Deck 6: Integration

ملء الشاشة (f)
exit full mode
سؤال
Write sigma notation of 4 - 9 + 16 - 25 +... + . <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px> <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px>

A) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px> <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px>
B) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px> <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px>
C) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px> <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px>
D) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px> <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px>
E) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px> <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Evaluate the sum <strong>Evaluate the sum   .</strong> A) 420 B) 70 C) 67 D) 417 E) 356 <div style=padding-top: 35px> .

A) 420
B) 70
C) 67
D) 417
E) 356
سؤال
Evaluate <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   <div style=padding-top: 35px> .

A) 1 + <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   <div style=padding-top: 35px>
B) <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   <div style=padding-top: 35px>
C) - <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   <div style=padding-top: 35px>
D) 1 - <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   <div style=padding-top: 35px>
E) - <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   <div style=padding-top: 35px>
سؤال
Evaluate the <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px> .

A) <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px> + <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px>
B) <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px> - <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px>
C) <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px>
D) 2 - <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px>
E) 2 + <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   <div style=padding-top: 35px>
سؤال
Find and evaluate the sum <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   <div style=padding-top: 35px> .

A) <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   <div style=padding-top: 35px>
B) - <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   <div style=padding-top: 35px>
C) <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   <div style=padding-top: 35px>
D) - <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   <div style=padding-top: 35px>
E) <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   <div style=padding-top: 35px>
سؤال
Evaluate <strong>Evaluate   .</strong> A) -1 B) 0 C) 51 D) 1 E) 101 <div style=padding-top: 35px> .

A) -1
B) 0
C) 51
D) 1
E) 101
سؤال
Express the sum <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> +..... + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> using sigma notation.

A) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Simplify the expression <strong>Simplify the expression   .</strong> A) ln((2n)!) B)   C) (2 ln n)! D) 2 ln(n!) E) (ln(n))! <div style=padding-top: 35px> .

A) ln((2n)!)
B) <strong>Simplify the expression   .</strong> A) ln((2n)!) B)   C) (2 ln n)! D) 2 ln(n!) E) (ln(n))! <div style=padding-top: 35px>
C) (2 ln n)!
D) 2 ln(n!)
E) (ln(n))!
سؤال
Express the sum in the series <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> .

A) 2 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 7k
B) 2 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 5k
C) 3 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 7k
D) 3 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 5k
E) 2 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> - 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k <div style=padding-top: 35px> + 7k
سؤال
Evaluate the sum <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px> Hint: <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px> = <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px> - <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px> .

A) 1
B) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Evaluate the sum <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> .

A) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Express the sum <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> as a polynomial function of n.

A) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> n
B) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> - <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> n
C) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> + 4n
D) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> + 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> - n
E) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> - <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> - <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <div style=padding-top: 35px> n
سؤال
Find an approximation for the area under the curve y = 1 - <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?

A) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px>
B) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px>
C) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px>
D) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px>
E) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px> < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   <div style=padding-top: 35px>
سؤال
Given that the area under the curve y = <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   <div style=padding-top: 35px> and above the x-axis from x = 0 to x = a > 0 is <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   <div style=padding-top: 35px> square units, find the area under the same curve from x = -2 to x = 3.

A) <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   <div style=padding-top: 35px> square units
B) <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   <div style=padding-top: 35px> square units
C) 9 square units
D) 6 square units
E) <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   <div style=padding-top: 35px>
سؤال
Construct and simplify a sum approximating the area above the x-axis and under the curve y = <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.

A) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 9 square units
B) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 9 square units
C) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 6 square units
D) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 6 square units
E) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 9 square units
سؤال
Construct and simplify a sum approximating the area above the x-axis and under the curvey = <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.

A) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 9 square units
B) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 9 square units
C) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 6 square units
D) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 6 square units
E) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units <div style=padding-top: 35px> , area = 9 square units
سؤال
Write the area under the curve y = cos x and above the interval [0, π\pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.

A) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>   <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>
B) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>   <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>
C) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>   <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>
D) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>   <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>
E) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>   <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =     <div style=padding-top: 35px>
سؤال
Given that <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> = <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> , find the area under y = <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.

A) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> square units
B) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> square units
C) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> square units
D) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> square units
E) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units <div style=padding-top: 35px> square units
سؤال
The limit  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi  <div style=padding-top: 35px>   <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi  <div style=padding-top: 35px>  represents the area of a certain region in the xy-plane. Describe the region.

A) region under y = cos x, above y = 0, between x = 0 and x =  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi  <div style=padding-top: 35px>
B) region under y = sin x, above y = 0, between x = 0 and x =  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi  <div style=padding-top: 35px>
C) region under y = cos x, above y = 0, between x = 0 and x = π\pi
D) region under y = sin x, above y = 0, between x = 0 and x = π\pi
E) region under y = cos x, above y = 0, between x=  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi  <div style=padding-top: 35px>  and x = π\pi
سؤال
By interpreting it as the area of a region in the xy-plane, evaluate the limit  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1) <div style=padding-top: 35px>  .  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1) <div style=padding-top: 35px>   <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1) <div style=padding-top: 35px>

A) 2 + 2 π\pi (the area of the trapezoidal region under y = 1 + π\pi x, above y = 0 from x = 0 to x = 2)
B) 1 + π\pi (the area of the trapezoidal region under y = 1 + 2 π\pi x, above y = 0 from x = 0 to x = 1)
C) 2 + 4 π\pi (the area of the trapezoidal region under y = 1 + 2 π\pi x, above y = 0 from x = 0 to x = 2)
D) 4 + 2 π\pi (the area of the trapezoidal region under y = 2 + π\pi x, above y = 0 from x = 0 to x = 2)
E) 2 +  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1) <div style=padding-top: 35px>  (the area of the trapezoidal region under y = 2 + π\pi x, above y = 0 from x = 0 to x = 1)
سؤال
By interpreting it as the area of a region in the xy-plane, evaluate the limit  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A)   \pi  (the area of a quarter of a circular disk of radius 2) B) 2  \pi  (the area of half of a circular disk of radius 2) C) 4  \pi  (the area of a circular disk of radius 2) D) 8  \pi  (the area of half of a circular disk of radius 4) E) 16  \pi  (the area of a circular disk of radius 4) <div style=padding-top: 35px>  .  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A)   \pi  (the area of a quarter of a circular disk of radius 2) B) 2  \pi  (the area of half of a circular disk of radius 2) C) 4  \pi  (the area of a circular disk of radius 2) D) 8  \pi  (the area of half of a circular disk of radius 4) E) 16  \pi  (the area of a circular disk of radius 4) <div style=padding-top: 35px>   <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A)   \pi  (the area of a quarter of a circular disk of radius 2) B) 2  \pi  (the area of half of a circular disk of radius 2) C) 4  \pi  (the area of a circular disk of radius 2) D) 8  \pi  (the area of half of a circular disk of radius 4) E) 16  \pi  (the area of a circular disk of radius 4) <div style=padding-top: 35px>

