Deck 3: Applications of the Derivative

ملء الشاشة (f)
exit full mode
سؤال
Find an equation of a possible function with a local minimum at x = 2 that is continuous but not differentiable at x = 2.

A) f(x)=x+2f ( x ) = | x | + 2
B) f(x)=x+2f ( x ) = | x + 2 |
C) f(x)=x2f ( x ) = | x | - 2
D) f(x)=x2f ( x ) = | x - 2 |
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
If f has a local minimum at x = 2, then what can you say about f(2)f ^ { \prime } ( 2 ) ? What if you also know that f is differentiable at x = 2?
سؤال
If a continuous and differentiable function f has zeros at x=2x = - 2 , x=2x = 2 , and x=5x = 5 , what can you say about ff ^ { \prime } on [-2, 5]?
سؤال
If a continuous and differentiable function f is equal to - 3 at x=2x = - 2 and x=2x = 2 , what can you say about ff ^ { \prime } on [-2, 2]?
سؤال
If a function f is continuous and differentiable everywhere, f(1)=4, and f(2)=3f ( - 1 ) = 4 , \text { and } f ( 2 ) = 3 What can you say about ff ^ { \prime } on [-1, 2]?
سؤال
A function f that is defined on [-1, 3] with f(1)=f(3)=2f ( - 1 ) = f ( 3 ) = 2 such that f is continuous everywhere, differentiable everywhere except at x=1x = 1 but fails the conclusion of Rolle's Theorem. Explain why it doesn't satisfy the Rolle's Theorem?
سؤال
Find the critical points of f(x)=ln4x2xf ( x ) = \frac { \ln 4 x } { 2 x }

A) 0
B) 12e\frac { 1 } { 2 } e
C) 14e\frac { 1 } { 4 } e
D) 1
سؤال
Find the critical points of f(x)=cscxf ( x ) = \csc x

A) kπk \pi
B) (2k+1)π2( 2 k + 1 ) \frac { \pi } { 2 }
C) (2k+1)π( 2 k + 1 ) \pi
D) kπ2k \frac { \pi } { 2 }
سؤال
Find the critical points of f(x)=sinxf ( x ) = \sin x

A) (2k+1)π( 2 k + 1 ) \pi
B) kπk \pi
C) kπ2k \frac { \pi } { 2 }
D) (2k+1)π2( 2 k + 1 ) \frac { \pi } { 2 }
سؤال
Find the critical points of f(x)=(2x+1)3f ( x ) = ( 2 x + 1 ) ^ { 3 }

A) 1/21 / 2
B) - 1/21 / 2
C) 1
D) 2
سؤال
Find the critical points of f(x)=6x416x324x2+24xf ( x ) = 6 x ^ { 4 } - 16 x ^ { 3 } - 24 x ^ { 2 } + 24 x
سؤال
Find the critical points of f(x)=ex(x22x)f ( x ) = e ^ { x } \left( x ^ { 2 } - 2 x \right)

A) 2\sqrt { 2 }
B) - 2, 2
C) - , 2\sqrt { 2 } 2\sqrt { 2 }
D) 2
سؤال
Determine whether or not the function f(x)=x33x2+2xf ( x ) = x ^ { 3 } - 3 x ^ { 2 } + 2 x satisfies the hypothesis of Rolle's Theorem on the interval [0, 2]. If it does, find the exact values of all c(0,2)c \in ( 0,2 ) that satisfy the conclusion of Rolle's Theorem.
سؤال
Determine whether or not the function f(x)=cos2xf ( x ) = \cos 2 x satisfies the hypothesis of Rolle's Theorem on the interval [π4,3π4]\left[ \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right] If it does, find the exact values of all values of c(π4,3π4)c \in \left( \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right) that satisfy the conclusion of Rolle's Theorem.

A) No
B) Yes, c=π2,c=3π2c = \frac { \pi } { 2 } , c = \frac { 3 \pi } { 2 }
C) Yes, c=π2,c=π2c = - \frac { \pi } { 2 } , c = \frac { \pi } { 2 }
D) Yes, c=π2c = \frac { \pi } { 2 }
سؤال
Determine whether or not the function f(x)=ex(x23x)f ( x ) = e ^ { x } \left( x ^ { 2 } - 3 x \right) satisfies the hypothesis of Rolle's Theorem on the interval [0, 3]. If it does, find the exact values of all c(0,3)c \in ( 0,3 ) that satisfy the conclusion of Rolle's Theorem.
سؤال
Does f(x)=2x2+1xf ( x ) = 2 x ^ { 2 } + \frac { 1 } { x } satisfy the hypothesis of the Mean Value Theorem on the interval [-1, 2]. If it does, then find the exact values of all c(1,2)c \in ( - 1,2 ) that satisfy the conclusion of the Mean Value Theorem.
سؤال
Does f(x)=x+4f ( x ) = \sqrt { x + 4 } satisfy the hypothesis of the Mean Value Theorem on the interval [0, 5]. If it does, then find the exact values of all c(0,5)c \in ( 0,5 ) that satisfy the conclusion of the Mean Value Theorem.

