the water from the ground level.
سؤال
Find the work required to pump the upper 3 feet of the water out of the top of an upright conical tank with top radius 4 feet and height 6 feet.
سؤال
Find the work required to pump all of the water out of the top of an upright cylindrical tank with radius 4 feet and height 8 feet.
سؤال
Find the work required to pump all of the water out of the top of a tank and up to the ground level, given that the tank is an upright cylinder with radius 4 feet and height 8 feet, buried so that its top is 2 feet below the surface.
سؤال
Find the hydrostatic force exerted on one of the long sides of a rectangular water tank that is 6 feet wide, 10 feet long, and 4 feet deep.
سؤال
Find the hydrostatic force exerted on a dam in the shape of a trapezoid whose top is 320 feet long, whose base is 200 feet long, and whose height is 80 feet, given that the dam is completely full with water.
سؤال
Find the hydrostatic force exerted on a dam in the shape of an isosceles triangle whose top is 250 feet wide and whose total height is 100 feet, given that the dam is completely full with water.
سؤال
Use definite integrals to find the centroid of the region between the graphs of f(x)=3xf ( x ) = 3 x and the x-axis on the interval [0, 3].

A) (2, 4)
B) (1.5, 3)
C) (2, 3)
D) (0, 3)
سؤال
Use definite integrals to find the centroid of the region bounded by the graphs of f(x)=2x2f ( x ) = 2 - x ^ { 2 } , f(x)=xf ( x ) = x , and the y-axis.
سؤال
Use definite integrals to find the centroid of the region between the graph of f(x)=2xf ( x ) = 2 \sqrt { x } and g(x)=xg ( x ) = x on the interval [0, 4].
سؤال
Use separation of variables to solve the differential equation: dydx=(x4+2)2\frac { d y } { d x } = \left( x ^ { 4 } + 2 \right) ^ { 2 }
سؤال
Use separation of variables to solve the differential equation: dydx=x2x3\frac { d y } { d x } = \frac { x - 2 } { \sqrt [ 3 ] { x } }
سؤال
Use separation of variables to solve the differential equation: dydx=(x4+2)2y\frac { d y } { d x } = \left( x ^ { 4 } + 2 \right) ^ { 2 } y
سؤال
Use separation of variables to solve the differential equation: dydx=x4cos22y\frac { d y } { d x } = x ^ { 4 } \cos ^ { 2 } 2 y
سؤال
Use separation of variables to solve the differential equation: dydx=xex2\frac { d y } { d x } = x e ^ { x ^ { 2 } }
سؤال
Use separation of variables to solve the differential equation: dydx=x3e2y\frac { d y } { d x } = x ^ { 3 } e ^ { - 2 y }
سؤال
Use separation of variables to solve the differential equation: dydx=2+3xxy\frac { d y } { d x } = \frac { 2 + 3 x } { x y }
سؤال
Use separation of variables to solve the differential equation: dydx=x3y2\frac { d y } { d x } = x ^ { 3 } y ^ { 2 }
سؤال
Use separation of variables to solve the differential equation: dydx=xyx2+1\frac { d y } { d x } = \frac { x y } { x ^ { 2 } + 1 }
سؤال
Use separation of variables to solve the differential equation: dydx=3x2+9\frac { d y } { d x } = \frac { 3 } { x ^ { 2 } + 9 }
سؤال
Use separation of variables to solve the differential equation: dydx=5xy\frac { d y } { d x } = \frac { 5 } { x y }
سؤال
Use separation of variables to solve the differential equation: dydx=y(1y)\frac { d y } { d x } = y ( 1 - y )
سؤال
Use separation of variables to solve the differential equation: dydx=y2sinx\frac { d y } { d x } = y ^ { 2 } \sin x
سؤال
Use separation of variables to solve the differential equation: dydx=e2xy\frac { d y } { d x } = e ^ { 2 x - y }
سؤال
Use separation of variables to solve the initial value problem: dydx=xy+2x+2+y\frac { d y } { d x } = x y + 2 x + 2 + y , y(2)=1y ( 2 ) = - 1
سؤال
Use separation of variables to solve the initial value problem: dydx=y3cosx\frac { d y } { d x } = y ^ { 3 } \cos x , y(π6)=1y \left( \frac { \pi } { 6 } \right) = 1
سؤال
Use separation of variables to solve the initial value problem: dydx=yx2+1\frac { d y } { d x } = \frac { y } { x ^ { 2 } + 1 } , y(1)=1y ( 1 ) = 1
سؤال
Use separation of variables to solve the initial value problem: dydx=x1x2y\frac { d y } { d x } = \frac { x \sqrt { 1 - x ^ { 2 } } } { y } , y(0)=1y ( 0 ) = 1
سؤال
Use separation of variables to solve the initial value problem: dydx=y(1y)\frac { d y } { d x } = y ( 1 - y ) , y(0)=2y ( 0 ) = 2
سؤال
Use separation of variables to solve the initial value problem: dydx=3y\frac { d y } { d x } = 3 \sqrt { y } , y(3)=4y ( 3 ) = 4
سؤال
Use separation of variables to solve the initial value problem: dTdt=20T\frac { d T } { d t } = 20 - T , T(0)=15T ( 0 ) = 15
سؤال
Use separation of variables to solve the initial value problem: dNdt=2N\frac { d N } { d t } = 2 N , N(1)=e4N ( 1 ) = e ^ { 4 }
سؤال
Use separation of variables to solve the initial value problem: dydx=x21+x3\frac { d y } { d x } = \frac { x ^ { 2 } } { 1 + x ^ { 3 } } , y(0)=3y ( 0 ) = 3
سؤال
Use separation of variables to solve the initial value problem: dydx=e2xy\frac { d y } { d x } = e ^ { 2 x - y } , y(0)=1y ( 0 ) = 1
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/80
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 6: Applications of Integration
1
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the x-axis.