A) π\pi (the area of a quarter of a circular disk of radius 2)
B) 2 π\pi (the area of half of a circular disk of radius 2)
C) 4 π\pi (the area of a circular disk of radius 2)
D) 8 π\pi (the area of half of a circular disk of radius 4)
E) 16 π\pi (the area of a circular disk of radius 4)
سؤال
Let P denote the partition of the interval [1, 3] into 4 subintervals of equal length <strong>Let P denote the partition of the interval [1, 3] into 4 subintervals of equal length  x = 1/2.Evaluate the upper and lower Riemann sums U(f,P) and L(f,P) for the function f(x) = 4x<sup>2</sup>.</strong> A) U(f,P) = 40, L(f,P) = 30 B) U(f,P) = 41, L(f,P) = 29 C) U(f,P) = 42, L(f,P) = 28 D) U(f,P) = 43, L(f,P) = 27 E) U(f,P) = 44, L(f,P) = 26 <div style=padding-top: 35px> x = 1/2.Evaluate the upper and lower Riemann sums U(f,P) and L(f,P) for the function f(x) = 4x2.

A) U(f,P) = 40, L(f,P) = 30
B) U(f,P) = 41, L(f,P) = 29
C) U(f,P) = 42, L(f,P) = 28
D) U(f,P) = 43, L(f,P) = 27
E) U(f,P) = 44, L(f,P) = 26
سؤال
Let P denote the partition of the interval [1, 2] into 8 subintervals of equal length <strong>Let P denote the partition of the interval [1, 2] into 8 subintervals of equal length  x = 1/8.Evaluate the upper and lower Riemann sums U(f P) and L(f,P) for the function f(x) = 1/x.Round your answers to 4 decimal places.</strong> A) U(f,P) = 0.7110, L(f,P) = 0.6781 B) U(f,P) = 0.7254, L(f,P) = 0.6629 C) U(f,P) = 0.7302, L(f,P) = 0.6571 D) U(f,P) = 0.7378, L(f,P) = 0.6510 E) U(f,P) = 0.7219, L(f,P) = 0.6683 <div style=padding-top: 35px> x = 1/8.Evaluate the upper and lower Riemann sums U(f P) and L(f,P) for the function f(x) = 1/x.Round your answers to 4 decimal places.

A) U(f,P) = 0.7110, L(f,P) = 0.6781
B) U(f,P) = 0.7254, L(f,P) = 0.6629
C) U(f,P) = 0.7302, L(f,P) = 0.6571
D) U(f,P) = 0.7378, L(f,P) = 0.6510
E) U(f,P) = 0.7219, L(f,P) = 0.6683
سؤال
Let P denote the partition of the interval [1, 4] into 6 subintervals of equal length <strong>Let P denote the partition of the interval [1, 4] into 6 subintervals of equal length  x = 1/2.Evaluate the upper and lower Riemann sums U(f, P) and L(f,P) for the function f(x) =   .Round your answers to 4 decimal places.</strong> A) U(f,P) = 4.9115, L(f,P) = 4.4115 B) U(f,P) = 4.9135, L(f,P) = 4.4109 C) U(f,P) = 4.9180, L(f,P) = 4.4057 D) U(f,P) = 4.9002, L(f,P) = 4.4250 E) U(f,P) = 4.9183, L(f,P) = 4.4093 <div style=padding-top: 35px> x = 1/2.Evaluate the upper and lower Riemann sums U(f, P) and L(f,P) for the function f(x) = <strong>Let P denote the partition of the interval [1, 4] into 6 subintervals of equal length  x = 1/2.Evaluate the upper and lower Riemann sums U(f, P) and L(f,P) for the function f(x) =   .Round your answers to 4 decimal places.</strong> A) U(f,P) = 4.9115, L(f,P) = 4.4115 B) U(f,P) = 4.9135, L(f,P) = 4.4109 C) U(f,P) = 4.9180, L(f,P) = 4.4057 D) U(f,P) = 4.9002, L(f,P) = 4.4250 E) U(f,P) = 4.9183, L(f,P) = 4.4093 <div style=padding-top: 35px> .Round your answers to 4 decimal places.

A) U(f,P) = 4.9115, L(f,P) = 4.4115
B) U(f,P) = 4.9135, L(f,P) = 4.4109
C) U(f,P) = 4.9180, L(f,P) = 4.4057
D) U(f,P) = 4.9002, L(f,P) = 4.4250
E) U(f,P) = 4.9183, L(f,P) = 4.4093
سؤال
Calculate the upper Riemann sum for f(x) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units <div style=padding-top: 35px> + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.

A) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units <div style=padding-top: 35px> + 3, area = 12 square units
B) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units <div style=padding-top: 35px> + 3, area = 12 square units
C) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units <div style=padding-top: 35px> + 3, area = 12 square units
D) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units <div style=padding-top: 35px> + 3, area = 12 square units
E) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units <div style=padding-top: 35px> + 3, area = 12 square units
سؤال
Calculate the lower Riemann sum for f(x) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> n <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> = 1 (which can be verified by using l'Hopital's Rule), find the area under y = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> and above the x-axis between x = 0 and x = 1.

A) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> , area = e square units
B) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> , area = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> square units
C) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> , area = e - 1 square units
D) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> , area = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> square units
E) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> , area = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units <div style=padding-top: 35px> square units
سؤال
Express <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.

A) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px>
B) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px>
C) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px>
D) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px>
E) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px> <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <div style=padding-top: 35px>
سؤال
Express <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.

A) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> .
B) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> .
C) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> .
D) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> .
E) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <div style=padding-top: 35px> .
سؤال
Write the following limit as a definite integral: . <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Write the following limit as a definite integral: <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>

A) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Use the limit definition of definite integral to evaluate <strong>Use the limit definition of definite integral to evaluate   dx.</strong> A) 0 B) -   C)   D) 1 E) -1 <div style=padding-top: 35px> dx.

A) 0
B) - <strong>Use the limit definition of definite integral to evaluate   dx.</strong> A) 0 B) -   C)   D) 1 E) -1 <div style=padding-top: 35px>
C) <strong>Use the limit definition of definite integral to evaluate   dx.</strong> A) 0 B) -   C)   D) 1 E) -1 <div style=padding-top: 35px>
D) 1
E) -1
سؤال
Use the limit definition of the definite integral to evaluate <strong>Use the limit definition of the definite integral to evaluate   dx.</strong> A) 10 B) 18 C) 6 D) 30 E) 9 <div style=padding-top: 35px> dx.