A) 9/2
B) 3/43 / 4
C) 9/4
D) Does not satisfy M.V.T.
سؤال
Does f(x)=x32x2+1f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + 1 satisfy the hypothesis of the Mean Value Theorem on the interval [0,3]. If it does, then find the exact values of all c(0,3)c \in ( 0,3 ) that satisfy the conclusion of the Mean Value Theorem.
سؤال
If two functions f(x) and g(x)f ( x ) \text { and } g ( x ) have the same derivatives, then what can you say about the function f(x)g(x)f ( x ) - g ( x ) ?
سؤال
Determine the intervals on which f(x)=x34x2+1f ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 1 is increasing and decreasing.
سؤال
Determine the intervals on which f(x)=ex(x3)f ( x ) = e ^ { x } ( x - 3 ) is increasing and decreasing.
سؤال
Determine the intervals on which f(x)=2x+1x24f ( x ) = \frac { 2 x + 1 } { x ^ { 2 } - 4 } is increasing and decreasing.
سؤال
Determine the intervals on which f(x)=xx2+1f ( x ) = \frac { x } { x ^ { 2 } + 1 } is increasing and decreasing.
سؤال
Determine the intervals on which f(x)=sin2xf ( x ) = \sin ^ { 2 } x is increasing and decreasing.
سؤال
Determine the intervals on which f(x)=ln(x2+2)f ( x ) = \ln \left( x ^ { 2 } + 2 \right) is increasing and decreasing.
سؤال
Determine the intervals on which f(x)=ex2+exf ( x ) = \frac { e ^ { x } } { 2 + e ^ { x } } is increasing and decreasing.
سؤال
Use the first derivative test to determine the local extrema of f(x)=(x1)2(x+2)f ( x ) = ( x - 1 ) ^ { 2 } ( x + 2 )

A) f has a local maximum at x = 2 and a local minimum at x = 1.
B) f has a local maximum at x = 1 and a local minimum at x = -1.
C) f has a local maximum at x = 1 and has no local minimum.
D) f has a local maximum at x = -1 and a local minimum at x = 1.
سؤال
Use the first derivative test to determine the local extrema of f(x)=(x2)2x+1f ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x + 1 }

