Deck 17: Vector Calculus

ملء الشاشة (f)
exit full mode
سؤال
Compute the gradient of the function f(x, y) = <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos x.

A) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y - 2y cos x) i + (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) j
B) (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y - 2y cos x) j
C) (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y + 2y cos x) j
D) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> cos y + 2y cos x) i + (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j <div style=padding-top: 35px> sin x) j
E) (2x sin y) i + (2y cos x) j
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find grad f(1, 0, -1) if f(x, y, z) = xy + yz.

A) i
B) j
C) 0
D) k
E) i + j + k
سؤال
If f(x, y, z) = <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> z + cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ), find <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> f.

A) 2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> + <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
B) 2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
C) -2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
D) -2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
E) -2zx cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k <div style=padding-top: 35px> )) k
سؤال
Compute div F for F = (2x + yz) i + ( <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> ) j + (x sin(z) + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> ) k.

A) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> + cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
B) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> - x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
C) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> + x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
D) 2 + 2y + x cos(z)
E) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px> - cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   <div style=padding-top: 35px>
سؤال
Compute curl F for F = (x - z) i + (y - x) j + (z - y) k.

A) - i + j - k
B) i + j + k
C) - i + j + k
D) i - j
E) 0
سؤال
Define the curl of a vector field F.

A) F × <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F <div style=padding-top: 35px>
B) <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F <div style=padding-top: 35px> F
C) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 × F
D) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 . F
E) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 F
سؤال
Let  <strong>Let   be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?</strong> A)  \textbf{    curl (grad      }   ) B)  \textbf{      div (curl F)   }  C)  \textbf{      grad (div F)   }  D)  \textbf{ div (grad         }   ) E)  \textbf{      curl (divF)   }  <div style=padding-top: 35px>  be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?

A)  curl (grad \textbf{ curl (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
B)  div (curl F) \textbf{ div (curl F) }
C)  grad (div F) \textbf{ grad (div F) }
D)  div (grad \textbf{ div (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
E)  curl (divF) \textbf{ curl (divF) }
سؤال
Let  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  = arctan(x) - arctan(z) and  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  =  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  . Find a simplified expression for  grad\textbf{ grad} (11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 ) ×  grad\textbf{ grad} (11ee7bac_77f1_7c2b_ae82_019616e1397c_TB9661_11 ) .

A)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  j
B) 0 (zero vector field)
C)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  j
D) 0 (zero scalar field)
E) -  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j <div style=padding-top: 35px>  j
سؤال
Compute  div F \textbf{ div F } for  F \textbf{ F } =  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  sin 2x, cos 2y, tan 2z  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  .

A) 2cos 2x + 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
B) -cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
C) 2cos 2x - 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
D) cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z <div style=padding-top: 35px>  z
E) 2cos 2x - 2sin 2y + 2sec z
سؤال
Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/<strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> .F if F (x, y, z) = <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> xy <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> , <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> yz, -xyz <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> .

A) 2y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> yz - xy
B) y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + 2xyz - xy
C) y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> z - xy
D) y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> z + 2 xy
E) 2y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy <div style=padding-top: 35px> z + xy
سؤال
Compute the divergence for the vector field F = (xy + xz) i + (yz + yx) j + (zx + zy) k.

A) 2y + 2z + 2x
B) 3y + 2z + x
C) y + z + x
D) 2y -2 z + 2x
E) y + 2z + 3x
سؤال
Find the acute angle (to the nearest degree) between the normals of the paraboloid z = x2 + y2 - 6 and the sphere x2 + y2 + z2 = 26 at the point (-3, 1, 4) on both surfaces.
سؤال
Calculate the divergence of the vector field F(x, y, z) = ( <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - xz) i + (z <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> ) j - xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> k.

A) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - z - zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - y <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
B) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
C) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
D) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
E) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px> + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   <div style=padding-top: 35px>
سؤال
Calculate the curl of the vector field V = x sin y i + cos y j + xy k.

A) x i + y j - x cos y k
B) x i - y j + x cos y k
C) x i - y j - x cos y k
D) x i + y j + x cos y k
E) -x i + y j + y cos y k
سؤال
Calculate the divergence of the vector field F = <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz <div style=padding-top: 35px> y i + <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz <div style=padding-top: 35px> x j + xyz k.

A) 5xy
B) 4xy + yz
C) 6xy
D) 2xy + 2yz + xz
E) 4xy + xz
سؤال
  . F = F .   for any sufficiently smooth vector field F.<div style=padding-top: 35px> . F = F . 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 for any sufficiently smooth vector field F.
سؤال
Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.

A) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px>
B) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> k
C) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> k
D) 0
E) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px> + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   <div style=padding-top: 35px>
سؤال
Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.

A) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
B) - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
C) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
D) 0
E) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px> + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   <div style=padding-top: 35px>
سؤال
The divergence of a vector field F is defined by

A) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F <div style=padding-top: 35px> F
B) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F <div style=padding-top: 35px> . F
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . (11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
سؤال
The curl of a vector field F is defined by

A) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F <div style=padding-top: 35px> .(11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
B) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
C) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F <div style=padding-top: 35px>
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . F
سؤال
Compute the divergence and the curl of the vector field r = x i + y j + z k.

A) <strong>Compute the divergence and the curl of the vector field r = x i + y j + z k.</strong> A)   . r = 2,   × r = 0 B)  . r = 3,  × r = 0 C)   . r = 3,   × r = r D)   . r = 1,   × r = 0 E)   . r = 2,   × r = r <div style=padding-top: 35px> . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
B)11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11× r = 0
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 1, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
سؤال
If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify <strong>If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify   .</strong> A) 0 B) r C) 2r D) 3r E) 4r <div style=padding-top: 35px> .

A) 0
B) r
C) 2r
D) 3r
E) 4r
سؤال
If r = x i + y j + z k and r = |r|, evaluate and simplify div <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px> .

A) 0
B) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
For r = x i + y j + z k, evaluate and simplify <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px> . <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px> .

A) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px>
B) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px>
C) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 <div style=padding-top: 35px>
D) |r|
E) 0
سؤال
Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.

A) F = B
B) F = r
C) F = r × B
D) F = 3(B × r)
E) F = <strong>Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.</strong> A) F = B B) F = r C) F = r × B D) F = 3(B × r) E) F =   (B × r) <div style=padding-top: 35px> (B × r)
سؤال
Verify that the vector field F = (2x y2z2 - sin(x)sin(y)) i + (2 x2y z2+ cos(x)cos(y)) j + (2x2y2 z + ) k is conservative and find a scalar potential f(x, y, z) for it that satisfies f(0, 0, 0) = 1.

A) <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px>
B) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + 1
C) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + sin(x)cos(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + 1
D) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px> + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px>
E) f(x, y, z) = xyz + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <div style=padding-top: 35px>
سؤال
If the vector field H = f(r) r, r \neq 0 is solenoidal, find an expression for f(r).

A) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
B) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
C) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
D) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
E) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant <div style=padding-top: 35px>  , where c is an arbitrary constant
سؤال
Show that div ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> r) = (n + 3) Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> .You may use the following fact: grad ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> ) = n Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r<div style=padding-top: 35px> r
سؤال
A vector field F is called  solenoidal \textbf{ solenoidal } in a domain D if

A)  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D <div style=padding-top: 35px>  F = 0 in D
B) curl(F) = 0 in D
C) F =  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D <div style=padding-top: 35px>   <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D <div style=padding-top: 35px>  in D for some scalar field 11ee7bad_3b7e_852d_ae82_0ffea7b87591_TB9661_11
D) div(F) = 0 in D
E) grad(F) = 0 in D
سؤال
Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  x + 2y )cosh (c z) i + b cos (  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  x + 2y)cosh (c z) j + c sin(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  x + 2y)sinh(c z) k is both  irrotational \textbf{ irrotational } and  solenoidal \textbf{ solenoidal } .

A) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = -2, c = 3
B) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = 2, c = 2
C) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = -2, c =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  ± 2
D) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = 2, c = ± 3
E) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9 <div style=padding-top: 35px>  , b = -2, c = 9
سؤال
Verify that the vector field F = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> (x, y, z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k.

A) (xyz + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
B) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
C) (xyz - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
D) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> z - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
E) xyz i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k <div style=padding-top: 35px> y k
سؤال
For what value of the constant C is the vector field F = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + C(xy + yz) j + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> k. solenoidal?
If C has that value, find a vector potential G for F having the form G(x, y, z) = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> (x, y, z) i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k.

A) C = -2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
B) C = -2, G = - y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
C) C = -2, G = x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
D) C = -2, G = - x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
E) C = 2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k <div style=padding-top: 35px> y k
سؤال
Show that there does not exist a twice continuously differentiable vector field G such that  curl G \textbf{ curl G } = x i + y j + z k.
سؤال
A vector field F satisfying the equation div F = 0 in domain D is called:

A) irrotational in D
B) a scalar potential
C) solenoidal in D
D) conservative in D
E) a vector potential
سؤال
Let <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> . (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F ) = (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 ) . F + 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11. F) using the notations grad , div or curl.

A) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
B) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = curl (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 grad (F)
C) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
D) grad (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 curl (F)
E) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) <div style=padding-top: 35px> grad (F)
سؤال
Every conservative vector field is irrotational.
سؤال
If r = x i + y j + z k and k is a constant vector field in R3, then

A) div ( k × r) = 0
B) div ( k × r) = 0.
C) grad ( k . r) = 2k
D) curl ( k × r) = 0
E) curl ( k × r) = 0.
سؤال
Use Green's Theorem to evaluate the line integral <strong>Use Green's Theorem to evaluate the line integral   counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).</strong> A) 18 B) 180 C) -36 D) 0 E) 36 <div style=padding-top: 35px> counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).

A) 18
B) 180
C) -36
D) 0
E) 36
سؤال
Evaluate the integral <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 <div style=padding-top: 35px> ( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 <div style=padding-top: 35px> ) - 2y) dx + (3x - ysin( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 <div style=padding-top: 35px> )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).

A) 5
B) 20
C) 0
D) 10
E) 2
سؤال
Use Green's Theorem to compute <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 <div style=padding-top: 35px> + xy) dx + ( <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 <div style=padding-top: 35px> + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).

A) -9
B) -12
C) 2
D) 0
E) 12
سؤال
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   clockwise around the circle of radius 3 centred at the origin.</strong> A) 18   \pi  B) 9   \pi  C) 127   \pi  D) 243   \pi  E) 0 <div style=padding-top: 35px>  clockwise around the circle of radius 3 centred at the origin.

A) 18 π\pi
B) 9 π\pi
C) 127 π\pi
D) 243 π\pi
E) 0
سؤال
Use Green's Theorem to compute the integral <strong>Use Green's Theorem to compute the integral   counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).</strong> A) -198 B) -210 C) -126 D) -72 E) -21 <div style=padding-top: 35px> counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).

A) -198
B) -210
C) -126
D) -72
E) -21
سؤال
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.</strong> A) 3 B) 2 C) 1 D) 0 E)   \pi  <div style=padding-top: 35px>  where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.

A) 3
B) 2
C) 1
D) 0
E) π\pi
سؤال
Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px> . In terms of these quantities, evaluate the line integral <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px> .

A) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
B) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
C) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
D) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
E) -A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   <div style=padding-top: 35px>
سؤال
Evaluate the integral <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px> - <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px> dx counterclockwise around the closed curve formed by y = x3 and y = x, between the points (0, 0) and (1, 1).

A) 1
B) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px>
C) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px>
D) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 <div style=padding-top: 35px>
E) 0
سؤال
Evaluate <strong>Evaluate   clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).</strong> A) 27 B) 9 C) -9 D) -27 E) 0 <div style=padding-top: 35px> clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).

A) 27
B) 9
C) -9
D) -27
E) 0
سؤال
Let F = -  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  i +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  j and let C be the boundary of circle  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>  = 9 oriented counterclockwise. Use Green's Theorem to evaluate  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi  <div style=padding-top: 35px>

A) 9 π\pi
B) 0
C) -2 π\pi
D) 2 π\pi
E) 3 π\pi
سؤال
Find the flux of F = x i + 2y j out of the circular disk of radius 2 centred at (3, -5).

A) 8 π\pi
B) 12 π\pi
C) 16 π\pi
D) 24 π\pi
E) 4 π\pi
سؤال
If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 <div style=padding-top: 35px> (ii) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 <div style=padding-top: 35px> dx + 3xy dy

A) (i) 36 (ii) 15
B) (i) -36 (ii) 18
C) (i) -18 (ii) 36
D) (i) -4 (ii) 2
E) (i) 432 (ii) 1080
سؤال
Find the flux of F = 2  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24 <div style=padding-top: 35px>  y i +  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24 <div style=padding-top: 35px>   <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24 <div style=padding-top: 35px>  j out of the rectangle 0 \le x \le ln(3), 0 \le y \le 2.

A) 4
B) 8
C) 16
D) 32
E) 24
سؤال
Find the flux of F =  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  out of (a) the disk  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  +  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  \le  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above <div style=padding-top: 35px>  , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.

A) (a) 0         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 0
B) (a) 2 π\pi         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
C) (a) 2 π\pi a         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
D) (a) 0         ~~~~~~~~ (b) 2 π\pi         ~~~~~~~~ (c) 0
E) None of the above
سؤال
Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A = Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy).<div style=padding-top: 35px> Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy).<div style=padding-top: 35px> dx + x dy).
سؤال
Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .

A) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Use a line integral to find the area enclosed by the x-axis and one arch of the cycloid given parametrically by the equations x(t) = 3(t - sin(t)), y(t) =3(1 - cos(t)), 0 \le t \le 2 π\pi .