A) 10
B) 18
C) 6
D) 30
E) 9
سؤال
Write the following limit as a definite integral: <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px>

A) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
B) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
C) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
D) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
E) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
سؤال
Given that <strong>Given that   and   = -1, find  </strong> A) -3 B) -1 C) 3 D) 1 E) -2 <div style=padding-top: 35px> and <strong>Given that   and   = -1, find  </strong> A) -3 B) -1 C) 3 D) 1 E) -2 <div style=padding-top: 35px> = -1, find <strong>Given that   and   = -1, find  </strong> A) -3 B) -1 C) 3 D) 1 E) -2 <div style=padding-top: 35px>

A) -3
B) -1
C) 3
D) 1
E) -2
سؤال
Suppose that <strong>Suppose that  </strong> A) -5 B) -3 C) -7 D) -1 E) 7 <div style=padding-top: 35px>

A) -5
B) -3
C) -7
D) -1
E) 7
سؤال
Evaluate <strong>Evaluate   dx.</strong> A) 42 B) 0 C) 21 D) 51 E) 16 <div style=padding-top: 35px> dx.

A) 42
B) 0
C) 21
D) 51
E) 16
سؤال
If f and g are integrable functions on the interval [a, b], then If f and g are integrable functions on the interval [a, b], then   =   .   dx.<div style=padding-top: 35px> = If f and g are integrable functions on the interval [a, b], then   =   .   dx.<div style=padding-top: 35px> . If f and g are integrable functions on the interval [a, b], then   =   .   dx.<div style=padding-top: 35px> dx.
سؤال
 <div style=padding-top: 35px>
سؤال
If f(x) is an even function and g(x) is an odd function ,both of which are integrable over the interval [-a, a], then If f(x) is an even function and g(x) is an odd function ,both of which are integrable over the interval [-a, a], then  <div style=padding-top: 35px>
سؤال
Evaluate <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   <div style=padding-top: 35px> (2 - <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   <div style=padding-top: 35px> ) dx by interpreting the integral as representing an area.

A) <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   <div style=padding-top: 35px>
B) 4
C) 2
D) <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   <div style=padding-top: 35px>
E) - <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   <div style=padding-top: 35px>
سؤال
Evaluate  <strong>Evaluate     dx by interpreting the integral as representing an area.</strong> A) 8  \pi  B) 4  \pi  C) 16  \pi  D) 8 E) 16 <div style=padding-top: 35px>   <strong>Evaluate     dx by interpreting the integral as representing an area.</strong> A) 8  \pi  B) 4  \pi  C) 16  \pi  D) 8 E) 16 <div style=padding-top: 35px>  dx by interpreting the integral as representing an area.

A) 8 π\pi
B) 4 π\pi
C) 16 π\pi
D) 8
E) 16
سؤال
Given that  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)   <div style=padding-top: 35px>  dx =  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)   <div style=padding-top: 35px>  , evaluate  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)   <div style=padding-top: 35px>  dx.

A) π\pi /4
B) π\pi /2
C) π\pi
D) 1/2
E)  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)   <div style=padding-top: 35px>
سؤال
Given the piecewise continuous function f(x) = Given the piecewise continuous function f(x) =   evaluate   by using the properties of definite integrals and interpreting integrals as areas.<div style=padding-top: 35px> evaluate Given the piecewise continuous function f(x) =   evaluate   by using the properties of definite integrals and interpreting integrals as areas.<div style=padding-top: 35px> by using the properties of definite integrals and interpreting integrals as areas.
سؤال
If f(x) is an even function integrable on the closed interval [0 , 2a] , a > 0 , then If f(x) is an even function integrable on the closed interval [0 , 2a] , a > 0 , then   =2   .<div style=padding-top: 35px> =2 If f(x) is an even function integrable on the closed interval [0 , 2a] , a > 0 , then   =2   .<div style=padding-top: 35px> .
سؤال
Find the average value of the function f(x) = sin (x/2) + π\pi on [- π\pi , π\pi ].

A) π\pi
B)  <strong>Find the average value of the function f(x) = sin (x/2) +   \pi  on [-  \pi ,   \pi ].</strong> A)   \pi  B)   C) 2  \pi  D)   E) 2   <div style=padding-top: 35px>
C) 2 π\pi
D)  <strong>Find the average value of the function f(x) = sin (x/2) +   \pi  on [-  \pi ,   \pi ].</strong> A)   \pi  B)   C) 2  \pi  D)   E) 2   <div style=padding-top: 35px>
E) 2  <strong>Find the average value of the function f(x) = sin (x/2) +   \pi  on [-  \pi ,   \pi ].</strong> A)   \pi  B)   C) 2  \pi  D)   E) 2   <div style=padding-top: 35px>
سؤال
The velocity of a particle moving along a straight line at time t is given by v(t) = t2 - 6t + 8 m/s.Find the distance travelled by the particle from t = 0 to t = 3.

A) <strong>The velocity of a particle moving along a straight line at time t is given by v(t) = t<sup>2</sup> - 6t + 8 m/s.Find the distance travelled by the particle from t = 0 to t = 3.</strong> A)   m B) 21 m C) 6 m D) 4 m E) 33 m <div style=padding-top: 35px> m
B) 21 m
C) 6 m
D) 4 m
E) 33 m
سؤال
What values of a and b, satisfying a < b, maximize the value of  <strong>What values of a and b, satisfying a < b, maximize the value of  </strong> A) a = 0, b = 1 B) a = -1, b = 1 C) a = 0, b = 2 D) a = - \infty , b =  \infty  E) a = -1, b = 0 <div style=padding-top: 35px>

A) a = 0, b = 1
B) a = -1, b = 1
C) a = 0, b = 2
D) a = - \infty , b = \infty
E) a = -1, b = 0
سؤال
What values of a and b, satisfying a < b, maximize the value of  <strong>What values of a and b, satisfying a < b, maximize the value of  </strong> A) a = -2, b = 4 B) a = 0, b = 4 C) a = - \infty , b =  \infty  D) a = -2, b = 0 E) a = 1, b = 3 <div style=padding-top: 35px>

A) a = -2, b = 4
B) a = 0, b = 4
C) a = - \infty , b = \infty
D) a = -2, b = 0
E) a = 1, b = 3
سؤال
Evaluate the definite integral <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12 <div style=padding-top: 35px>

A) - <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12 <div style=padding-top: 35px>
B) <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12 <div style=padding-top: 35px>
C) <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12 <div style=padding-top: 35px>
D) - <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12 <div style=padding-top: 35px>
E) -12
سؤال
Compute the definite integral <strong>Compute the definite integral   - 2x + 1)dx.</strong> A) 14 B) 22 C) 21 D) 24 E) 20 <div style=padding-top: 35px> - 2x + 1)dx.

A) 14
B) 22
C) 21
D) 24
E) 20
سؤال
Compute the integral <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px> - x)dx.

A) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px> - <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px>
B) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px> + <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px>
C) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px> - <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px>
D) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px> + <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px>
E) 2 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px> - <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   <div style=padding-top: 35px>
سؤال
Compute the integral <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)   <div style=padding-top: 35px>

A) <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)   <div style=padding-top: 35px>
B) <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)   <div style=padding-top: 35px>
C) - <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)   <div style=padding-top: 35px>
D) - <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)   <div style=padding-top: 35px>
E) <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)   <div style=padding-top: 35px>
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)   <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)   <div style=padding-top: 35px>
B) 1
C) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find <strong>Find   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> dx.