A) f has a local maximum at x = 2 and a local minimum at x = 4.
B) f has a local maximum at x = 2 and a local minimum at x = -4.
C) f has a local maximum at x = -4 and a local minimum at x = 2.
D) f has a local maximum at x = 4 and a local minimum at x = 2.
سؤال
Use the first derivative test to determine the local extrema of f(x)=ex(x23x+2)f ( x ) = e ^ { x } \left( x ^ { 2 } - 3 x + 2 \right)
سؤال
Use the first derivative test to determine the local extrema of f(x)=arctan2xf ( x ) = \arctan 2 x
سؤال
Sketch the graph of a continuous function, if possible, such that f<0 on (2,)f < 0 \text { on } ( - 2 , \infty ) , f>0 on (,2)f > 0 \text { on } ( - \infty , - 2 ) , f<0 on (,)f ^ { \prime } < 0 \text { on } ( - \infty , \infty ) and f>0 on (,1)f ^ { \prime \prime } > 0 \text { on } ( - \infty , - 1 ) , but f<0 on (1,)f ^ { \prime \prime } < 0 \text { on } ( - 1 , \infty )
سؤال
Sketch the graph of a continuous function, if possible, such that f<0 on (,1)f < 0 \text { on } ( - \infty , 1 ) , f>0 on (1,)f > 0 \text { on } ( 1 , \infty ) , f>0 on (,)f ^ { \prime } > 0 \text { on } ( - \infty , \infty ) , f>0 on (,1)f ^ { \prime \prime } > 0 \text { on } ( - \infty , 1 ) and f<0 on (1,)f ^ { \prime \prime } < 0 \text { on } ( 1 , \infty )
سؤال
Sketch the graph of a continuous function, if possible, such that f>0 on (,4)f > 0 \text { on } ( - \infty , - 4 ) and (0,)( 0 , \infty ) , f<0 on (4,0)f < 0 \text { on } ( - 4,0 ) , f>0 on (2,)f ^ { \prime } > 0 \text { on } ( - 2 , \infty ) , f<0 on (,2)f ^ { \prime } < 0 \text { on } ( - \infty , - 2 ) and f>0 on (,)f ^ { \prime \prime } > 0 \text { on } ( - \infty , \infty )
سؤال
Sketch the graph of a continuous function, if possible, such that f<0 on (,2)f ^ { \prime } < 0 \text { on } ( - \infty , 2 ) f>0 on (2,)f ^ { \prime } > 0 \text { on } ( 2 , \infty ) , f(2)=0f ( 2 ) = 0 and f>0 on (,)f ^ { \prime \prime } > 0 \text { on } ( - \infty , \infty )
سؤال
Sketch the graph of a continuous function, if possible, such that f<0 on (,4)f < 0 \text { on } ( - \infty , 4 ) , f>0 on (4,)f > 0 \text { on } ( 4 , \infty ) , f>0 on (,0)f ^ { \prime } > 0 \text { on } ( - \infty , 0 ) and (8/3,)( 8 / 3 , \infty ) , f<0 on (0,8/3)f ^ { \prime } < 0 \text { on } ( 0,8 / 3 ) , f>0 on (4/3,)f ^ { \prime \prime } > 0 \text { on } ( 4 / 3 , \infty ) , but f<0 on (,4/3)f ^ { \prime \prime } < 0 \text { on } ( - \infty , 4 / 3 )
سؤال
Sketch the graph of a continuous function, if possible, such that f<0 on (,0)f < 0 \text { on } ( - \infty , 0 ) , f>0 on (0,)f > 0 \text { on } ( 0 , \infty ) , and f>0 on (,1/3) and (1,)f ^ { \prime } > 0 \text { on } ( - \infty , 1 / 3 ) \text { and } ( 1 , \infty ) f<0 on (1/3,1)f ^ { \prime } < 0 \text { on } ( 1 / 3,1 ) and f>0 on (2/3,)f ^ { \prime \prime } > 0 \text { on } ( 2 / 3 , \infty ) and f<0 on (,2/3)f ^ { \prime \prime } < 0 \text { on } ( - \infty , 2 / 3 )
سؤال
Sketch the graph of a continuous function, if possible, such that ff ^ { \prime } does not exist at x=0,f>0x = 0 , f ^ { \prime \prime } > 0 on (0,)( 0 , \infty ) , f(x)>0f ( x ) > 0 on (1,5),f(x)<0( 1,5 ) , f ( x ) < 0 on (,1]( - \infty , 1 ] and on [5,),f(x)>0[ 5 , \infty ) , f ^ { \prime } ( x ) > 0 on (,3),f<0( - \infty , 3 ) , f ^ { \prime } < 0 on (3,)( 3 , \infty ) , and f(x)f ^ { \prime } ( x ) does not exist at x=3x = 3 .
سؤال
Sketch labeled graphs of each function f(x)=x2+5xf ( x ) = x ^ { 2 } + 5 x by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f
سؤال
Sketch labeled graphs of each function f(x)=(x1)(x+2)f ( x ) = ( x - 1 ) ( x + 2 ) by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^{\prime \prime }
سؤال
Sketch labeled graphs of each function f(x)=x3+2x2f ( x ) = x ^ { 3 } + 2 x ^ { 2 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f ^ { \prime\prime }
سؤال
Sketch labeled graphs of each function f(x)=1x2+2f ( x ) = \frac { - 1 } { x ^ { 2 } + 2 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }
سؤال
Sketch labeled graphs of each function f(x)=xx2+4f ( x ) = \frac { x } { x ^ { 2 } + 4 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }
سؤال
Sketch labeled graphs of each function f(x)=ln2x+1f ( x ) = \ln 2 x + 1 by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime \prime}
سؤال
Sketch labeled graphs of each function f(x)=ex2f ( x ) = e ^ { - x ^ { 2 } } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }
سؤال
Use a sign chart to determine the intervals on which f(x)=(x+3)4f ( x ) = ( x + 3 ) ^ { 4 } is concave up and concave down, and identify the locations of any inflection points.
سؤال
Use a sign chart to determine the intervals on which f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 } is concave up and concave down, and identify the locations of any inflection points.
سؤال
Use a sign chart to determine the intervals on which f(x)=e2x(1ex)f ( x ) = e ^ { 2 x } \left( 1 - e ^ { x } \right) is concave up and concave down, and identify the locations of any inflection points.
سؤال
Use a sign chart to determine the intervals on which f(x)=(x2)3(x1)f ( x ) = ( x - 2 ) ^ { 3 } ( x - 1 ) is concave up and concave down, and identify the locations of any inflection points.
سؤال
Use a sign chart to determine the intervals on which f(x)=x33x+1f ( x ) = x ^ { 3 } - 3 x + 1 is concave up and concave down, and identify the locations of any inflection points.
سؤال
Use the derivative f(x)=2xf ^ { \prime } ( x ) = \frac { 2 } { x } to find the local extrema and inflection points of ff
سؤال
Use the derivative f(x)=e2x(x+2)f ^ { \prime } ( x ) = e ^ { 2 x } ( x + 2 ) to find the local extrema and inflection points of ff
سؤال
Use the derivative f(x)=x34x2+4xf ^ { \prime } ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 4 x to find the local extrema and inflection points of ff
سؤال
Use the derivative f(x)=x42f ^ { \prime } ( x ) = x ^ { 4 } - 2 to find the local extrema and inflection points of ff
سؤال
Find the location and values of any global extrema of f(x)=x33x29xf ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 9 x on the intervals: (a) [-2, 3](b) [-2, 4]
سؤال
Find the location and values of any global extrema of f(x)=3x44x36x2+12xf ( x ) = 3 x ^ { 4 } - 4 x ^ { 3 } - 6 x ^ { 2 } + 12 x on the intervals: (a) (-2, 1](b) [-2, 1]
سؤال
Find the location and values of any global extrema of f(x)=x2cosxf ( x ) = x - 2 \cos x on [π4,π2]\left[ - \frac { \pi } { 4 } , \frac { \pi } { 2 } \right]
سؤال
Find the location and values of any global extrema of f(x)=x2x+1f ( x ) = \frac { x - 2 } { x + 1 } on [-2, 4).
سؤال
Jen needs to make a flyer for her dog's birthday party. She wants the flyer to contain 40 square inches of printed portion and she wants to use 2 inches of each side as well as two inches of top and bottom of the paper for decoration. What size of paper should Jen choose in order to use the least amount of paper per flyer?
سؤال
Find the point(s) on the curve y=x2y = x ^ { 2 } that is closest to the point (3, 0).