A) 36 π\pi
B) 18 π\pi
C) 27 π\pi
D) 54 π\pi
E) 9 π\pi
سؤال
Find the flux of F = x i + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px> j + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px> k out of the cube bounded by the coordinate planes and the planes <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px> and <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px>

A) 0
B) 1
C) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px>
D) 3
E) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   <div style=padding-top: 35px>
سؤال
Evaluate  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  F = x  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  y i + xz j + z  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi  <div style=padding-top: 35px>  .

A) 32 π\pi
B) 34 π\pi
C) 36 π\pi
D) 38 π\pi
E) 72 π\pi
سؤال
Evaluate the integral  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  where R is the region  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>  \le 25 and  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi  <div style=padding-top: 35px>

A) 12500 π\pi
B) 2500 π\pi
C) 6250 π\pi
D) 1250 π\pi
E) 25000 π\pi
سؤال
Use the Divergence Theorem to find the outward flux of F =  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi  <div style=padding-top: 35px>  across the boundary of the region  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi  <div style=padding-top: 35px>

A) 12 π\pi
B) 16 π\pi
C) 3 π\pi
D) π\pi
E) 60 π\pi
سؤال
Find the flux of r = x i + y j + z k out of the cone with base  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi  <div style=padding-top: 35px>  +  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi  <div style=padding-top: 35px>  \le 16, z = 0, and vertex at (0, 0, 3).

A) 46 π\pi
B) 48 π\pi
C) 50 π\pi
D) 52 π\pi
E) 16 π\pi
سؤال
Calculate the surface integral  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi  <div style=padding-top: 35px>  where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi  <div style=padding-top: 35px>  with outward normal.

A) 32 π\pi
B) 16 π\pi
C) 8 π\pi
D) 64 π\pi
E) 256 π\pi
سؤال
Find the flux of <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px> i - xy j +3z k out of the solid region bounded by the parabolic cylinder <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px> and the planes <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px> , and <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 <div style=padding-top: 35px>

A) 208
B) 112
C) 64
D) 48
E) 176
سؤال
Evaluate  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)

A)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
B) π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
C)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
D) 2 π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
E)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>  π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi    <div style=padding-top: 35px>
سؤال
Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.

A) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
B) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
C) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
D) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah <div style=padding-top: 35px> Ah
E) 3 Ah
سؤال
Evaluate the surface integral <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px> where <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px> is the unit inner normal to the surface S of the region lying between the two paraboloids <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px>

A) <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 <div style=padding-top: 35px>
B) 1
C) 0
D) 2
E) -1
سؤال
Find the flux of G = (x <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + 2zy) i + (y <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> - <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> ) j + <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> z k outward through the sphere <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Use the Divergence Theorem to evaluate the surface integral <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> where S is the part of the cone <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> below z = 2, and <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)

A) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
If F = x i + y j, calculate the flux of F upward through the part of the surface z = 4 - x2 - y2 that lies above the (x, y) plane by applying the Divergence Theorem to the volume bounded by the surface and the disk that it cuts out of the (x, y) plane.

A) 14 π\pi
B) 16 π\pi
C) 18 π\pi
D) 20 π\pi
E) 8 π\pi
سؤال
Find the outward flux of F = ln(  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  ) i -  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  j + z  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  k across the boundary of the region  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>

A) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi - 3 π\pi ln 2 + 2 π\pi
B) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi - 3 π\pi ln 2 - 2 π\pi
C) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi + 3 π\pi ln 2 - 2 π\pi
D) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi + 3 π\pi ln 2 + 2 π\pi
E) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi  <div style=padding-top: 35px>  π\pi ln 2 - 2 π\pi
سؤال
A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of <strong>A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of   out of R across its boundary.</strong> A) 60 B) 50 C) 20 D) 15 E) 90 <div style=padding-top: 35px> out of R across its boundary.

A) 60
B) 50
C) 20
D) 15
E) 90
سؤال
Find  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  , where F(x, y, z) = x  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  y i +  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  ln x j - z  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  y k, S is the sphere of radius 3 centred at the origin, and  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi  <div style=padding-top: 35px>  is the unit outward normal field on S.

A) 24 π\pi
B) 12 π\pi
C) 36 π\pi
D) 72 π\pi
E) 54 π\pi
سؤال
Given F = 4y i + x j + 2z k, find  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>  over the hemisphere  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>  with outward normal  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>  .

A) 2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
B) -2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
C) -3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
D) 3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0 <div style=padding-top: 35px>
E) 0
سؤال
Evaluate the integral of <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 <div style=padding-top: 35px> over the portion of the ellipse <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 <div style=padding-top: 35px> in the first quadrant, traversed in the counterclockwise direction.

A) -31
B) -32
C) -33
D) -34
E) -30
سؤال
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.</strong> A) 0 B) 1 C) -1 D) 2 E) -2 <div style=padding-top: 35px> where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.

A) 0
B) 1
C) -1
D) 2
E) -2
سؤال
Let F be a smooth vector field in 3-space satisfying the condition  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above <div style=padding-top: 35px>  Find the flux of curl F upward through the part of the  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above <div style=padding-top: 35px>  lying above the xy-plane.

A) 81 π\pi
B) 72 π\pi
C) 27 π\pi
D) 18 π\pi
E) None of the above
سؤال
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>  where C is the circle given by the parametric equations  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>  for  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>

A) -  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>
B) - π\pi
C) π\pi
D) 2 π\pi
E)  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)   <div style=padding-top: 35px>
سؤال
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi  <div style=padding-top: 35px>  where C is the circle  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi  <div style=padding-top: 35px>  oriented clockwise as seen from high on the z-axis.

A) 40 π\pi
B) 45 π\pi
C) 50 π\pi
D) 55 π\pi
E) 35 π\pi
سؤال
Evaluate <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> , where F = y i + zx j + <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> k and C are the positively oriented boundary of the triangle in which the plane <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px> with upward normal, intersects the first octant of space.

A) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
B) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
C) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
D) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
E) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   <div style=padding-top: 35px>
سؤال
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 <div style=padding-top: 35px> + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 <div style=padding-top: 35px> by the three coordinate planes. C has orientation inherited from the upward normal on P.

A) 18
B) -6
C) 6
D) 24
E) -24
سؤال
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.</strong> A) 0 B) 1 C) 2 D) -2 E) -1 <div style=padding-top: 35px> where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.

A) 0
B) 1
C) 2
D) -2
E) -1
سؤال
Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0 <div style=padding-top: 35px>  with the plane  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0 <div style=padding-top: 35px>  The orientation of the curve is consistent with the upward normal on the plane.

A) 8 π\pi
B) 6 π\pi
C) 4 π\pi
D) 2 π\pi
E) 0
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/92
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 17: Vector Calculus
1
Compute the gradient of the function f(x, y) = <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos x.

A) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y - 2y cos x) i + (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) j
B) (2x sin y + <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y - 2y cos x) j
C) (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) i + ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y + 2y cos x) j
D) ( <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j cos y + 2y cos x) i + (2x sin y - <strong>Compute the gradient of the function f(x, y) =   sin y +   cos x.</strong> A) (   cos y - 2y cos x) i + (2x sin y +   sin x) j B) (2x sin y +   sin x) i + (   cos y - 2y cos x) j C) (2x sin y -   sin x) i + (   cos y + 2y cos x) j D) (   cos y + 2y cos x) i + (2x sin y -   sin x) j E) (2x sin y) i + (2y cos x) j sin x) j
E) (2x sin y) i + (2y cos x) j
(2x sin y - (2x sin y -   sin x) i + (   cos y + 2y cos x) j sin x) i + ( (2x sin y -   sin x) i + (   cos y + 2y cos x) j cos y + 2y cos x) j
2
Find grad f(1, 0, -1) if f(x, y, z) = xy + yz.

A) i
B) j
C) 0
D) k
E) i + j + k
0
3
If f(x, y, z) = <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k z + cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ), find <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k f.

A) 2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k + <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
B) 2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
C) -2x sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
D) -2zx sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k sin(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
E) -2zx cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k ) i + 2yz j + ( <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k - <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k cos(z <strong>If f(x, y, z) =   z + cos(z   ), find   f.</strong> A) 2zx sin(z   ) i + 2yz j + (   +   sin(z   )) k B) 2x sin(z   ) i + 2yz j + (   -   sin(z   )) k C) -2x sin(z   ) i + 2yz j + (   -   sin(z   )) k D) -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k E) -2zx cos(z   ) i + 2yz j + (   -   cos(z   )) k )) k
-2zx sin(z -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k ) i + 2yz j + ( -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k - -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k sin(z -2zx sin(z   ) i + 2yz j + (   -   sin(z   )) k )) k
4
Compute div F for F = (2x + yz) i + ( <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   ) j + (x sin(z) + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   ) k.

A) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   + cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
B) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   - x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
C) 2 + 2y + z <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   + x cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
D) 2 + 2y + x cos(z)
E) 2 + 2y + <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3   - cos(z) + 3 <strong>Compute div F for F = (2x + yz) i + (   +   ) j + (x sin(z) +   ) k.</strong> A) 2 + 2y +   + cos(z) + 3   B) 2 + 2y + z   - x cos(z) + 3   C) 2 + 2y + z   + x cos(z) + 3   D) 2 + 2y + x cos(z) E) 2 + 2y +   - cos(z) + 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
5
Compute curl F for F = (x - z) i + (y - x) j + (z - y) k.

A) - i + j - k
B) i + j + k
C) - i + j + k
D) i - j
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
6
Define the curl of a vector field F.

A) F × <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F
B) <strong>Define the curl of a vector field F.</strong> A) F ×   B)   F C)   × F D)   . F E)   F F
C) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 × F
D) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 . F
E) 11ee7bab_8c78_b929_ae82_a3f0e4bb6058_TB9661_11 F
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
7
Let  <strong>Let   be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?</strong> A)  \textbf{    curl (grad      }   ) B)  \textbf{      div (curl F)   }  C)  \textbf{      grad (div F)   }  D)  \textbf{ div (grad         }   ) E)  \textbf{      curl (divF)   }   be a scalar field and F be a vector field, both assumed to be sufficiently smooth. Which of the following expressions is meaningless?

A)  curl (grad \textbf{ curl (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
B)  div (curl F) \textbf{ div (curl F) }
C)  grad (div F) \textbf{ grad (div F) }
D)  div (grad \textbf{ div (grad } 11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 )
E)  curl (divF) \textbf{ curl (divF) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
8
Let  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  = arctan(x) - arctan(z) and  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  =  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  . Find a simplified expression for  grad\textbf{ grad} (11ee7bac_4a3a_9aaa_ae82_759e3f104991_TB9661_11 ) ×  grad\textbf{ grad} (11ee7bac_77f1_7c2b_ae82_019616e1397c_TB9661_11 ) .

A)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  j
B) 0 (zero vector field)
C)  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  j
D) 0 (zero scalar field)
E) -  <strong>Let  = arctan(x) - arctan(z) and   =   . Find a simplified expression for  \textbf{         grad} (  ) ×  \textbf{         grad} (  ) .</strong> A)   j B) 0 (zero vector field) C)   j D) 0 (zero scalar field) E) -   j  j
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
9
Compute  div F \textbf{ div F } for  F \textbf{ F } =  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  sin 2x, cos 2y, tan 2z  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  .

A) 2cos 2x + 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
B) -cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
C) 2cos 2x - 2sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
D) cos 2x + sin 2y +  <strong>Compute  \textbf{       div F  }  for \textbf{     F     }  =   sin 2x, cos 2y, tan 2z   .</strong> A) 2cos 2x + 2sin 2y +   z B) -cos 2x + sin 2y +   z C) 2cos 2x - 2sin 2y +   z D) cos 2x + sin 2y +   z E) 2cos 2x - 2sin 2y + 2sec z  z
E) 2cos 2x - 2sin 2y + 2sec z
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/<strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy .F if F (x, y, z) = <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy xy <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy , <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy yz, -xyz <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy .

A) 2y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy yz - xy
B) y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + 2xyz - xy
C) y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy z - xy
D) y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy z + 2 xy
E) 2y <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy + <strong>Find https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ .F if F (x, y, z) =   xy   ,   yz, -xyz   .</strong> A) 2y   +   yz - xy B) y   + 2xyz - xy C) y   +   z - xy D) y   +   z + 2 xy E) 2y   +   z + xy z + xy
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
11
Compute the divergence for the vector field F = (xy + xz) i + (yz + yx) j + (zx + zy) k.

A) 2y + 2z + 2x
B) 3y + 2z + x
C) y + z + x
D) 2y -2 z + 2x
E) y + 2z + 3x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the acute angle (to the nearest degree) between the normals of the paraboloid z = x2 + y2 - 6 and the sphere x2 + y2 + z2 = 26 at the point (-3, 1, 4) on both surfaces.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
13
Calculate the divergence of the vector field F(x, y, z) = ( <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - xz) i + (z <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   ) j - xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   k.

A) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - z - zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - y <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
B) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
C) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
D) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - z + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   - 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
E) <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + zx <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + 2 <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy   + 4xy <strong>Calculate the divergence of the vector field F(x, y, z) = (   - xz) i + (z   -   ) j - xy   k.</strong> A)   - z - zx   - 2   - y   B)   + zx   - 2   + 4xy   C)   - z + zx   - 2   - 4xy   D)   - z + zx   - 4xy   E)   + zx   + 2   + 4xy
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
14
Calculate the curl of the vector field V = x sin y i + cos y j + xy k.