A) <strong>Find   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Evaluate the integral <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -   <div style=padding-top: 35px>

A) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -   <div style=padding-top: 35px>
B) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -   <div style=padding-top: 35px>
C) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -   <div style=padding-top: 35px>
D) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -   <div style=padding-top: 35px>
E) - <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -   <div style=padding-top: 35px>
سؤال
Find the average value of the function f(x) = <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> + 3 <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> - 2 <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> - 3x + 1 on the interval [0, 2].

A) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Find the average value of the function f(x) = sin x on [0, 3 π\pi /2].

A)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Evaluate the definite integral <strong>Evaluate the definite integral   dx.</strong> A) 11.1 B) 9.9 C) 10.1 D) 15 E) -10.1 <div style=padding-top: 35px> dx.

A) 11.1
B) 9.9
C) 10.1
D) 15
E) -10.1
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) 4 B) 6 C) 7 D) 5 E) 3 <div style=padding-top: 35px> dx.

A) 4
B) 6
C) 7
D) 5
E) 3
سؤال
  dx = 4<div style=padding-top: 35px> dx = 4
سؤال
Find the average value of the function f(x) =  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  3x, over the interval [- π\pi /12, π\pi /12].

A)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
سؤال
Let f(t) = Let f(t) =   Evaluate   dt.<div style=padding-top: 35px> Evaluate Let f(t) =   Evaluate   dt.<div style=padding-top: 35px> dt.
سؤال
Evaluate the definite integral <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)   <div style=padding-top: 35px> dx.

A) - <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)   <div style=padding-top: 35px>
B) <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)   <div style=padding-top: 35px>
C) <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)   <div style=padding-top: 35px>
D) -33
E) <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)   <div style=padding-top: 35px>
سؤال
Find the derivative of F(x) = <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x <div style=padding-top: 35px>

A) 2 ln x
B) 0
C) <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x <div style=padding-top: 35px> ln(u)
D) <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x <div style=padding-top: 35px> ln x
E) <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x <div style=padding-top: 35px> ln x
سؤال
Find the derivative of F(x) = <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> dt.

A) 2 <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> )
B) 2 <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> sin ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> )
C) 2 <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> )
D) <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> )
E) <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) <div style=padding-top: 35px> )
سؤال
Given that the relation 3 <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) <div style=padding-top: 35px> + <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) <div style=padding-top: 35px> dt = 3 defines y implicitly as a differentiable function of x, find <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) <div style=padding-top: 35px> .

A) <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) <div style=padding-top: 35px>
B) <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) <div style=padding-top: 35px>
C) 6x + cos (t) - t sin (t)
D) 6x +cos(y) - ysin (y)
E) 6x + ycos (y)
سؤال
Evaluate <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <div style=padding-top: 35px> <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <div style=padding-top: 35px>

A) - <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <div style=padding-top: 35px>
B) - <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <div style=padding-top: 35px>
C) <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <div style=padding-top: 35px>
D) 1
E) <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <div style=padding-top: 35px>
سؤال
Find the point on the graph of the function f(x) = <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)   <div style=padding-top: 35px> dt where the graph has a horizontal tangent line.

A) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)   <div style=padding-top: 35px>
B) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)   <div style=padding-top: 35px>
C) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)   <div style=padding-top: 35px>
D) (1, 0)
E) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)   <div style=padding-top: 35px>
سؤال
: <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px> <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px> is equal to

A) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px>
B) <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px> - <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px>
C) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px>
D) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px>
E) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <div style=padding-top: 35px>
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
D) - <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
E) - <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
سؤال
Find the inflection point of the function f(x) = <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   <div style=padding-top: 35px> dt, where x > 0.

A) (1, 0)
B) (e, <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   <div style=padding-top: 35px> )
C) (e, 1)
D) (e, <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   <div style=padding-top: 35px> )
E) <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   <div style=padding-top: 35px>
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C <div style=padding-top: 35px> dx.

A) ln(3 <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C <div style=padding-top: 35px> ) + C
B) ln <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C <div style=padding-top: 35px> + C
C) 3ln <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C <div style=padding-top: 35px> + C
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> + C
C) - <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> + C
D) - <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <div style=padding-top: 35px> + C
سؤال
Evaluate the integral <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px>

A) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px> - <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px> + <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px> - <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px> + <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   <div style=padding-top: 35px>
سؤال
Evaluate the integral dx. <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px>

A) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> dx.

A) ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> + 4x + 5) + C
B) 2 ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> + 4x + 5) + C
C) <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> + 4x + 5) + C
D) -2 ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> + 4x + 5) + C
E) - <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C <div style=padding-top: 35px> + 4x + 5) + C
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
D) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
سؤال
Evaluate Evaluate   dx.<div style=padding-top: 35px> dx.
سؤال
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
B) -3 <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
D) - <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
E) - <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <div style=padding-top: 35px> + C
سؤال
Evaluate the integral <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> cos ( <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> ) dx.

A) <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> + C
C) - <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> + C
D) - <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C <div style=padding-top: 35px> + C
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/117
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 6: Integration
1
Write sigma notation of 4 - 9 + 16 - 25 +... + . <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)

A) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)
B) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)
C) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)
D) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)
E) <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)     <strong>Write sigma notation of 4 - 9 + 16 - 25 +... + .    </strong> A)     B)     C)     D)     E)

2
Evaluate the sum <strong>Evaluate the sum   .</strong> A) 420 B) 70 C) 67 D) 417 E) 356 .

A) 420
B) 70
C) 67
D) 417
E) 356
420
3
Evaluate <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -   .

A) 1 + <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -
B) <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -
C) - <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -
D) 1 - <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -
E) - <strong>Evaluate   .</strong> A) 1 +   B)   C) -   D) 1 -   E) -
- -
4
Evaluate the <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   .

A) <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   + <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +
B) <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +   - <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +
C) <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +
D) 2 - <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +
E) 2 + <strong>Evaluate the   .</strong> A)   +   B)   -   C)   D) 2 -   E) 2 +
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find and evaluate the sum <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)   .

A) <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)
B) - <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)
C) <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)
D) - <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)
E) <strong>Find and evaluate the sum   .</strong> A)   B) -   C)   D) -   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
6
Evaluate <strong>Evaluate   .</strong> A) -1 B) 0 C) 51 D) 1 E) 101 .

A) -1
B) 0
C) 51
D) 1
E) 101
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
7
Express the sum <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   +..... + <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)   using sigma notation.

A) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)
B) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)
C) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)
D) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)
E) <strong>Express the sum   +   +   +   +..... +   using sigma notation.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
8
Simplify the expression <strong>Simplify the expression   .</strong> A) ln((2n)!) B)   C) (2 ln n)! D) 2 ln(n!) E) (ln(n))! .

A) ln((2n)!)
B) <strong>Simplify the expression   .</strong> A) ln((2n)!) B)   C) (2 ln n)! D) 2 ln(n!) E) (ln(n))!
C) (2 ln n)!
D) 2 ln(n!)
E) (ln(n))!
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
9
Express the sum in the series <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k .