A) (2, 2)
B) (-1, 1)
C) (1, 1)
D) (3, 3)
سؤال
Find the point(s) on the curve y=x2y = x ^ { 2 } that is closest to the point (0, 3).
سؤال
Find two numbers whose product is 12 and whose sum of squares is minimum?

A) (2, 6) and (-2, -6)
B) 12,12 and 12,12- \sqrt { 12 } , - \sqrt { 12 } \text { and } \sqrt { 12 } , \sqrt { 12 }
C) (3, 4) and (-3, -4)
D) 3,4 and 3,4- \sqrt { 3 } , \sqrt { 4 } \text { and } \sqrt { 3 } , \sqrt { 4 }
سؤال
My brother wants to make an open-topped box out of a 4 × 6 square feet piece of cardboard by cutting identical squares from the corners and folding up the sides. What is the dimension of each square he will cut out of each corner in order to maximize the volume of the box he makes?

A) 1076\frac { 10 - \sqrt { 7 } } { 6 }
B) 10+76\frac { 10 + \sqrt { 7 } } { 6 }
C) 5+73\frac { 5 + \sqrt { 7 } } { 3 }
D) 573\frac { 5 - \sqrt { 7 } } { 3 }
سؤال
A veterinarian has 90 ft. of fence and he wants to enclose a rectangular dog-run along the 60-feet long back side of his office building. He will not fence the side along the building. What are the dimensions of the dog-run that gives the maximum area he desires?
سؤال
A veterinarian wants to make three identical adjoining dog-runs in the backyard of his office building. He needs each dog-run to be 400 square feet. What are the dimensions of each dog-run that requires the minimum amount of fencing material?
سؤال
Melissa wants to make a rectangular box with a square base and cover its top and bottom faces by velvet which will cost her $3 per square inch and the sides by silk which will cost her $5 per square inch. The box should have a volume of 1600 cubic inches. Find the dimensions of the box that will cost her the least amount of money.
سؤال
The cost of the material for the top and bottom of a cylindrical can is 10 cents per square inch. The material for the rest of the can costs 5 cents per square inch. If the can must hold 500 cubic inches of liquid, what dimensions should be chosen to make the cheapest can?
سؤال
Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions:
(a) f(t)=u2+3vf ( t ) = u ^ { 2 } + 3 v
(b) f(t)=2uvwf ( t ) = 2 u \sqrt { v - w }
سؤال
Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions:
(a) f(t)=tu+5u3vf ( t ) = t u + 5 u ^ { 3 } v
(b) f(t)=2uvwf ( t ) = \frac { 2 u } { v w }
سؤال
Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions:
(a) f(t)=(u+v)2+2twf ( t ) = ( u + v ) ^ { 2 } + 2 t w
(b) f(t)=3u2vf ( t ) = \frac { 3 } { u ^ { 2 } v }
سؤال
Find limx2x2+x6x2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } + x - 6 } { x - 2 }

A) 2
B) -5
C) 5
D) DNE
سؤال
Find limx1x23x+2x1\lim _ { x \rightarrow 1 } \frac { x ^ { 2 } - 3 x + 2 } { x - 1 }

A) 1
B) -1
C) 0
D) DNE
سؤال
Find limxx+232x2\lim _ { x \rightarrow - \infty } \frac { x + 2 } { 3 - 2 x ^ { 2 } }

A) 1
B) - 1/21 / 2
C) \infty
D) 0
سؤال
Find limxe2x1+e5x\lim _ { x \rightarrow \infty } \frac { e ^ { 2 x } } { 1 + e ^ { 5 x } }

A) DNE
B) 0
C) \infty
D) 2/5
سؤال
Find limx2x1+3x\lim _ { x \rightarrow \infty } \frac { 2 ^ { x } } { 1 + 3 ^ { x } }

A) 1
B) -1
C) 0
D) DNE
سؤال
Find limx02cosx2sin2x\lim _ { x \rightarrow 0 } \frac { 2 \cos x - 2 } { \sin 2 x }

A) 1
B) 2
C) -1
D) 0
سؤال
Find limx0+x3x\lim _ { x \rightarrow 0 ^ { + } } x ^ { 3 x }

A) e3e ^ { 3 }
B) 0
C) 1
D) e
سؤال
Find limxx2/x\lim _ { x \rightarrow \infty } x ^ { 2 / x }

A) \infty
B) 1
C) 0
D) e
سؤال
Find limx0+xsinx\lim _ { x \rightarrow 0 ^ { + } } x ^ { \sin x }

A) \infty
B) 1
C) e
D) 0
سؤال
Find limx0+(e3x1)x\lim _ { x \rightarrow 0 ^ { + } } \left( e ^ { 3 x } - 1 \right) ^ { x }

A) 1
B) e
C) e2e ^ { 2 }
D) 0
سؤال
Find limx0(ex+x)1/x\lim _ { x \rightarrow 0 } \left( e ^ { x } + x \right) ^ { 1 / x }

A) 1
B) e
C) e2e ^ { 2 }
D) 0
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/85
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 3: Applications of the Derivative
1
Find an equation of a possible function with a local minimum at x = 2 that is continuous but not differentiable at x = 2.

