Deck 7: Systems of First-Order Linear Equations

ملء الشاشة (f)
exit full mode
سؤال
Into which of the following systems can this homogeneous second-order differential equation be transformed?
<strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> + 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> - 7 u = 0

A) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> - 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px>
B) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> - 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px>
C) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = - <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> - 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px>
D) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = - <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> = 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px> - 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   <div style=padding-top: 35px>
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Into which of the following systems can this homogeneous third-order differential equation be transformed?
 <strong>Into which of the following systems can this homogeneous third-order differential equation be transformed?  </strong> A)   x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}   B)   x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=\frac{10}{5 t} x_{3}+\frac{2}{5 t^{2}} x_{2}+\frac{8}{5 t^{3}} x_{1}   C)   x_{1^{\prime}}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=10 x_{3}+2 x_{2}+8 x_{1}   D)   x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}   <div style=padding-top: 35px>

A) x1=x2,x2=x3,x3=10x32x28x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}
B) x1=x2,x2=x3,x3=105tx3+25t2x2+85t3x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=\frac{10}{5 t} x_{3}+\frac{2}{5 t^{2}} x_{2}+\frac{8}{5 t^{3}} x_{1}
C) x1=x2,x2=x3,x3=10x3+2x2+8x1 x_{1^{\prime}}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=10 x_{3}+2 x_{2}+8 x_{1}
D) x1=x2,x2=x3,x3=105tx325t2x285t3x1 x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}
سؤال
Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:
<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ... <div style=padding-top: 35px>

A)<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ... <div style=padding-top: 35px>
B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ... <div style=padding-top: 35px> .
C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ... <div style=padding-top: 35px> ..
D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/11eec281_8310_7efd_8720_6bc18854d758_TBW1042_11...
سؤال
Consider this system of first-order differential equations:
Consider this system of first-order differential equations:   (i) Transform this system into a second-order differential equation whose solution is X<sub>1</sub> .   (ii) Find the general solution of the differential equation in part (i). (iii) Use your solution in (ii) to now find X<sub>2</sub>.<div style=padding-top: 35px>
(i) Transform this system into a second-order differential equation whose solution is X1 .
Consider this system of first-order differential equations:   (i) Transform this system into a second-order differential equation whose solution is X<sub>1</sub> .   (ii) Find the general solution of the differential equation in part (i). (iii) Use your solution in (ii) to now find X<sub>2</sub>.<div style=padding-top: 35px>
(ii) Find the general solution of the differential equation in part (i).
(iii) Use your solution in (ii) to now find X2.
سؤال
Consider this system of first-order differential equations:
 <strong>Consider this system of first-order differential equations:   Transform this system into a second-order differential equation whose solution is X<sub>2</sub> .</strong> A)   x_{2}^{\prime \prime}+12 x_{2}^{\prime}-45 x_{2}=0   B)   x_{2}^{\prime \prime}-12 x_{2}^{\prime}+45 x_{2}=0   C)   x_{2}^{\prime \prime}-12 x_{2}^{\prime}+2025 x_{2}=0   D)   x_{2}^{\prime \prime}+12 x_{2}^{\prime}-2025 x_{2}=0   <div style=padding-top: 35px>
Transform this system into a second-order differential equation whose solution is X2 .

A) x2+12x245x2=0 x_{2}^{\prime \prime}+12 x_{2}^{\prime}-45 x_{2}=0
B) x212x2+45x2=0 x_{2}^{\prime \prime}-12 x_{2}^{\prime}+45 x_{2}=0
C) x212x2+2025x2=0 x_{2}^{\prime \prime}-12 x_{2}^{\prime}+2025 x_{2}=0
D) x2+12x22025x2=0 x_{2}^{\prime \prime}+12 x_{2}^{\prime}-2025 x_{2}=0
سؤال
Compute:  <strong>Compute:  </strong> A)   \left[\begin{array}{ll}0 & -4 \\ 12 & -4\end{array}\right]   B)   \left[\begin{array}{ll}6 & 4 \\ 2 & 6\end{array}\right]   C)   \left[\begin{array}{ll}0 & 4 \\ 12 & 6\end{array}\right]   D)   \left[\begin{array}{ll}-12 & -8 \\ -4 & -12\end{array}\right]   <div style=padding-top: 35px>