A) 2 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 7k
B) 2 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 5k
C) 3 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 7k
D) 3 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 5k
E) 2 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k - 9 <strong>Express the sum in the series   .</strong> A) 2   + 9   + 7k B) 2   + 9   + 5k C) 3   + 9   + 7k D) 3   + 9   + 5k E) 2   - 9   + 7k + 7k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
10
Evaluate the sum <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   Hint: <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   = <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   - <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)   .

A) 1
B) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)
C) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)
D) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)
E) <strong>Evaluate the sum   Hint:   =   -   .</strong> A) 1 B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
11
Evaluate the sum <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)   .

A) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the sum   .</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
12
Express the sum <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n as a polynomial function of n.

A) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n n
B) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n - <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n n
C) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n + <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n + 4n
D) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n + 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n - n
E) 3 <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n - <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n - <strong>Express the sum   as a polynomial function of n.</strong> A) 3   +     +   n B) 3   +     -   n C) 3   +     + 4n D) 3   + 3   - n E) 3   -     -   n n
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find an approximation for the area under the curve y = 1 - <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?

A) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <
B) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <
C) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <
D) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <
E) (a) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   , (b) <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   ; <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <   < area under curve < <strong>Find an approximation for the area under the curve y = 1 -   and above the x-axis fromx = 0 to x = 1 using a sum of areas of four rectangles each having width 1/4 and (a) tops lying under the curve, or (b) tops lying above the curve. What does this tell you about the actual area under the curve?</strong> A) (a)   , (b)   ;   < area under curve <   B) (a)   , (b)   ;   < area under curve <   C) (a)   , (b)   ;   < area under curve <   D) (a)   , (b)   ;   < area under curve <   E) (a)   , (b)   ;   < area under curve <
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
14
Given that the area under the curve y = <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   and above the x-axis from x = 0 to x = a > 0 is <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   square units, find the area under the same curve from x = -2 to x = 3.

A) <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   square units
B) <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)   square units
C) 9 square units
D) 6 square units
E) <strong>Given that the area under the curve y =   and above the x-axis from x = 0 to x = a > 0 is   square units, find the area under the same curve from x = -2 to x = 3.</strong> A)   square units B)   square units C) 9 square units D) 6 square units E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
15
Construct and simplify a sum approximating the area above the x-axis and under the curve y = <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.

A) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 9 square units
B) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 9 square units
C) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 6 square units
D) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 6 square units
E) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curve y =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying under or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 9 square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
16
Construct and simplify a sum approximating the area above the x-axis and under the curvey = <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.

A) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 9 square units
B) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 9 square units
C) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 6 square units
D) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 6 square units
E) <strong>Construct and simplify a sum approximating the area above the x-axis and under the curvey =   between x = 0 and x = 3 by using n rectangles having equal widths and tops lying above or on the curve. Find the actual area as a suitable limit.</strong> A)   , area = 9 square units B)   , area = 9 square units C)   , area = 6 square units D)   , area = 6 square units E)   , area = 9 square units , area = 9 square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
17
Write the area under the curve y = cos x and above the interval [0, π\pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.

A) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =       <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =
B) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =       <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =
C) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =       <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =
D) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =       <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =
E) Area =  <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =       <strong>Write the area under the curve y = cos x and above the interval [0,   \pi /2] on the x-axis as the limit of a sum of areas of n rectangles of equal widths. Have the upper-right corners of the rectangles lie on the curve.</strong> A) Area =     B) Area =     C) Area =     D) Area =     E) Area =
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
18
Given that <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units = <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units , find the area under y = <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.

A) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units square units
B) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units square units
C) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units square units
D) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units square units
E) <strong>Given that   =   , find the area under y =   and above the interval [0, a] on the x-axis (where a > 0 ) by interpreting the area as a limit of a suitable sum.</strong> A)   square units B)   square units C)   square units D)   square units E)   square units square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
19
The limit  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi    <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi   represents the area of a certain region in the xy-plane. Describe the region.

A) region under y = cos x, above y = 0, between x = 0 and x =  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi
B) region under y = sin x, above y = 0, between x = 0 and x =  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi
C) region under y = cos x, above y = 0, between x = 0 and x = π\pi
D) region under y = sin x, above y = 0, between x = 0 and x = π\pi
E) region under y = cos x, above y = 0, between x=  <strong>The limit     represents the area of a certain region in the xy-plane. Describe the region.</strong> A) region under y = cos x, above y = 0, between x = 0 and x =   B) region under y = sin x, above y = 0, between x = 0 and x =   C) region under y = cos x, above y = 0, between x = 0 and x =  \pi  D) region under y = sin x, above y = 0, between x = 0 and x =   \pi  E) region under y = cos x, above y = 0, between x=   and x =  \pi   and x = π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
20
By interpreting it as the area of a region in the xy-plane, evaluate the limit  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1)  .  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1)   <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1)

A) 2 + 2 π\pi (the area of the trapezoidal region under y = 1 + π\pi x, above y = 0 from x = 0 to x = 2)
B) 1 + π\pi (the area of the trapezoidal region under y = 1 + 2 π\pi x, above y = 0 from x = 0 to x = 1)
C) 2 + 4 π\pi (the area of the trapezoidal region under y = 1 + 2 π\pi x, above y = 0 from x = 0 to x = 2)
D) 4 + 2 π\pi (the area of the trapezoidal region under y = 2 + π\pi x, above y = 0 from x = 0 to x = 2)
E) 2 +  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A) 2 + 2  \pi  (the area of the trapezoidal region under y = 1 +   \pi x, above y = 0 from x = 0 to x = 2) B) 1 +   \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 1) C) 2 + 4  \pi  (the area of the trapezoidal region under y = 1 + 2  \pi x, above y = 0 from x = 0 to x = 2) D) 4 + 2  \pi  (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 2) E) 2 +   (the area of the trapezoidal region under y = 2 +   \pi x, above y = 0 from x = 0 to x = 1)  (the area of the trapezoidal region under y = 2 + π\pi x, above y = 0 from x = 0 to x = 1)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
21
By interpreting it as the area of a region in the xy-plane, evaluate the limit  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A)   \pi  (the area of a quarter of a circular disk of radius 2) B) 2  \pi  (the area of half of a circular disk of radius 2) C) 4  \pi  (the area of a circular disk of radius 2) D) 8  \pi  (the area of half of a circular disk of radius 4) E) 16  \pi  (the area of a circular disk of radius 4)  .  <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A)   \pi  (the area of a quarter of a circular disk of radius 2) B) 2  \pi  (the area of half of a circular disk of radius 2) C) 4  \pi  (the area of a circular disk of radius 2) D) 8  \pi  (the area of half of a circular disk of radius 4) E) 16  \pi  (the area of a circular disk of radius 4)   <strong>By interpreting it as the area of a region in the xy-plane, evaluate the limit   .    </strong> A)   \pi  (the area of a quarter of a circular disk of radius 2) B) 2  \pi  (the area of half of a circular disk of radius 2) C) 4  \pi  (the area of a circular disk of radius 2) D) 8  \pi  (the area of half of a circular disk of radius 4) E) 16  \pi  (the area of a circular disk of radius 4)