A) f(x)=x+2f ( x ) = | x | + 2
B) f(x)=x+2f ( x ) = | x + 2 |
C) f(x)=x2f ( x ) = | x | - 2
D) f(x)=x2f ( x ) = | x - 2 |
f(x)=x2f ( x ) = | x - 2 |
2
If f has a local minimum at x = 2, then what can you say about f(2)f ^ { \prime } ( 2 ) ? What if you also know that f is differentiable at x = 2?
Either f(2)=0 or f(2)f ^ { \prime } ( 2 ) = 0 \text { or } f ^ { \prime } ( 2 ) is undefined. If we also know that f is differentiable at x = 2, then f(2)=0f ^ { \prime } ( 2 ) = 0
3
If a continuous and differentiable function f has zeros at x=2x = - 2 , x=2x = 2 , and x=5x = 5 , what can you say about ff ^ { \prime } on [-2, 5]?
ff ^ { \prime } has at least two zeros in the interval [-2, 5].
4
If a continuous and differentiable function f is equal to - 3 at x=2x = - 2 and x=2x = 2 , what can you say about ff ^ { \prime } on [-2, 2]?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
5
If a function f is continuous and differentiable everywhere, f(1)=4, and f(2)=3f ( - 1 ) = 4 , \text { and } f ( 2 ) = 3 What can you say about ff ^ { \prime } on [-1, 2]?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
6
A function f that is defined on [-1, 3] with f(1)=f(3)=2f ( - 1 ) = f ( 3 ) = 2 such that f is continuous everywhere, differentiable everywhere except at x=1x = 1 but fails the conclusion of Rolle's Theorem. Explain why it doesn't satisfy the Rolle's Theorem?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the critical points of f(x)=ln4x2xf ( x ) = \frac { \ln 4 x } { 2 x }

A) 0
B) 12e\frac { 1 } { 2 } e
C) 14e\frac { 1 } { 4 } e
D) 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find the critical points of f(x)=cscxf ( x ) = \csc x

A) kπk \pi
B) (2k+1)π2( 2 k + 1 ) \frac { \pi } { 2 }
C) (2k+1)π( 2 k + 1 ) \pi
D) kπ2k \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the critical points of f(x)=sinxf ( x ) = \sin x

A) (2k+1)π( 2 k + 1 ) \pi
B) kπk \pi
C) kπ2k \frac { \pi } { 2 }
D) (2k+1)π2( 2 k + 1 ) \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the critical points of f(x)=(2x+1)3f ( x ) = ( 2 x + 1 ) ^ { 3 }

A) 1/21 / 2
B) - 1/21 / 2
C) 1
D) 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the critical points of f(x)=6x416x324x2+24xf ( x ) = 6 x ^ { 4 } - 16 x ^ { 3 } - 24 x ^ { 2 } + 24 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the critical points of f(x)=ex(x22x)f ( x ) = e ^ { x } \left( x ^ { 2 } - 2 x \right)

A) 2\sqrt { 2 }
B) - 2, 2
C) - , 2\sqrt { 2 } 2\sqrt { 2 }
D) 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
13
Determine whether or not the function f(x)=x33x2+2xf ( x ) = x ^ { 3 } - 3 x ^ { 2 } + 2 x satisfies the hypothesis of Rolle's Theorem on the interval [0, 2]. If it does, find the exact values of all c(0,2)c \in ( 0,2 ) that satisfy the conclusion of Rolle's Theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
14
Determine whether or not the function f(x)=cos2xf ( x ) = \cos 2 x satisfies the hypothesis of Rolle's Theorem on the interval [π4,3π4]\left[ \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right] If it does, find the exact values of all values of c(π4,3π4)c \in \left( \frac { \pi } { 4 } , \frac { 3 \pi } { 4 } \right) that satisfy the conclusion of Rolle's Theorem.

A) No
B) Yes, c=π2,c=3π2c = \frac { \pi } { 2 } , c = \frac { 3 \pi } { 2 }
C) Yes, c=π2,c=π2c = - \frac { \pi } { 2 } , c = \frac { \pi } { 2 }
D) Yes, c=π2c = \frac { \pi } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
15
Determine whether or not the function f(x)=ex(x23x)f ( x ) = e ^ { x } \left( x ^ { 2 } - 3 x \right) satisfies the hypothesis of Rolle's Theorem on the interval [0, 3]. If it does, find the exact values of all c(0,3)c \in ( 0,3 ) that satisfy the conclusion of Rolle's Theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
16
Does f(x)=2x2+1xf ( x ) = 2 x ^ { 2 } + \frac { 1 } { x } satisfy the hypothesis of the Mean Value Theorem on the interval [-1, 2]. If it does, then find the exact values of all c(1,2)c \in ( - 1,2 ) that satisfy the conclusion of the Mean Value Theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
17
Does f(x)=x+4f ( x ) = \sqrt { x + 4 } satisfy the hypothesis of the Mean Value Theorem on the interval [0, 5]. If it does, then find the exact values of all c(0,5)c \in ( 0,5 ) that satisfy the conclusion of the Mean Value Theorem.