A) x i + y j - x cos y k
B) x i - y j + x cos y k
C) x i - y j - x cos y k
D) x i + y j + x cos y k
E) -x i + y j + y cos y k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
15
Calculate the divergence of the vector field F = <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz y i + <strong>Calculate the divergence of the vector field F =   y i +   x j + xyz k.</strong> A) 5xy B) 4xy + yz C) 6xy D) 2xy + 2yz + xz E) 4xy + xz x j + xyz k.

A) 5xy
B) 4xy + yz
C) 6xy
D) 2xy + 2yz + xz
E) 4xy + xz
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
16
  . F = F .   for any sufficiently smooth vector field F. . F = F . 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 for any sufficiently smooth vector field F.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
17
Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.

A) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +
B) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   k
C) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   i + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   j + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   k
D) 0
E) <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +   + <strong>Let w be a function of x, y, and z having continuous second partial derivatives.Calculate curl grad w in terms of those partials.</strong> A)   +   +   B)   i +   j +   k C)   i +   j +   k D) 0 E)   +   +
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
18
Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.

A) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
B) - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
C) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
D) 0
E) <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   - <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +   + <strong>Let F = f(x, y, z) i + g(x, y, z) j + h(x, y, z) k be a vector field in 3-space whose components f, g, and h have continuous second partial derivatives. Calculate div curl F in terms of those partials.</strong> A)   +   +   B) -   -   -   C)   +   +   D) 0 E)   -   +
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
19
The divergence of a vector field F is defined by

A) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F F
B) <strong>The divergence of a vector field F is defined by</strong> A)   F B)   . F C)   F D)   . ( F) E)   × F . F
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . (11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
20
The curl of a vector field F is defined by

A) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F .(11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11F)
B) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × F
C) <strong>The curl of a vector field F is defined by</strong> A)   .( F) B)   × F C)   D)   F E)   . F
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 F
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . F
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
21
Compute the divergence and the curl of the vector field r = x i + y j + z k.

A) <strong>Compute the divergence and the curl of the vector field r = x i + y j + z k.</strong> A)   . r = 2,   × r = 0 B)  . r = 3,  × r = 0 C)   . r = 3,   × r = r D)   . r = 1,   × r = 0 E)   . r = 2,   × r = r . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
B)11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11× r = 0
C) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 3, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
D) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 1, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = 0
E) 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 . r = 2, 11ee7bac_9657_298c_ae82_2b2223aa180c_TB9661_11 × r = r
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
22
If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify <strong>If r = x i + y j + z k and f(u) is any differentiable function of one variable, evaluate and simplify   .</strong> A) 0 B) r C) 2r D) 3r E) 4r .

A) 0
B) r
C) 2r
D) 3r
E) 4r
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
23
If r = x i + y j + z k and r = |r|, evaluate and simplify div <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)   .

A) 0
B) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
C) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
D) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
E) <strong>If r = x i + y j + z k and r = |r|, evaluate and simplify div   .</strong> A) 0 B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
24
For r = x i + y j + z k, evaluate and simplify <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 . <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0 .

A) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0
B) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0
C) <strong>For r = x i + y j + z k, evaluate and simplify   .   .</strong> A)   B)   C)   D) |r| E) 0
D) |r|
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
25
Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.

A) F = B
B) F = r
C) F = r × B
D) F = 3(B × r)
E) F = <strong>Let B be a constant vector and let G(r) = (B × r) × r be a vector potential of the solenoidal vector field F. Find F.</strong> A) F = B B) F = r C) F = r × B D) F = 3(B × r) E) F =   (B × r) (B × r)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
26
Verify that the vector field F = (2x y2z2 - sin(x)sin(y)) i + (2 x2y z2+ cos(x)cos(y)) j + (2x2y2 z + ) k is conservative and find a scalar potential f(x, y, z) for it that satisfies f(0, 0, 0) = 1.

A) <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +
B) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + 1
C) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + sin(x)cos(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + 1
D) f(x, y, z) = <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +   + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +
E) f(x, y, z) = xyz + cos(x)sin(y) + <strong>Verify that the vector field  F  =  (2x  y<sup>2</sup>z<sup>2</sup> - sin(x)sin(y)) i  +  (2 x<sup>2</sup>y  z<sup>2</sup>+ cos(x)cos(y)) j  +  (2x<sup>2</sup>y<sup>2</sup>  z +  ) k  is conservative and find a scalar potential  f(x, y, z)  for it that satisfies  f(0, 0, 0) = 1. </strong> A)   B) f(x, y, z) =       + cos(x)sin(y) +   + 1 C) f(x, y, z) =       + sin(x)cos(y) +   + 1 D) f(x, y, z) =       + cos(x)sin(y) +   E) f(x, y, z) = xyz + cos(x)sin(y) +
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
27
If the vector field H = f(r) r, r \neq 0 is solenoidal, find an expression for f(r).

A) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
B) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
C) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
D) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
E) f(r) = c  <strong>If the vector field H = f(r) r, r  \neq  0 is solenoidal, find an expression for f(r).</strong> A) f(r) = c   , where c is an arbitrary constant B) f(r) = c   , where c is an arbitrary constant C) f(r) = c   , where c is an arbitrary constant D) f(r) = c   , where c is an arbitrary constant E) f(r) = c   , where c is an arbitrary constant  , where c is an arbitrary constant
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
28
Show that div ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r r) = (n + 3) Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r .You may use the following fact: grad ( Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r ) = n Show that div (   r) = (n + 3)   .You may use the following fact: grad (   ) = n   r r
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
29
A vector field F is called  solenoidal \textbf{ solenoidal } in a domain D if

A)  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D  F = 0 in D
B) curl(F) = 0 in D
C) F =  <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D   <strong>A vector field F is called  \textbf{      solenoidal    }  in a domain D if</strong> A)   F = 0 in D B) curl(F) = 0 in D C) F =     in D for some scalar field   D) div(F) = 0 in D E) grad(F) = 0 in D  in D for some scalar field 11ee7bad_3b7e_852d_ae82_0ffea7b87591_TB9661_11
D) div(F) = 0 in D
E) grad(F) = 0 in D
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  x + 2y )cosh (c z) i + b cos (  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  x + 2y)cosh (c z) j + c sin(  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  x + 2y)sinh(c z) k is both  irrotational \textbf{ irrotational } and  solenoidal \textbf{ solenoidal } .

A) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = -2, c = 3
B) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = 2, c = 2
C) a = -  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = -2, c =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  ± 2
D) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = 2, c = ± 3
E) a =  <strong>Find all values of the nonzero constant real numbers a, b, and c so that the vector field F = a cos(   x + 2y )cosh (c z) i + b cos (   x + 2y)cosh (c z) j + c sin(   x + 2y)sinh(c z) k is both  \textbf{     irrotational    }  and  \textbf{     solenoidal    }  .</strong> A) a = -   , b = -2, c = 3 B) a =   , b = 2, c = 2 C) a = -   , b = -2, c =   ± 2 D) a =   , b = 2, c = ± 3 E) a =   , b = -2, c = 9  , b = -2, c = 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
31
Verify that the vector field F = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) = <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k (x, y, z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k.