A) 6 π\pi
B) 7 π\pi
C) 8 π\pi
D) 9 π\pi
8 π\pi
2
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the y-axis.

A) 33.27 π\pi
B) 46.27 π\pi
C) 53.27 π\pi
D) 36.27 π\pi
36.27 π\pi
3
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the vertical line x = 5.

A) 15.07 π\pi
B) 17.07 π\pi
C) 14.07 π\pi
D) 12.07 π\pi
17.07 π\pi
4
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1,5].

-Using four disks or washers approximate the volume of the solid that is obtained by revolving this region around the horizontal line y = -1.

A) 18.77 π\pi
B) 28.77 π\pi
C) 22.77 π\pi
D) 15.77 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
5
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk /washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 15.73 π\pi
B) 19.73 π\pi
C) 13.73 π\pi
D) 11.73 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
6
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 10 π\pi
B) 14 π\pi
C) 16 π\pi
D) 12 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
7
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = -1.

A) 19.33 π\pi
B) 16.33 π\pi
C) 21.33 π\pi
D) 23.33 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
8
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 4.66 π\pi
B) 6.66 π\pi
C) 8.66 π\pi
D) 9.66 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
9
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = -1.

A) 20.07 π\pi
B) 21.07 π\pi
C) 23.07 π\pi
D) 18.07 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
10
Consider the region between the graph of f(x)=x2+1f ( x ) = x ^ { 2 } + 1 and the x-axis on the interval [0, 2].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = 5.

A) 23.93 π\pi
B) 32.93 π\pi
C) 27.93 π\pi
D) 29.93 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
11
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 2 π\pi
B) 2.5 π\pi
C) 3 π\pi
D) 1.5 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
12
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 4.37 π\pi
B) 3.47 π\pi
C) 2.47 π\pi
D) 5.47 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
13
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 1.

A) 1.16 π\pi
B) 2.16 π\pi
C) 1.96 π\pi
D) 2.67 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
14
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 2.38 π\pi
B) 2.83 π\pi
C) 3.83 π\pi
D) 4.83 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
15
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = 2.