A) 9/2
B) 3/43 / 4
C) 9/4
D) Does not satisfy M.V.T.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
18
Does f(x)=x32x2+1f ( x ) = x ^ { 3 } - 2 x ^ { 2 } + 1 satisfy the hypothesis of the Mean Value Theorem on the interval [0,3]. If it does, then find the exact values of all c(0,3)c \in ( 0,3 ) that satisfy the conclusion of the Mean Value Theorem.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
19
If two functions f(x) and g(x)f ( x ) \text { and } g ( x ) have the same derivatives, then what can you say about the function f(x)g(x)f ( x ) - g ( x ) ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
20
Determine the intervals on which f(x)=x34x2+1f ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 1 is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
21
Determine the intervals on which f(x)=ex(x3)f ( x ) = e ^ { x } ( x - 3 ) is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
22
Determine the intervals on which f(x)=2x+1x24f ( x ) = \frac { 2 x + 1 } { x ^ { 2 } - 4 } is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
23
Determine the intervals on which f(x)=xx2+1f ( x ) = \frac { x } { x ^ { 2 } + 1 } is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
24
Determine the intervals on which f(x)=sin2xf ( x ) = \sin ^ { 2 } x is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
25
Determine the intervals on which f(x)=ln(x2+2)f ( x ) = \ln \left( x ^ { 2 } + 2 \right) is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
26
Determine the intervals on which f(x)=ex2+exf ( x ) = \frac { e ^ { x } } { 2 + e ^ { x } } is increasing and decreasing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use the first derivative test to determine the local extrema of f(x)=(x1)2(x+2)f ( x ) = ( x - 1 ) ^ { 2 } ( x + 2 )

A) f has a local maximum at x = 2 and a local minimum at x = 1.
B) f has a local maximum at x = 1 and a local minimum at x = -1.
C) f has a local maximum at x = 1 and has no local minimum.
D) f has a local maximum at x = -1 and a local minimum at x = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
28
Use the first derivative test to determine the local extrema of f(x)=(x2)2x+1f ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x + 1 }