A) (xyz + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
B) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y + z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
C) (xyz - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
D) ( <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k z - z) i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
E) xyz i + <strong>Verify that the vector field F =   i + (1 - xy) j - xz k is solenoidal, and find a vector potential G for it having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) (xyz + z) i +   y k B) (   y + z) i +   y k C) (xyz - z) i +   y k D) (   z - z) i +   y k E) xyz i +   y k y k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
32
For what value of the constant C is the vector field F = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + C(xy + yz) j + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k k. solenoidal?
If C has that value, find a vector potential G for F having the form G(x, y, z) = <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k (x, y, z) i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k.

A) C = -2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
B) C = -2, G = - y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
C) C = -2, G = x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
D) C = -2, G = - x <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
E) C = 2, G = y <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k i + <strong>For what value of the constant C is the vector field F =   i + C(xy + yz) j +   k. solenoidal? If C has that value, find a vector potential G for F having the form G(x, y, z) =   (x, y, z) i +   y k.</strong> A) C = -2, G = y   i +   y k B) C = -2, G = - y   i +   y k C) C = -2, G = x   i +   y k D) C = -2, G = - x   i +   y k E) C = 2, G = y   i +   y k y k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
33
Show that there does not exist a twice continuously differentiable vector field G such that  curl G \textbf{ curl G } = x i + y j + z k.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
34
A vector field F satisfying the equation div F = 0 in domain D is called:

A) irrotational in D
B) a scalar potential
C) solenoidal in D
D) conservative in D
E) a vector potential
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
35
Let <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) . (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F ) = (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 ) . F + 11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 (11ee7bad_7817_372f_ae82_a36163e56c30_TB9661_11. F) using the notations grad , div or curl.

A) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (<strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
B) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = curl (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 grad (F)
C) div (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = grad (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 div (F)
D) grad (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + 11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 curl (F)
E) curl (11ee7bad_9f85_f900_ae82_29e1b84eee54_TB9661_11 F) = div (11ee7bad_e8b4_1a82_ae82_cd578f612ee6_TB9661_11 ) . F + <strong>Let  and F be sufficiently smooth scalar and vector fields, respectively.Express the well-known identity https://d2lvgg3v3hfg70.cloudfront.net/TB9661/https://d2lvgg3v3hfg70.cloudfront.net/TB9661/ . (  F ) = (    ) . F +   ( . F) using the notations grad , div or curl.</strong> A) curl (  F) = grad (  ) . F +     div (F) B) div (  F) = curl (  ) . F +    grad (F) C) div (  F) = grad (  ) . F +    div (F) D) grad (  F) = div (  ) . F +    curl (F) E) curl (  F) = div (  ) . F +     grad (F) grad (F)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
36
Every conservative vector field is irrotational.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
37
If r = x i + y j + z k and k is a constant vector field in R3, then

A) div ( k × r) = 0
B) div ( k × r) = 0.
C) grad ( k . r) = 2k
D) curl ( k × r) = 0
E) curl ( k × r) = 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
38
Use Green's Theorem to evaluate the line integral <strong>Use Green's Theorem to evaluate the line integral   counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).</strong> A) 18 B) 180 C) -36 D) 0 E) 36 counterclockwise around the square with vertices (0, 3), (3, 0), (-3, 0), and (0, -3).

A) 18
B) 180
C) -36
D) 0
E) 36
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
39
Evaluate the integral <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 ( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 ) - 2y) dx + (3x - ysin( <strong>Evaluate the integral   (   ) - 2y) dx + (3x - ysin(   )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).</strong> A) 5 B) 20 C) 0 D) 10 E) 2 )) dy counterclockwise around the triangle in the xy-plane having vertices (0, 0), (2, 2), and (2, 0).

A) 5
B) 20
C) 0
D) 10
E) 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
40
Use Green's Theorem to compute <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 + xy) dx + ( <strong>Use Green's Theorem to compute   + xy) dx + (   + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).</strong> A) -9 B) -12 C) 2 D) 0 E) 12 + xy) dy counterclockwise around the rectangle having vertices (± 1, 1) and (± 1, 2).

A) -9
B) -12
C) 2
D) 0
E) 12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
41
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   clockwise around the circle of radius 3 centred at the origin.</strong> A) 18   \pi  B) 9   \pi  C) 127   \pi  D) 243   \pi  E) 0  clockwise around the circle of radius 3 centred at the origin.

A) 18 π\pi
B) 9 π\pi
C) 127 π\pi
D) 243 π\pi
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
42
Use Green's Theorem to compute the integral <strong>Use Green's Theorem to compute the integral   counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).</strong> A) -198 B) -210 C) -126 D) -72 E) -21 counterclockwise around the square with vertices at (4, 2), (4, 5), (7, 5), and (7, 2).

A) -198
B) -210
C) -126
D) -72
E) -21
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
43
Use Green's Theorem to compute the integral  <strong>Use Green's Theorem to compute the integral   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.</strong> A) 3 B) 2 C) 1 D) 0 E)   \pi   where C is the triangle formed by the lines y = -x + 1, x = 0 and y = 0, oriented clockwise.

A) 3
B) 2
C) 1
D) 0
E) π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
44
Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   . In terms of these quantities, evaluate the line integral <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A   .

A) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
B) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
C) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
D) A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
E) -A <strong>Let C be a non-self-intersecting closed curve in the xy-plane oriented counterclockwise and bounding a region R having area A and centroid   . In terms of these quantities, evaluate the line integral   .</strong> A) A   B) A   C) A   D) A   E) -A
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
45
Evaluate the integral <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 - <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0 dx counterclockwise around the closed curve formed by y = x3 and y = x, between the points (0, 0) and (1, 1).

A) 1
B) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0
C) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0
D) <strong>Evaluate the integral   -   dx counterclockwise around the closed curve formed by y = x<sup>3</sup> and y = x, between the points (0, 0) and (1, 1).</strong> A) 1 B)   C)   D)   E) 0
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
46
Evaluate <strong>Evaluate   clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).</strong> A) 27 B) 9 C) -9 D) -27 E) 0 clockwise around the triangle with vertices (0, 0), (3, 0), and (3, 3).

A) 27
B) 9
C) -9
D) -27
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
47
Let F = -  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   i +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   j and let C be the boundary of circle  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   +  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  <strong>Let F = -   i +   j and let C be the boundary of circle   +   = 9 oriented counterclockwise. Use Green's Theorem to evaluate  </strong> A) 9  \pi  B) 0 C) -2  \pi  D) 2  \pi  E) 3  \pi

A) 9 π\pi
B) 0
C) -2 π\pi
D) 2 π\pi
E) 3 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the flux of F = x i + 2y j out of the circular disk of radius 2 centred at (3, -5).