A) 1.87 π\pi
B) 2.87 π\pi
C) 3.87 π\pi
D) 0.87 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
16
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 11.5 π\pi
B) 12.5 π\pi
C) 13.5 π\pi
D) 14.5 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
17
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 42.6 π\pi
B) 32.4 π\pi
C) 24.7 π\pi
D) 38.6 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
18
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = -1.

A) 44.4 π\pi
B) 34.4 π\pi
C) 41.4 π\pi
D) 24.1 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
19
Consider the region between the graphs of f(x)=x2f ( x ) = x ^ { 2 } and g(x)=3xg ( x ) = 3 x on the interval [0, 3].

-Use disk/washer method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 4.

A) 12.5 π\pi
B) 20.5 π\pi
C) 18.5 π\pi
D) 22.5 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
20
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1, 5].

-Using four shells approximate the volume of the solid that is obtained by revolving this region around the x-axis.

A) 9.25 π\pi
B) 8.25 π\pi
C) 10.25 π\pi
D) 7.25 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
21
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1, 5].

-Using four shells approximate the volume of the solid that is obtained by revolving this region around the y-axis.

A) 32.15 π\pi
B) 30.15 π\pi
C) 36.15 π\pi
D) 41.15 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
22
Consider the region between the graph of f(x)=x1f ( x ) = \sqrt { x - 1 } and the x-axis on the interval [1, 5].

-Using four shells approximate the volume of the solid that is obtained by revolving this region around the vertical line x = 5.

A) 15.68 π\pi
B) 17.68 π\pi
C) 13.68 π\pi
D) 19.68 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
23
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) π\pi
B) 2 π\pi
C) 1.5 π\pi
D) 2.5 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
24
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 2.47 π\pi
B) 3.47 π\pi
C) 1.47 π\pi
D) 4.47 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
25
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 1.

A) 1.16 π\pi
B) 2.16 π\pi
C) 1.96 π\pi
D) 2.67 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
26
Consider the region between the graph of f(x)=1x2f ( x ) = 1 - x ^ { 2 } and the line y = 2 on the interval [0, 1].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 2.38 π\pi
B) 2.83 π\pi
C) 3.83 π\pi
D) 4.83 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
27
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the y-axis.

A) 14.66 π\pi
B) 10.66 π\pi
C) 8.66 π\pi
D) 15.66 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
28
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the x-axis.

A) 13.67 π\pi
B) 15.67 π\pi
C) 18.67 π\pi
D) 11.67 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
29
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the vertical line x = 2.

A) 10.33 π\pi
B) 11.33 π\pi
C) 12.33 π\pi
D) 13.33 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
30
Consider the region between the graph of f(x)=x+4f ( x ) = - x + 4 and the x-axis on the interval [0, 2].

-Use the shell method to construct definite integrals to find the volume of the solid that is obtained by revolving this region around the horizontal line y = 4.

A) 20.33 π\pi
B) 25.33 π\pi
C) 29.33 π\pi
D) 21.33 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find the exact value of the arc length of the function f(x)=3xf ( x ) = 3 - x on the interval [1, 4] using a definite integral.

A) 424 \sqrt { 2 }
B) 323 \sqrt { 2 }
C) 525 \sqrt { 2 }
D) 434 \sqrt { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the exact value of the arc length of the function f(x)=2x+3f ( x ) = 2 x + 3 on the interval [-2, 3] using a definite integral.

A) 353 \sqrt { 5 }
B) 454 \sqrt { 5 }
C) 555 \sqrt { 5 }
D) 545 \sqrt { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the exact value of the arc length of the function f(x)=4x2f ( x ) = \sqrt { 4 - x ^ { 2 } } on the interval [-2, 2] using a definite integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find the exact value of the arc length of the function f(x)=2x3/2f ( x ) = 2 x ^ { 3 / 2 } on the interval [0, 2] using a definite integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the exact value of the arc length of the function f(x)=ln(sinx)f ( x ) = \ln ( \sin x ) on the interval [ π\pi /4, π\pi /2] using a definite integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
36
Find the exact value of the arc length of the function f(x)=x2f ( x ) = x ^ { 2 } on the interval [-1, 2] using a definite integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the exact value of the arc length of the function f(x)=3cosxf ( x ) = 3 \cos x on the interval [0, π\pi ] using a definite integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
38
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=2xf ( x ) = 2 x around the x-axis on the interval [0, 2].