A) f has a local maximum at x = 2 and a local minimum at x = 4.
B) f has a local maximum at x = 2 and a local minimum at x = -4.
C) f has a local maximum at x = -4 and a local minimum at x = 2.
D) f has a local maximum at x = 4 and a local minimum at x = 2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
29
Use the first derivative test to determine the local extrema of f(x)=ex(x23x+2)f ( x ) = e ^ { x } \left( x ^ { 2 } - 3 x + 2 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
30
Use the first derivative test to determine the local extrema of f(x)=arctan2xf ( x ) = \arctan 2 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
31
Sketch the graph of a continuous function, if possible, such that f<0 on (2,)f < 0 \text { on } ( - 2 , \infty ) , f>0 on (,2)f > 0 \text { on } ( - \infty , - 2 ) , f<0 on (,)f ^ { \prime } < 0 \text { on } ( - \infty , \infty ) and f>0 on (,1)f ^ { \prime \prime } > 0 \text { on } ( - \infty , - 1 ) , but f<0 on (1,)f ^ { \prime \prime } < 0 \text { on } ( - 1 , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
32
Sketch the graph of a continuous function, if possible, such that f<0 on (,1)f < 0 \text { on } ( - \infty , 1 ) , f>0 on (1,)f > 0 \text { on } ( 1 , \infty ) , f>0 on (,)f ^ { \prime } > 0 \text { on } ( - \infty , \infty ) , f>0 on (,1)f ^ { \prime \prime } > 0 \text { on } ( - \infty , 1 ) and f<0 on (1,)f ^ { \prime \prime } < 0 \text { on } ( 1 , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
33
Sketch the graph of a continuous function, if possible, such that f>0 on (,4)f > 0 \text { on } ( - \infty , - 4 ) and (0,)( 0 , \infty ) , f<0 on (4,0)f < 0 \text { on } ( - 4,0 ) , f>0 on (2,)f ^ { \prime } > 0 \text { on } ( - 2 , \infty ) , f<0 on (,2)f ^ { \prime } < 0 \text { on } ( - \infty , - 2 ) and f>0 on (,)f ^ { \prime \prime } > 0 \text { on } ( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
34
Sketch the graph of a continuous function, if possible, such that f<0 on (,2)f ^ { \prime } < 0 \text { on } ( - \infty , 2 ) f>0 on (2,)f ^ { \prime } > 0 \text { on } ( 2 , \infty ) , f(2)=0f ( 2 ) = 0 and f>0 on (,)f ^ { \prime \prime } > 0 \text { on } ( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
35
Sketch the graph of a continuous function, if possible, such that f<0 on (,4)f < 0 \text { on } ( - \infty , 4 ) , f>0 on (4,)f > 0 \text { on } ( 4 , \infty ) , f>0 on (,0)f ^ { \prime } > 0 \text { on } ( - \infty , 0 ) and (8/3,)( 8 / 3 , \infty ) , f<0 on (0,8/3)f ^ { \prime } < 0 \text { on } ( 0,8 / 3 ) , f>0 on (4/3,)f ^ { \prime \prime } > 0 \text { on } ( 4 / 3 , \infty ) , but f<0 on (,4/3)f ^ { \prime \prime } < 0 \text { on } ( - \infty , 4 / 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
36
Sketch the graph of a continuous function, if possible, such that f<0 on (,0)f < 0 \text { on } ( - \infty , 0 ) , f>0 on (0,)f > 0 \text { on } ( 0 , \infty ) , and f>0 on (,1/3) and (1,)f ^ { \prime } > 0 \text { on } ( - \infty , 1 / 3 ) \text { and } ( 1 , \infty ) f<0 on (1/3,1)f ^ { \prime } < 0 \text { on } ( 1 / 3,1 ) and f>0 on (2/3,)f ^ { \prime \prime } > 0 \text { on } ( 2 / 3 , \infty ) and f<0 on (,2/3)f ^ { \prime \prime } < 0 \text { on } ( - \infty , 2 / 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
37
Sketch the graph of a continuous function, if possible, such that ff ^ { \prime } does not exist at x=0,f>0x = 0 , f ^ { \prime \prime } > 0 on (0,)( 0 , \infty ) , f(x)>0f ( x ) > 0 on (1,5),f(x)<0( 1,5 ) , f ( x ) < 0 on (,1]( - \infty , 1 ] and on [5,),f(x)>0[ 5 , \infty ) , f ^ { \prime } ( x ) > 0 on (,3),f<0( - \infty , 3 ) , f ^ { \prime } < 0 on (3,)( 3 , \infty ) , and f(x)f ^ { \prime } ( x ) does not exist at x=3x = 3 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
38
Sketch labeled graphs of each function f(x)=x2+5xf ( x ) = x ^ { 2 } + 5 x by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
39
Sketch labeled graphs of each function f(x)=(x1)(x+2)f ( x ) = ( x - 1 ) ( x + 2 ) by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^{\prime \prime }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
40
Sketch labeled graphs of each function f(x)=x3+2x2f ( x ) = x ^ { 3 } + 2 x ^ { 2 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f ^ { \prime\prime }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
41
Sketch labeled graphs of each function f(x)=1x2+2f ( x ) = \frac { - 1 } { x ^ { 2 } + 2 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
42
Sketch labeled graphs of each function f(x)=xx2+4f ( x ) = \frac { x } { x ^ { 2 } + 4 } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
43
Sketch labeled graphs of each function f(x)=ln2x+1f ( x ) = \ln 2 x + 1 by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime \prime}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
44
Sketch labeled graphs of each function f(x)=ex2f ( x ) = e ^ { - x ^ { 2 } } by hand. As part of your work make sign charts for the signs, roots and undefined points of f,f and ff , f ^ { \prime } \text { and } f^ { \prime\prime }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
45
Use a sign chart to determine the intervals on which f(x)=(x+3)4f ( x ) = ( x + 3 ) ^ { 4 } is concave up and concave down, and identify the locations of any inflection points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
46
Use a sign chart to determine the intervals on which f(x)=1x2+4f ( x ) = \frac { 1 } { x ^ { 2 } + 4 } is concave up and concave down, and identify the locations of any inflection points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
47
Use a sign chart to determine the intervals on which f(x)=e2x(1ex)f ( x ) = e ^ { 2 x } \left( 1 - e ^ { x } \right) is concave up and concave down, and identify the locations of any inflection points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
48
Use a sign chart to determine the intervals on which f(x)=(x2)3(x1)f ( x ) = ( x - 2 ) ^ { 3 } ( x - 1 ) is concave up and concave down, and identify the locations of any inflection points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
49
Use a sign chart to determine the intervals on which f(x)=x33x+1f ( x ) = x ^ { 3 } - 3 x + 1 is concave up and concave down, and identify the locations of any inflection points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
50
Use the derivative f(x)=2xf ^ { \prime } ( x ) = \frac { 2 } { x } to find the local extrema and inflection points of ff
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
51
Use the derivative f(x)=e2x(x+2)f ^ { \prime } ( x ) = e ^ { 2 x } ( x + 2 ) to find the local extrema and inflection points of ff
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use the derivative f(x)=x34x2+4xf ^ { \prime } ( x ) = x ^ { 3 } - 4 x ^ { 2 } + 4 x to find the local extrema and inflection points of ff
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
53
Use the derivative f(x)=x42f ^ { \prime } ( x ) = x ^ { 4 } - 2 to find the local extrema and inflection points of ff
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the location and values of any global extrema of f(x)=x33x29xf ( x ) = x ^ { 3 } - 3 x ^ { 2 } - 9 x on the intervals: (a) [-2, 3](b) [-2, 4]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
55
Find the location and values of any global extrema of f(x)=3x44x36x2+12xf ( x ) = 3 x ^ { 4 } - 4 x ^ { 3 } - 6 x ^ { 2 } + 12 x on the intervals: (a) (-2, 1](b) [-2, 1]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the location and values of any global extrema of f(x)=x2cosxf ( x ) = x - 2 \cos x on [π4,π2]\left[ - \frac { \pi } { 4 } , \frac { \pi } { 2 } \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the location and values of any global extrema of f(x)=x2x+1f ( x ) = \frac { x - 2 } { x + 1 } on [-2, 4).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
58
Jen needs to make a flyer for her dog's birthday party. She wants the flyer to contain 40 square inches of printed portion and she wants to use 2 inches of each side as well as two inches of top and bottom of the paper for decoration. What size of paper should Jen choose in order to use the least amount of paper per flyer?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
59
Find the point(s) on the curve y=x2y = x ^ { 2 } that is closest to the point (3, 0).