A) π\pi (the area of a quarter of a circular disk of radius 2)
B) 2 π\pi (the area of half of a circular disk of radius 2)
C) 4 π\pi (the area of a circular disk of radius 2)
D) 8 π\pi (the area of half of a circular disk of radius 4)
E) 16 π\pi (the area of a circular disk of radius 4)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
22
Let P denote the partition of the interval [1, 3] into 4 subintervals of equal length <strong>Let P denote the partition of the interval [1, 3] into 4 subintervals of equal length  x = 1/2.Evaluate the upper and lower Riemann sums U(f,P) and L(f,P) for the function f(x) = 4x<sup>2</sup>.</strong> A) U(f,P) = 40, L(f,P) = 30 B) U(f,P) = 41, L(f,P) = 29 C) U(f,P) = 42, L(f,P) = 28 D) U(f,P) = 43, L(f,P) = 27 E) U(f,P) = 44, L(f,P) = 26 x = 1/2.Evaluate the upper and lower Riemann sums U(f,P) and L(f,P) for the function f(x) = 4x2.

A) U(f,P) = 40, L(f,P) = 30
B) U(f,P) = 41, L(f,P) = 29
C) U(f,P) = 42, L(f,P) = 28
D) U(f,P) = 43, L(f,P) = 27
E) U(f,P) = 44, L(f,P) = 26
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
23
Let P denote the partition of the interval [1, 2] into 8 subintervals of equal length <strong>Let P denote the partition of the interval [1, 2] into 8 subintervals of equal length  x = 1/8.Evaluate the upper and lower Riemann sums U(f P) and L(f,P) for the function f(x) = 1/x.Round your answers to 4 decimal places.</strong> A) U(f,P) = 0.7110, L(f,P) = 0.6781 B) U(f,P) = 0.7254, L(f,P) = 0.6629 C) U(f,P) = 0.7302, L(f,P) = 0.6571 D) U(f,P) = 0.7378, L(f,P) = 0.6510 E) U(f,P) = 0.7219, L(f,P) = 0.6683 x = 1/8.Evaluate the upper and lower Riemann sums U(f P) and L(f,P) for the function f(x) = 1/x.Round your answers to 4 decimal places.

A) U(f,P) = 0.7110, L(f,P) = 0.6781
B) U(f,P) = 0.7254, L(f,P) = 0.6629
C) U(f,P) = 0.7302, L(f,P) = 0.6571
D) U(f,P) = 0.7378, L(f,P) = 0.6510
E) U(f,P) = 0.7219, L(f,P) = 0.6683
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
24
Let P denote the partition of the interval [1, 4] into 6 subintervals of equal length <strong>Let P denote the partition of the interval [1, 4] into 6 subintervals of equal length  x = 1/2.Evaluate the upper and lower Riemann sums U(f, P) and L(f,P) for the function f(x) =   .Round your answers to 4 decimal places.</strong> A) U(f,P) = 4.9115, L(f,P) = 4.4115 B) U(f,P) = 4.9135, L(f,P) = 4.4109 C) U(f,P) = 4.9180, L(f,P) = 4.4057 D) U(f,P) = 4.9002, L(f,P) = 4.4250 E) U(f,P) = 4.9183, L(f,P) = 4.4093 x = 1/2.Evaluate the upper and lower Riemann sums U(f, P) and L(f,P) for the function f(x) = <strong>Let P denote the partition of the interval [1, 4] into 6 subintervals of equal length  x = 1/2.Evaluate the upper and lower Riemann sums U(f, P) and L(f,P) for the function f(x) =   .Round your answers to 4 decimal places.</strong> A) U(f,P) = 4.9115, L(f,P) = 4.4115 B) U(f,P) = 4.9135, L(f,P) = 4.4109 C) U(f,P) = 4.9180, L(f,P) = 4.4057 D) U(f,P) = 4.9002, L(f,P) = 4.4250 E) U(f,P) = 4.9183, L(f,P) = 4.4093 .Round your answers to 4 decimal places.

A) U(f,P) = 4.9115, L(f,P) = 4.4115
B) U(f,P) = 4.9135, L(f,P) = 4.4109
C) U(f,P) = 4.9180, L(f,P) = 4.4057
D) U(f,P) = 4.9002, L(f,P) = 4.4250
E) U(f,P) = 4.9183, L(f,P) = 4.4093
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
25
Calculate the upper Riemann sum for f(x) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.

A) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units + 3, area = 12 square units
B) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units + 3, area = 12 square units
C) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units + 3, area = 12 square units
D) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units + 3, area = 12 square units
E) U(f,P) = <strong>Calculate the upper Riemann sum for f(x) =   + 1 corresponding to a partition P of the interval [0, 3] into n equal subintervals of length 3/n. Express the sum in closed form and use it to calculate the area under the graph of f, above the x-axis, from x = 0 to x = 3.</strong> A) U(f,P) =   + 3, area = 12 square units B) U(f,P) =   + 3, area = 12 square units C) U(f,P) =   + 3, area = 12 square units D) U(f,P) =   + 3, area = 12 square units E) U(f,P) =   + 3, area = 12 square units + 3, area = 12 square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
26
Calculate the lower Riemann sum for f(x) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units n <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units = 1 (which can be verified by using l'Hopital's Rule), find the area under y = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units and above the x-axis between x = 0 and x = 1.

A) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units , area = e square units
B) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units , area = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units square units
C) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units , area = e - 1 square units
D) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units , area = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units square units
E) L(f,P) = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units , area = <strong>Calculate the lower Riemann sum for f(x) =   corresponding to a partition P of the interval [0, 1] into n equal subintervals of length 1/n. Given that   n   = 1 (which can be verified by using l'Hopital's Rule), find the area under y =   and above the x-axis between x = 0 and x = 1.</strong> A) L(f,P) =   , area = e square units B) L(f,P) =   , area =   square units C) L(f,P) =   , area = e - 1 square units D) L(f,P) =   , area =   square units E) L(f,P) =   , area =   square units square units
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
27
Express <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.

A) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =
B) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =
C) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =
D) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =
E) <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       dx = <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =       <strong>Express   dx as a limit of Riemann sums corresponding to partitions of [0, 1] into equal subintervals and using the values of f at the midpoints of the subintervals.</strong> A)   dx =       B)   dx =       C)   dx =       D)   dx =       E)   dx =
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
28
Express <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.

A) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . .
B) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . .
C) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . .
D) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . .
E) <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . dx = <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . <strong>Express   dx as a limit of lower Riemann sums corresponding to partitions of[0, 2] into equal subintervals.</strong> A)   dx =     . B)   dx =     . C)   dx =     . D)   dx =     . E)   dx =     . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
29
Write the following limit as a definite integral: . <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)   <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)

A) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)
B) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)
C) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)
D) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)
E) <strong>Write the following limit as a definite integral: .      </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
30
Write the following limit as a definite integral: <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)   <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)

A) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)
B) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)
C) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)
D) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)
E) <strong>Write the following limit as a definite integral:      </strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use the limit definition of definite integral to evaluate <strong>Use the limit definition of definite integral to evaluate   dx.</strong> A) 0 B) -   C)   D) 1 E) -1 dx.