A) 85π8 \sqrt { 5 } \pi
B) 58π5 \sqrt { 8 } \pi
C) 83π8 \sqrt { 3 } \pi
D) 65π6 \sqrt { 5 } \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
39
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=1xf ( x ) = \frac { 1 } { x } around the x-axis on the interval [1, 4].

A) 2.33 π\pi
B) 3.99 π\pi
C) 2.99 π\pi
D) 3.33 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
40
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=exf ( x ) = e ^ { x } around the x-axis on the interval [-1, 1].

A) 4.45 π\pi
B) 8.85 π\pi
C) 6.85 π\pi
D) 7.65 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
41
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=exf ( x ) = e ^ { - x } around the x-axis on the interval [-1, 2].

A) 6.33 π\pi
B) 8.33 π\pi
C) 9.33 π\pi
D) 10.33 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
42
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=sinxf ( x ) = \sin x around the x-axis on the interval [ π\pi , 2 π\pi ].

A) 5.59 π\pi
B) 4.59 π\pi
C) 6.59 π\pi
D) 3.59 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
43
Use definite integrals to find the area of the surface of revolution obtained by revolving f(x)=cosxf ( x ) = \cos x around the x-axis on the interval [ π\pi /2, 3 π\pi /2].

A) 5.59 π\pi
B) 6.59 π\pi
C) 3.59 π\pi
D) 4.59 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the mass of a cylindrical rod with a radius of 5 centimeters and a length of 30 centimeters, made of two metals in such a way that the density of the rod × centimeters from the left end is ρ(x)=100.05x\rho ( x ) = 10 - 0.05 x grams per cubic centimeter.

A) 6525 π\pi
B) 6975.5 π\pi
C) 6937.5 π\pi
D) 6637.5 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the mass of a 20-inch rod whose cross section is a 2 × 2 inch square, with density × inches from the left end given by ρ(x)=3.6+0.6x0.03x2\rho ( x ) = 3.6 + 0.6 x - 0.03 x ^ { 2 } grams per cubic inch.

A) 440
B) 224
C) 446
D) 448
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find the work required to pump all of the water out of the top of an upright conical tank with top radius 4 feet and height 6 feet.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
47
A cone-shaped water tank with top radius 4 feet and height 6 feet is on an 8-ft-high platform. Find the work done to fill this depot completely through an opening at the bottom of the tank if we pump the water from the ground level.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the work required to pump the upper 3 feet of the water out of the top of an upright conical tank with top radius 4 feet and height 6 feet.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the work required to pump all of the water out of the top of an upright cylindrical tank with radius 4 feet and height 8 feet.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find the work required to pump all of the water out of the top of a tank and up to the ground level, given that the tank is an upright cylinder with radius 4 feet and height 8 feet, buried so that its top is 2 feet below the surface.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the hydrostatic force exerted on one of the long sides of a rectangular water tank that is 6 feet wide, 10 feet long, and 4 feet deep.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the hydrostatic force exerted on a dam in the shape of a trapezoid whose top is 320 feet long, whose base is 200 feet long, and whose height is 80 feet, given that the dam is completely full with water.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the hydrostatic force exerted on a dam in the shape of an isosceles triangle whose top is 250 feet wide and whose total height is 100 feet, given that the dam is completely full with water.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
54
Use definite integrals to find the centroid of the region between the graphs of f(x)=3xf ( x ) = 3 x and the x-axis on the interval [0, 3].