A) (2, 2)
B) (-1, 1)
C) (1, 1)
D) (3, 3)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find the point(s) on the curve y=x2y = x ^ { 2 } that is closest to the point (0, 3).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find two numbers whose product is 12 and whose sum of squares is minimum?

A) (2, 6) and (-2, -6)
B) 12,12 and 12,12- \sqrt { 12 } , - \sqrt { 12 } \text { and } \sqrt { 12 } , \sqrt { 12 }
C) (3, 4) and (-3, -4)
D) 3,4 and 3,4- \sqrt { 3 } , \sqrt { 4 } \text { and } \sqrt { 3 } , \sqrt { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
62
My brother wants to make an open-topped box out of a 4 × 6 square feet piece of cardboard by cutting identical squares from the corners and folding up the sides. What is the dimension of each square he will cut out of each corner in order to maximize the volume of the box he makes?

A) 1076\frac { 10 - \sqrt { 7 } } { 6 }
B) 10+76\frac { 10 + \sqrt { 7 } } { 6 }
C) 5+73\frac { 5 + \sqrt { 7 } } { 3 }
D) 573\frac { 5 - \sqrt { 7 } } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
63
A veterinarian has 90 ft. of fence and he wants to enclose a rectangular dog-run along the 60-feet long back side of his office building. He will not fence the side along the building. What are the dimensions of the dog-run that gives the maximum area he desires?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
64
A veterinarian wants to make three identical adjoining dog-runs in the backyard of his office building. He needs each dog-run to be 400 square feet. What are the dimensions of each dog-run that requires the minimum amount of fencing material?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
65
Melissa wants to make a rectangular box with a square base and cover its top and bottom faces by velvet which will cost her $3 per square inch and the sides by silk which will cost her $5 per square inch. The box should have a volume of 1600 cubic inches. Find the dimensions of the box that will cost her the least amount of money.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
66
The cost of the material for the top and bottom of a cylindrical can is 10 cents per square inch. The material for the rest of the can costs 5 cents per square inch. If the can must hold 500 cubic inches of liquid, what dimensions should be chosen to make the cheapest can?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
67
Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions:
(a) f(t)=u2+3vf ( t ) = u ^ { 2 } + 3 v
(b) f(t)=2uvwf ( t ) = 2 u \sqrt { v - w }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
68
Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions:
(a) f(t)=tu+5u3vf ( t ) = t u + 5 u ^ { 3 } v
(b) f(t)=2uvwf ( t ) = \frac { 2 u } { v w }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
69
Given u=u(t),v=v(t),w=w(t)u = u ( t ) , \quad v = v ( t ) , \quad w = w ( t ) are functions of t, calculate the derivative of the functions:
(a) f(t)=(u+v)2+2twf ( t ) = ( u + v ) ^ { 2 } + 2 t w
(b) f(t)=3u2vf ( t ) = \frac { 3 } { u ^ { 2 } v }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find limx2x2+x6x2\lim _ { x \rightarrow 2 } \frac { x ^ { 2 } + x - 6 } { x - 2 }

A) 2
B) -5
C) 5
D) DNE
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find limx1x23x+2x1\lim _ { x \rightarrow 1 } \frac { x ^ { 2 } - 3 x + 2 } { x - 1 }

A) 1
B) -1
C) 0
D) DNE
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find limxx+232x2\lim _ { x \rightarrow - \infty } \frac { x + 2 } { 3 - 2 x ^ { 2 } }

A) 1
B) - 1/21 / 2
C) \infty
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find limxe2x1+e5x\lim _ { x \rightarrow \infty } \frac { e ^ { 2 x } } { 1 + e ^ { 5 x } }

A) DNE
B) 0
C) \infty
D) 2/5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find limx2x1+3x\lim _ { x \rightarrow \infty } \frac { 2 ^ { x } } { 1 + 3 ^ { x } }

A) 1
B) -1
C) 0
D) DNE
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find limx02cosx2sin2x\lim _ { x \rightarrow 0 } \frac { 2 \cos x - 2 } { \sin 2 x }

A) 1
B) 2
C) -1
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find limx0+x3x\lim _ { x \rightarrow 0 ^ { + } } x ^ { 3 x }

A) e3e ^ { 3 }
B) 0
C) 1
D) e
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
77
Find limxx2/x\lim _ { x \rightarrow \infty } x ^ { 2 / x }

A) \infty
B) 1
C) 0
D) e
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find limx0+xsinx\lim _ { x \rightarrow 0 ^ { + } } x ^ { \sin x }

A) \infty
B) 1
C) e
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
79
Find limx0+(e3x1)x\lim _ { x \rightarrow 0 ^ { + } } \left( e ^ { 3 x } - 1 \right) ^ { x }

A) 1
B) e
C) e2e ^ { 2 }
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find limx0(ex+x)1/x\lim _ { x \rightarrow 0 } \left( e ^ { x } + x \right) ^ { 1 / x }

A) 1
B) e
C) e2e ^ { 2 }
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 85 في هذه المجموعة.