A) 0
B) - <strong>Use the limit definition of definite integral to evaluate   dx.</strong> A) 0 B) -   C)   D) 1 E) -1
C) <strong>Use the limit definition of definite integral to evaluate   dx.</strong> A) 0 B) -   C)   D) 1 E) -1
D) 1
E) -1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
32
Use the limit definition of the definite integral to evaluate <strong>Use the limit definition of the definite integral to evaluate   dx.</strong> A) 10 B) 18 C) 6 D) 30 E) 9 dx.

A) 10
B) 18
C) 6
D) 30
E) 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
33
Write the following limit as a definite integral: <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx

A) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
B) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
C) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
D) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
E) <strong>Write the following limit as a definite integral:    </strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
34
Given that <strong>Given that   and   = -1, find  </strong> A) -3 B) -1 C) 3 D) 1 E) -2 and <strong>Given that   and   = -1, find  </strong> A) -3 B) -1 C) 3 D) 1 E) -2 = -1, find <strong>Given that   and   = -1, find  </strong> A) -3 B) -1 C) 3 D) 1 E) -2

A) -3
B) -1
C) 3
D) 1
E) -2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
35
Suppose that <strong>Suppose that  </strong> A) -5 B) -3 C) -7 D) -1 E) 7

A) -5
B) -3
C) -7
D) -1
E) 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
36
Evaluate <strong>Evaluate   dx.</strong> A) 42 B) 0 C) 21 D) 51 E) 16 dx.

A) 42
B) 0
C) 21
D) 51
E) 16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
37
If f and g are integrable functions on the interval [a, b], then If f and g are integrable functions on the interval [a, b], then   =   .   dx. = If f and g are integrable functions on the interval [a, b], then   =   .   dx. . If f and g are integrable functions on the interval [a, b], then   =   .   dx. dx.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
38
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
39
If f(x) is an even function and g(x) is an odd function ,both of which are integrable over the interval [-a, a], then If f(x) is an even function and g(x) is an odd function ,both of which are integrable over the interval [-a, a], then
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
40
Evaluate <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   (2 - <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -   ) dx by interpreting the integral as representing an area.

A) <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -
B) 4
C) 2
D) <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -
E) - <strong>Evaluate   (2 -   ) dx by interpreting the integral as representing an area.</strong> A)   B) 4 C) 2 D)   E) -
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
41
Evaluate  <strong>Evaluate     dx by interpreting the integral as representing an area.</strong> A) 8  \pi  B) 4  \pi  C) 16  \pi  D) 8 E) 16   <strong>Evaluate     dx by interpreting the integral as representing an area.</strong> A) 8  \pi  B) 4  \pi  C) 16  \pi  D) 8 E) 16  dx by interpreting the integral as representing an area.

A) 8 π\pi
B) 4 π\pi
C) 16 π\pi
D) 8
E) 16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
42
Given that  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)    dx =  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)    , evaluate  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)    dx.

A) π\pi /4
B) π\pi /2
C) π\pi
D) 1/2
E)  <strong>Given that   dx =   , evaluate   dx.</strong> A)  \pi /4 B)   \pi /2 C)   \pi  D) 1/2 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
43
Given the piecewise continuous function f(x) = Given the piecewise continuous function f(x) =   evaluate   by using the properties of definite integrals and interpreting integrals as areas. evaluate Given the piecewise continuous function f(x) =   evaluate   by using the properties of definite integrals and interpreting integrals as areas. by using the properties of definite integrals and interpreting integrals as areas.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
44
If f(x) is an even function integrable on the closed interval [0 , 2a] , a > 0 , then If f(x) is an even function integrable on the closed interval [0 , 2a] , a > 0 , then   =2   . =2 If f(x) is an even function integrable on the closed interval [0 , 2a] , a > 0 , then   =2   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the average value of the function f(x) = sin (x/2) + π\pi on [- π\pi , π\pi ].

A) π\pi
B)  <strong>Find the average value of the function f(x) = sin (x/2) +   \pi  on [-  \pi ,   \pi ].</strong> A)   \pi  B)   C) 2  \pi  D)   E) 2
C) 2 π\pi
D)  <strong>Find the average value of the function f(x) = sin (x/2) +   \pi  on [-  \pi ,   \pi ].</strong> A)   \pi  B)   C) 2  \pi  D)   E) 2
E) 2  <strong>Find the average value of the function f(x) = sin (x/2) +   \pi  on [-  \pi ,   \pi ].</strong> A)   \pi  B)   C) 2  \pi  D)   E) 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
46
The velocity of a particle moving along a straight line at time t is given by v(t) = t2 - 6t + 8 m/s.Find the distance travelled by the particle from t = 0 to t = 3.

A) <strong>The velocity of a particle moving along a straight line at time t is given by v(t) = t<sup>2</sup> - 6t + 8 m/s.Find the distance travelled by the particle from t = 0 to t = 3.</strong> A)   m B) 21 m C) 6 m D) 4 m E) 33 m m
B) 21 m
C) 6 m
D) 4 m
E) 33 m
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
47
What values of a and b, satisfying a < b, maximize the value of  <strong>What values of a and b, satisfying a < b, maximize the value of  </strong> A) a = 0, b = 1 B) a = -1, b = 1 C) a = 0, b = 2 D) a = - \infty , b =  \infty  E) a = -1, b = 0

A) a = 0, b = 1
B) a = -1, b = 1
C) a = 0, b = 2
D) a = - \infty , b = \infty
E) a = -1, b = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
48
What values of a and b, satisfying a < b, maximize the value of  <strong>What values of a and b, satisfying a < b, maximize the value of  </strong> A) a = -2, b = 4 B) a = 0, b = 4 C) a = - \infty , b =  \infty  D) a = -2, b = 0 E) a = 1, b = 3

A) a = -2, b = 4
B) a = 0, b = 4
C) a = - \infty , b = \infty
D) a = -2, b = 0
E) a = 1, b = 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
49
Evaluate the definite integral <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12

A) - <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12
B) <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12
C) <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12
D) - <strong>Evaluate the definite integral  </strong> A) -   B)   C)   D) -   E) -12
E) -12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
50
Compute the definite integral <strong>Compute the definite integral   - 2x + 1)dx.</strong> A) 14 B) 22 C) 21 D) 24 E) 20 - 2x + 1)dx.

A) 14
B) 22
C) 21
D) 24
E) 20
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
51
Compute the integral <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   - x)dx.

A) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   - <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -
B) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   + <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -
C) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   - <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -
D) 4 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   + <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -
E) 2 <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -   - <strong>Compute the integral   - x)dx.</strong> A) 4   -   B) 4   +   C) 4   -   D) 4   +   E) 2   -
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
52
Compute the integral <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)

A) <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)
B) <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)
C) - <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)
D) - <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)
E) <strong>Compute the integral  </strong> A)   B)   C) -   D) -   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
53
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)   dx.

A) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)
B) 1
C) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)
D) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)
E) <strong>Evaluate the integral   dx.</strong> A)   B) 1 C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find <strong>Find   dx.</strong> A)   B)   C)   D)   E)   dx.

A) <strong>Find   dx.</strong> A)   B)   C)   D)   E)
B) <strong>Find   dx.</strong> A)   B)   C)   D)   E)
C) <strong>Find   dx.</strong> A)   B)   C)   D)   E)
D) <strong>Find   dx.</strong> A)   B)   C)   D)   E)
E) <strong>Find   dx.</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
55
Evaluate the integral <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -

A) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -
B) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -
C) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -
D) <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -
E) - <strong>Evaluate the integral  </strong> A)   B)   C)   D)   E) -
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the average value of the function f(x) = <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   + 3 <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   - 2 <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)   - 3x + 1 on the interval [0, 2].

A) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)
B) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)
C) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)
D) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)
E) <strong>Find the average value of the function f(x) =   + 3   - 2   - 3x + 1 on the interval [0, 2].</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the average value of the function f(x) = sin x on [0, 3 π\pi /2].

A)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)
B)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)
C)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)
D)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)
E)  <strong>Find the average value of the function f(x) = sin x on [0, 3  \pi /2].</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
58
Evaluate the definite integral <strong>Evaluate the definite integral   dx.</strong> A) 11.1 B) 9.9 C) 10.1 D) 15 E) -10.1 dx.

A) 11.1
B) 9.9
C) 10.1
D) 15
E) -10.1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
59
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) 4 B) 6 C) 7 D) 5 E) 3 dx.

A) 4
B) 6
C) 7
D) 5
E) 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
60
  dx = 4 dx = 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the average value of the function f(x) =  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)    3x, over the interval [- π\pi /12, π\pi /12].

A)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)
B)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)
C)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)
D)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)
E)  <strong>Find the average value of the function f(x) =   3x, over the interval [-  \pi /12,   \pi /12].</strong> A)   B)   C)   D)   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
62
Let f(t) = Let f(t) =   Evaluate   dt. Evaluate Let f(t) =   Evaluate   dt. dt.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
63
Evaluate the definite integral <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)   dx.

A) - <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)
B) <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)
C) <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)
D) -33
E) <strong>Evaluate the definite integral   dx.</strong> A) -   B)   C)   D) -33 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the derivative of F(x) = <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x

A) 2 ln x
B) 0
C) <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x ln(u)
D) <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x ln x
E) <strong>Find the derivative of F(x) =  </strong> A) 2 ln x B) 0 C)   ln(u) D)   ln x E)   ln x ln x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the derivative of F(x) = <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) dt.

A) 2 <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) )
B) 2 <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) sin ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) )
C) 2 <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) )
D) <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) )
E) <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) cos ( <strong>Find the derivative of F(x) =   dt.</strong> A) 2   cos (   ) B) 2   sin (   ) C) 2   cos (   ) D)   cos (   ) E)   cos (   ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
66
Given that the relation 3 <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) + <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) dt = 3 defines y implicitly as a differentiable function of x, find <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y) .

A) <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y)
B) <strong>Given that the relation 3   +   dt = 3 defines y implicitly as a differentiable function of x, find   .</strong> A)   B)   C) 6x + cos (t) - t sin (t) D) 6x +cos(y) - ysin (y) E) 6x + ycos (y)
C) 6x + cos (t) - t sin (t)
D) 6x +cos(y) - ysin (y)
E) 6x + ycos (y)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
67
Evaluate <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)   <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)

A) - <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)
B) - <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)
C) <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)
D) 1
E) <strong>Evaluate    </strong> A) -   B) -   C)   D) 1 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the point on the graph of the function f(x) = <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)   dt where the graph has a horizontal tangent line.

A) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)
B) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)
C) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)
D) (1, 0)
E) <strong>Find the point on the graph of the function f(x) =   dt where the graph has a horizontal tangent line.</strong> A)   B)   C)   D) (1, 0) E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
69
: <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   is equal to

A) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x
B) <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x   - <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x
C) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x
D) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x
E) 2x <strong>:     is equal to</strong> A) 2x   B)   -   C) 2x   D) 2x   E) 2x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
70
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C + C
B) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C + C
C) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C + C
D) - <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C + C
E) - <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D) -     + C E) -     + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find the inflection point of the function f(x) = <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   dt, where x > 0.

A) (1, 0)
B) (e, <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   )
C) (e, 1)
D) (e, <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)   )
E) <strong>Find the inflection point of the function f(x) =   dt, where x > 0.</strong> A) (1, 0) B) (e,   ) C) (e, 1) D) (e,   ) E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
72
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C dx.

A) ln(3 <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C ) + C
B) ln <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C + C
C) 3ln <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C + C
D) <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C + C
E) <strong>Evaluate the integral   dx.</strong> A) ln(3   ) + C B) ln   + C C) 3ln   + C D)   + C E)   + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
73
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C + C
B) <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C + C
C) - <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C + C
D) - <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C + C
E) <strong>Evaluate the integral   dx.</strong> A)     + C B)   + C C) -     + C D) -   + C E)   + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
74
Evaluate the integral <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)

A) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   - <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)
B) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   + <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)
C) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   - <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)
D) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)   + <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)
E) <strong>Evaluate the integral  </strong> A)   -   B)   +   C)   -   D)   +   E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
75
Evaluate the integral dx. <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C

A) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
B) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
C) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
D) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
E) <strong>Evaluate the integral dx.    </strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
76
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C dx.

A) ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C + 4x + 5) + C
B) 2 ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C + 4x + 5) + C
C) <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C + 4x + 5) + C
D) -2 ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C + 4x + 5) + C
E) - <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C ln( <strong>Evaluate the integral   dx.</strong> A) ln(   + 4x + 5) + C B) 2 ln(   + 4x + 5) + C C)   ln(   + 4x + 5) + C D) -2 ln(   + 4x + 5) + C E) -   ln(   + 4x + 5) + C + 4x + 5) + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
77
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
B) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
C) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
D) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
E) <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate the integral   dx.</strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
78
Evaluate Evaluate   dx. dx.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
79
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C + C
B) -3 <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C + C
C) <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C + C
D) - <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C + C
E) - <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C <strong>Evaluate the integral   dx.</strong> A)     + C B) -3   + C C)     + C D) -     + C E) -     + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
80
Evaluate the integral <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C cos ( <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C ) dx.

A) <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C + C
B) <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C + C
C) - <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C + C
D) - <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C + C
E) <strong>Evaluate the integral   cos (   ) dx.</strong> A)   + C B)   + C C) -   + C D) -   + C E)   + C + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 117 في هذه المجموعة.