A) 8 π\pi
B) 12 π\pi
C) 16 π\pi
D) 24 π\pi
E) 4 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
49
If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 (ii) <strong>If C is the positively oriented boundary of a plane region R having area 3 units and centroid at the point (12, 6), evaluate (i)   (ii)   dx + 3xy dy</strong> A) (i) 36 (ii) 15 B) (i) -36 (ii) 18 C) (i) -18 (ii) 36 D) (i) -4 (ii) 2 E) (i) 432 (ii) 1080 dx + 3xy dy

A) (i) 36 (ii) 15
B) (i) -36 (ii) 18
C) (i) -18 (ii) 36
D) (i) -4 (ii) 2
E) (i) 432 (ii) 1080
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find the flux of F = 2  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24  y i +  <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24   <strong>Find the flux of F = 2   y i +     j out of the rectangle 0  \le  x  \le  ln(3), 0  \le  y  \le 2.</strong> A) 4 B) 8 C) 16 D) 32 E) 24  j out of the rectangle 0 \le x \le ln(3), 0 \le y \le 2.

A) 4
B) 8
C) 16
D) 32
E) 24
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the flux of F =  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  out of (a) the disk  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  +  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  \le  <strong>Find the flux of F =   out of (a) the disk   +    \le   , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.</strong> A) (a) 0  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 0 B) (a) 2  \pi   ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  C) (a) 2  \pi a  ~~~~~~~~ (b) 0  ~~~~~~~~ (c) 2  \pi  D) (a) 0  ~~~~~~~~ (b) 2  \pi   ~~~~~~~~ (c) 0 E) None of the above  , (b) an arbitrary plane region not containing the origin in its interior or on its boundary, and (c) an arbitrary plane region containing the origin in its interior.

A) (a) 0         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 0
B) (a) 2 π\pi         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
C) (a) 2 π\pi a         ~~~~~~~~ (b) 0         ~~~~~~~~ (c) 2 π\pi
D) (a) 0         ~~~~~~~~ (b) 2 π\pi         ~~~~~~~~ (c) 0
E) None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A = Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy). Use Green's theorem in the plane to show that the area A of a regular plane region R enclosed by a positively oriented, piecewise smooth, simple closed curve C is given by A =     dx + x dy). dx + x dy).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
53
Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .

A) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
B) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
C) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
D) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
E) <strong>Use Green's theorem in the plane to find the x-coordinate of the centroid of a regular plane region R (with areaA) enclosed by a positively oriented, piecewise smooth, simple closed curve C .</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
54
Use a line integral to find the area enclosed by the x-axis and one arch of the cycloid given parametrically by the equations x(t) = 3(t - sin(t)), y(t) =3(1 - cos(t)), 0 \le t \le 2 π\pi .

A) 36 π\pi
B) 18 π\pi
C) 27 π\pi
D) 54 π\pi
E) 9 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
55
Find the flux of F = x i + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   j + <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   k out of the cube bounded by the coordinate planes and the planes <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)   and <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)

A) 0
B) 1
C) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)
D) 3
E) <strong>Find the flux of F = x i +   j +   k out of the cube bounded by the coordinate planes and the planes   and  </strong> A) 0 B) 1 C)   D) 3 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
56
Evaluate  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   F = x  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   y i + xz j + z  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field  <strong>Evaluate   F = x   y i + xz j + z   y k and S is the sphere of radius 3 with centre at the origin and unit outward normal field   .</strong> A) 32 \pi  B) 34 \pi  C) 36 \pi  D) 38 \pi  E) 72 \pi   .

A) 32 π\pi
B) 34 π\pi
C) 36 π\pi
D) 38 π\pi
E) 72 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
57
Evaluate the integral  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   where R is the region  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   +  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi   \le 25 and  <strong>Evaluate the integral   where R is the region   +   +    \le  25 and  </strong> A) 12500 \pi  B) 2500 \pi  C) 6250 \pi  D) 1250 \pi  E) 25000 \pi

A) 12500 π\pi
B) 2500 π\pi
C) 6250 π\pi
D) 1250 π\pi
E) 25000 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
58
Use the Divergence Theorem to find the outward flux of F =  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi   across the boundary of the region  <strong>Use the Divergence Theorem to find the outward flux of F =   across the boundary of the region  </strong> A) 12 \pi  B) 16 \pi  C) 3 \pi  D)  \pi  E) 60 \pi

A) 12 π\pi
B) 16 π\pi
C) 3 π\pi
D) π\pi
E) 60 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
59
Find the flux of r = x i + y j + z k out of the cone with base  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi   +  <strong>Find the flux of r = x i + y j + z k out of the cone with base   +    \le  16, z = 0, and vertex at (0, 0, 3).</strong> A) 46 \pi  B) 48 \pi  C) 50 \pi  D) 52 \pi  E) 16 \pi   \le 16, z = 0, and vertex at (0, 0, 3).

A) 46 π\pi
B) 48 π\pi
C) 50 π\pi
D) 52 π\pi
E) 16 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
60
Calculate the surface integral  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere  <strong>Calculate the surface integral   where G = (x + y) i + (y + z) j + (z + x) k and S is the sphere   with outward normal.</strong> A) 32  \pi  B) 16  \pi  C) 8  \pi  D) 64  \pi  E) 256  \pi   with outward normal.

A) 32 π\pi
B) 16 π\pi
C) 8 π\pi
D) 64 π\pi
E) 256 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the flux of <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 i - xy j +3z k out of the solid region bounded by the parabolic cylinder <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 and the planes <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176 , and <strong>Find the flux of   i - xy j +3z k out of the solid region bounded by the parabolic cylinder   and the planes   , and  </strong> A) 208 B) 112 C) 64 D) 48 E) 176

A) 208
B) 112
C) 64
D) 48
E) 176
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
62
Evaluate  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)

A)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
B) π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
C)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
D) 2 π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
E)  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi     π\pi  <strong>Evaluate   where S is the first-octant part of the sphere of radius a centred at the origin. (Hint: Even though S is not a closed surface, it is still easiest to use the Divergence Theorem because the integrand in the surface integral is zero on the coordinate planes.)</strong> A)     \pi     B)   \pi    C)     \pi   D) 2  \pi    E)     \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
63
Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.

A) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
B) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
C) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
D) <strong>Let C be a cone whose base is an arbitrarily shaped region in the plane z = h > 0 having area A, and whose vertex is at the origin. By calculating the flux of   out of C through its entire surface both directly and by using the Divergence Theorem, find the volume of C.</strong> A)   Ah B)   Ah C)   Ah D)   Ah E) 3 Ah Ah
E) 3 Ah
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
64
Evaluate the surface integral <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 where <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1 is the unit inner normal to the surface S of the region lying between the two paraboloids <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1

A) <strong>Evaluate the surface integral   where   is the unit inner normal to the surface S of the region lying between the two paraboloids  </strong> A)   B) 1 C) 0 D) 2 E) -1
B) 1
C) 0
D) 2
E) -1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the flux of G = (x <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   + 2zy) i + (y <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   - <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   ) j + <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)   z k outward through the sphere <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)

A) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
B) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
C) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
D) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
E) <strong>Find the flux of G = (x   + 2zy) i + (y   -   ) j +   z k outward through the sphere  </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
66
Use the Divergence Theorem to evaluate the surface integral <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   where S is the part of the cone <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   below z = 2, and <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)

A) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
B) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
C) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
D) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
E) <strong>Use the Divergence Theorem to evaluate the surface integral   where S is the part of the cone   below z = 2, and   is the unit normal to S with positive z-component. (An additional surface must be introduced to enclose a volume.)</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
67
If F = x i + y j, calculate the flux of F upward through the part of the surface z = 4 - x2 - y2 that lies above the (x, y) plane by applying the Divergence Theorem to the volume bounded by the surface and the disk that it cuts out of the (x, y) plane.

A) 14 π\pi
B) 16 π\pi
C) 18 π\pi
D) 20 π\pi
E) 8 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the outward flux of F = ln(  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   ) i -  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   j + z  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   k across the boundary of the region  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi

A) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi - 3 π\pi ln 2 + 2 π\pi
B) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi - 3 π\pi ln 2 - 2 π\pi
C) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi + 3 π\pi ln 2 - 2 π\pi
D) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi + 3 π\pi ln 2 + 2 π\pi
E) 4  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi +  <strong>Find the outward flux of F = ln(   +   ) i -   j + z   k across the boundary of the region  </strong> A) 4     \pi  - 3  \pi ln 2 + 2  \pi  B) 4     \pi  - 3  \pi ln 2 - 2  \pi  C) 4     \pi  + 3  \pi ln 2 - 2  \pi  D) 4     \pi  + 3  \pi ln 2 + 2  \pi  E) 4     \pi  +     \pi  ln 2 - 2  \pi   π\pi ln 2 - 2 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
69
A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of <strong>A certain region R in 3-space has volume 5 cubic units and centroid at the point (2, -3, 4). Find the flux of   out of R across its boundary.</strong> A) 60 B) 50 C) 20 D) 15 E) 90 out of R across its boundary.

A) 60
B) 50
C) 20
D) 15
E) 90
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   , where F(x, y, z) = x  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   y i +  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   ln x j - z  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   y k, S is the sphere of radius 3 centred at the origin, and  <strong>Find   , where F(x, y, z) = x   y i +   ln x j - z   y k, S is the sphere of radius 3 centred at the origin, and   is the unit outward normal field on S.</strong> A) 24  \pi  B) 12  \pi  C) 36  \pi  D) 72  \pi  E) 54  \pi   is the unit outward normal field on S.

A) 24 π\pi
B) 12 π\pi
C) 36 π\pi
D) 72 π\pi
E) 54 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
71
Given F = 4y i + x j + 2z k, find  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0  over the hemisphere  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0  with outward normal  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0  .

A) 2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
B) -2 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
C) -3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
D) 3 π\pi  <strong>Given F = 4y i + x j + 2z k, find   over the hemisphere   with outward normal   .</strong> A) 2  \pi    B) -2  \pi    C) -3  \pi    D) 3  \pi    E) 0
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
72
Evaluate the integral of <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 over the portion of the ellipse <strong>Evaluate the integral of      over the portion of the ellipse      in the first quadrant, traversed in the counterclockwise direction. </strong> A) -31 B) -32 C) -33 D) -34 E) -30 in the first quadrant, traversed in the counterclockwise direction.

A) -31
B) -32
C) -33
D) -34
E) -30
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
73
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.</strong> A) 0 B) 1 C) -1 D) 2 E) -2 where C is the triangle with vertices (0, 0, 1), (0, 1, 1) and (1, 0, 0) with counterclockwise orientation as seen from high on the z-axis.

A) 0
B) 1
C) -1
D) 2
E) -2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
74
Let F be a smooth vector field in 3-space satisfying the condition  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above  Find the flux of curl F upward through the part of the  <strong>Let F be a smooth vector field in 3-space satisfying the condition   Find the flux of curl F upward through the part of the   lying above the xy-plane.</strong> A) 81  \pi  B) 72  \pi  C) 27  \pi  D) 18  \pi  E) None of the above  lying above the xy-plane.

A) 81 π\pi
B) 72 π\pi
C) 27 π\pi
D) 18 π\pi
E) None of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
75
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)    where C is the circle given by the parametric equations  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)    for  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)

A) -  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)
B) - π\pi
C) π\pi
D) 2 π\pi
E)  <strong>Evaluate the line integral   where C is the circle given by the parametric equations   for  </strong> A) -   B) -  \pi  C)   \pi  D) 2  \pi  E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
76
Evaluate the line integral  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi   where C is the circle  <strong>Evaluate the line integral   where C is the circle   oriented clockwise as seen from high on the z-axis.</strong> A) 40  \pi  B) 45  \pi  C) 50  \pi  D) 55  \pi  E) 35  \pi   oriented clockwise as seen from high on the z-axis.

A) 40 π\pi
B) 45 π\pi
C) 50 π\pi
D) 55 π\pi
E) 35 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
77
Evaluate <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   , where F = y i + zx j + <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   k and C are the positively oriented boundary of the triangle in which the plane <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -   with upward normal, intersects the first octant of space.

A) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
B) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
C) <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
D) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
E) - <strong>Evaluate   , where F = y i + zx j +   k and C are the positively oriented boundary of the triangle in which the plane   with upward normal, intersects the first octant of space.</strong> A)   B) -   C)   D) -   E) -
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
78
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation <strong>Use Stokes's Theorem to evaluate the line integral   + (2x - y) dy + (y + z) dz,where C is the triangle cut from the plane P with equation   by the three coordinate planes. C has orientation inherited from the upward normal on P.</strong> A) 18 B) -6 C) 6 D) 24 E) -24 by the three coordinate planes. C has orientation inherited from the upward normal on P.

A) 18
B) -6
C) 6
D) 24
E) -24
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
79
Use Stokes's Theorem to evaluate the line integral <strong>Use Stokes's Theorem to evaluate the line integral   where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.</strong> A) 0 B) 1 C) 2 D) -2 E) -1 where C is the triangle with vertices (1, 1, 1), (0, 1, 0) and (0, 0, 0) oriented counterclockwise as seen from high on the z-axis.

A) 0
B) 1
C) 2
D) -2
E) -1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
80
Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0  with the plane  <strong>Let F = (z - y) i + (x - z) j + (y - x) k. Compute the work done by the force F in moving an object along the curve of intersection of the cylinder   with the plane   The orientation of the curve is consistent with the upward normal on the plane.</strong> A) 8  \pi  B) 6  \pi  C) 4  \pi  D) 2  \pi  E) 0  The orientation of the curve is consistent with the upward normal on the plane.

A) 8 π\pi
B) 6 π\pi
C) 4 π\pi
D) 2 π\pi
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 92 في هذه المجموعة.