A) (2, 4)
B) (1.5, 3)
C) (2, 3)
D) (0, 3)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
55
Use definite integrals to find the centroid of the region bounded by the graphs of f(x)=2x2f ( x ) = 2 - x ^ { 2 } , f(x)=xf ( x ) = x , and the y-axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
56
Use definite integrals to find the centroid of the region between the graph of f(x)=2xf ( x ) = 2 \sqrt { x } and g(x)=xg ( x ) = x on the interval [0, 4].
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
57
Use separation of variables to solve the differential equation: dydx=(x4+2)2\frac { d y } { d x } = \left( x ^ { 4 } + 2 \right) ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
58
Use separation of variables to solve the differential equation: dydx=x2x3\frac { d y } { d x } = \frac { x - 2 } { \sqrt [ 3 ] { x } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
59
Use separation of variables to solve the differential equation: dydx=(x4+2)2y\frac { d y } { d x } = \left( x ^ { 4 } + 2 \right) ^ { 2 } y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
60
Use separation of variables to solve the differential equation: dydx=x4cos22y\frac { d y } { d x } = x ^ { 4 } \cos ^ { 2 } 2 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
61
Use separation of variables to solve the differential equation: dydx=xex2\frac { d y } { d x } = x e ^ { x ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
62
Use separation of variables to solve the differential equation: dydx=x3e2y\frac { d y } { d x } = x ^ { 3 } e ^ { - 2 y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
63
Use separation of variables to solve the differential equation: dydx=2+3xxy\frac { d y } { d x } = \frac { 2 + 3 x } { x y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
64
Use separation of variables to solve the differential equation: dydx=x3y2\frac { d y } { d x } = x ^ { 3 } y ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
65
Use separation of variables to solve the differential equation: dydx=xyx2+1\frac { d y } { d x } = \frac { x y } { x ^ { 2 } + 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
66
Use separation of variables to solve the differential equation: dydx=3x2+9\frac { d y } { d x } = \frac { 3 } { x ^ { 2 } + 9 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
67
Use separation of variables to solve the differential equation: dydx=5xy\frac { d y } { d x } = \frac { 5 } { x y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
68
Use separation of variables to solve the differential equation: dydx=y(1y)\frac { d y } { d x } = y ( 1 - y )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
69
Use separation of variables to solve the differential equation: dydx=y2sinx\frac { d y } { d x } = y ^ { 2 } \sin x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
70
Use separation of variables to solve the differential equation: dydx=e2xy\frac { d y } { d x } = e ^ { 2 x - y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
71
Use separation of variables to solve the initial value problem: dydx=xy+2x+2+y\frac { d y } { d x } = x y + 2 x + 2 + y , y(2)=1y ( 2 ) = - 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
72
Use separation of variables to solve the initial value problem: dydx=y3cosx\frac { d y } { d x } = y ^ { 3 } \cos x , y(π6)=1y \left( \frac { \pi } { 6 } \right) = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
73
Use separation of variables to solve the initial value problem: dydx=yx2+1\frac { d y } { d x } = \frac { y } { x ^ { 2 } + 1 } , y(1)=1y ( 1 ) = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
74
Use separation of variables to solve the initial value problem: dydx=x1x2y\frac { d y } { d x } = \frac { x \sqrt { 1 - x ^ { 2 } } } { y } , y(0)=1y ( 0 ) = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
75
Use separation of variables to solve the initial value problem: dydx=y(1y)\frac { d y } { d x } = y ( 1 - y ) , y(0)=2y ( 0 ) = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
76
Use separation of variables to solve the initial value problem: dydx=3y\frac { d y } { d x } = 3 \sqrt { y } , y(3)=4y ( 3 ) = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
77
Use separation of variables to solve the initial value problem: dTdt=20T\frac { d T } { d t } = 20 - T , T(0)=15T ( 0 ) = 15
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
78
Use separation of variables to solve the initial value problem: dNdt=2N\frac { d N } { d t } = 2 N , N(1)=e4N ( 1 ) = e ^ { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
79
Use separation of variables to solve the initial value problem: dydx=x21+x3\frac { d y } { d x } = \frac { x ^ { 2 } } { 1 + x ^ { 3 } } , y(0)=3y ( 0 ) = 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
80
Use separation of variables to solve the initial value problem: dydx=e2xy\frac { d y } { d x } = e ^ { 2 x - y } , y(0)=1y ( 0 ) = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 80 في هذه المجموعة.