A) [04124] \left[\begin{array}{ll}0 & -4 \\ 12 & -4\end{array}\right]
B) [6426] \left[\begin{array}{ll}6 & 4 \\ 2 & 6\end{array}\right]
C) [04126] \left[\begin{array}{ll}0 & 4 \\ 12 & 6\end{array}\right]
D) [128412] \left[\begin{array}{ll}-12 & -8 \\ -4 & -12\end{array}\right]
سؤال
Compute:  <strong>Compute:  </strong> A)   \left[\begin{array}{ll}3 & -4 \\ 7 & -9 \\ -1 & -2\end{array}\right]   B)   \left[\begin{array}{cc}9 & 0 \\ 19 & -19 \\ -3 & -2\end{array}\right]   C)   \left[\begin{array}{ll}-3 & -8 \\ -5 & 1 \\ 1 & -2\end{array}\right]   D)   \left[\begin{array}{ll}-9 & -12 \\ -17 & 11 \\ 3 & -2\end{array}\right]   <div style=padding-top: 35px>

A) [347912] \left[\begin{array}{ll}3 & -4 \\ 7 & -9 \\ -1 & -2\end{array}\right]
B) [90191932] \left[\begin{array}{cc}9 & 0 \\ 19 & -19 \\ -3 & -2\end{array}\right]
C) [385112] \left[\begin{array}{ll}-3 & -8 \\ -5 & 1 \\ 1 & -2\end{array}\right]
D) [912171132] \left[\begin{array}{ll}-9 & -12 \\ -17 & 11 \\ 3 & -2\end{array}\right]
سؤال
Consider these matrices:
<strong>Consider these matrices:   Which of the following matrices are defined? Select all that apply.</strong> A) AB B)   C) BA D) AC E) DC F) BD G) A + B <div style=padding-top: 35px>
Which of the following matrices are defined? Select all that apply.

A) AB
B) <strong>Consider these matrices:   Which of the following matrices are defined? Select all that apply.</strong> A) AB B)   C) BA D) AC E) DC F) BD G) A + B <div style=padding-top: 35px>
C) BA
D) AC
E) DC
F) BD
G) A + B
سؤال
Consider the matrix  <strong>Consider the matrix  </strong> A)   \left[\begin{array}{lllll}24 & -6 & -3 & -27 & 21 \\ 9 & -15 & -15 & 6 & 15\end{array}\right]   B)   \left[\begin{array}{cc}8 & 3 \\ -2 & -5 \\ -1 & -5 \\ -9 & 2 \\ 7 & 5\end{array}\right]   C)   \left[\begin{array}{ll}24 & 9 \\ -6 & -15 \\ -3 & -15 \\ -27 & 6 \\ 21 & 15\end{array}\right]   D)   \left[\begin{array}{ll}21 & 15 \\ -27 & 6 \\ -3 & -15 \\ -6 & -15 \\ 24 & 9\end{array}\right]   E)   \left[\begin{array}{ll}9 & 24 \\ -15 & -6 \\ -15 & -3 \\ 6 & -27 \\ 15 & 21\end{array}\right]   <div style=padding-top: 35px>

A) [2463272191515615] \left[\begin{array}{lllll}24 & -6 & -3 & -27 & 21 \\ 9 & -15 & -15 & 6 & 15\end{array}\right]
B) [8325159275] \left[\begin{array}{cc}8 & 3 \\ -2 & -5 \\ -1 & -5 \\ -9 & 2 \\ 7 & 5\end{array}\right]
C) [2496153152762115] \left[\begin{array}{ll}24 & 9 \\ -6 & -15 \\ -3 & -15 \\ -27 & 6 \\ 21 & 15\end{array}\right]
D) [2115276315615249] \left[\begin{array}{ll}21 & 15 \\ -27 & 6 \\ -3 & -15 \\ -6 & -15 \\ 24 & 9\end{array}\right]
E) [9241561536271521] \left[\begin{array}{ll}9 & 24 \\ -15 & -6 \\ -15 & -3 \\ 6 & -27 \\ 15 & 21\end{array}\right]
سؤال
If A is an 2 × 4 matrix and B is an 4 × 9 matrix, then:

A) BA is defined and has order 2 × 9.
B) BA is defined and has order 9 × 2.
C) AB is defined and has order 9 × 2.
D) AB is defined and has order 2 × 9.
E) Neither AB nor BA is defined.
سؤال
Consider these matrices:
D = Consider these matrices: D =   E =   Compute  <div style=padding-top: 35px> E = Consider these matrices: D =   E =   Compute  <div style=padding-top: 35px>
Compute Consider these matrices: D =   E =   Compute  <div style=padding-top: 35px>
سؤال
Consider these matrices:
Consider these matrices:  <div style=padding-top: 35px>
سؤال
Consider these matrices:
Consider these matrices:   Compute ED<div style=padding-top: 35px>
Compute ED
سؤال
Consider the matrix function
A(t) =  <strong>Consider the matrix function A(t) =   Compute   (t).</strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \left[\begin{array}{l}2 \cos (2 t)-5 \sin (5 t) \\ -5 \sin (5 t)-2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ll}\cos (2 t) & -\sin (5 t) \\ -\sin (5 t) & -\cos (2 t)\end{array}\right]   D)   \left[\begin{array}{ll}-\cos (2 t) & \sin (5 t) \\ \sin (5 t) & \cos (2 t)\end{array}\right]   <div style=padding-top: 35px>
Compute  <strong>Consider the matrix function A(t) =   Compute   (t).</strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \left[\begin{array}{l}2 \cos (2 t)-5 \sin (5 t) \\ -5 \sin (5 t)-2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ll}\cos (2 t) & -\sin (5 t) \\ -\sin (5 t) & -\cos (2 t)\end{array}\right]   D)   \left[\begin{array}{ll}-\cos (2 t) & \sin (5 t) \\ \sin (5 t) & \cos (2 t)\end{array}\right]   <div style=padding-top: 35px>  (t).

A) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
B) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{l}2 \cos (2 t)-5 \sin (5 t) \\ -5 \sin (5 t)-2 \cos (2 t)\end{array}\right]
C) [cos(2t)sin(5t)sin(5t)cos(2t)] \left[\begin{array}{ll}\cos (2 t) & -\sin (5 t) \\ -\sin (5 t) & -\cos (2 t)\end{array}\right]
D) [cos(2t)sin(5t)sin(5t)cos(2t)] \left[\begin{array}{ll}-\cos (2 t) & \sin (5 t) \\ \sin (5 t) & \cos (2 t)\end{array}\right]
سؤال
Consider the matrix function A(t)  <strong>Consider the matrix function A(t)   Compute  </strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ccc}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   D)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   <div style=padding-top: 35px>  Compute  <strong>Consider the matrix function A(t)   Compute  </strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ccc}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   D)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   <div style=padding-top: 35px>

A) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
B) 14cos2(2t)+25sin2(5t)[2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
C) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{ccc}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
D) 14cos2(2t)+25sin2(5t)[2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
سؤال
Consider the matrix function Consider the matrix function   . Compute  <div style=padding-top: 35px> .
Compute Consider the matrix function   . Compute  <div style=padding-top: 35px>
سؤال
Consider the matrix Consider the matrix   Compute B<sup>-1</sup><div style=padding-top: 35px> Compute B-1
سؤال
Consider the following system of linear equations:
Consider the following system of linear equations:   What is the augmented matrix for this system?<div style=padding-top: 35px>
What is the augmented matrix for this system?
سؤال
Consider the following system of linear equations:
Consider the following system of linear equations:   Reduce the augmented matrix of this system to echelon form.<div style=padding-top: 35px>
Reduce the augmented matrix of this system to echelon form.
سؤال
Consider the following system of linear equations:
Consider the following system of linear equations:   The system is inconsistent.<div style=padding-top: 35px>
The system is inconsistent.
سؤال
Consider the following system of linear equations:
Consider the following system of linear equations:   Find a condition involving   that ensures the system has infinitely many solutions.<div style=padding-top: 35px>
Find a condition involving Consider the following system of linear equations:   Find a condition involving   that ensures the system has infinitely many solutions.<div style=padding-top: 35px> that ensures the system has infinitely many solutions.
سؤال
Consider this set of vectors: <strong>Consider this set of vectors:   Which of these statements is true?</strong> A) The vectors in this set are linearly independent. B) The vectors in this set are linearly dependent. C) The system Ax = 0, where A =   , has only the solution x = 0. D) The system Ax = 0, where A =   , is inconsistent. <div style=padding-top: 35px> Which of these statements is true?

A) The vectors in this set are linearly independent.
B) The vectors in this set are linearly dependent.
C) The system Ax = 0, where A = <strong>Consider this set of vectors:   Which of these statements is true?</strong> A) The vectors in this set are linearly independent. B) The vectors in this set are linearly dependent. C) The system Ax = 0, where A =   , has only the solution x = 0. D) The system Ax = 0, where A =   , is inconsistent. <div style=padding-top: 35px> , has only the solution x = 0.
D) The system Ax = 0, where A = <strong>Consider this set of vectors:   Which of these statements is true?</strong> A) The vectors in this set are linearly independent. B) The vectors in this set are linearly dependent. C) The system Ax = 0, where A =   , has only the solution x = 0. D) The system Ax = 0, where A =   , is inconsistent. <div style=padding-top: 35px> , is inconsistent.
سؤال
Are the vectors u1 , u2 , and u3 linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, and C for which A u1 + Bu2 +Cu3 = 0
that demonstrates this fact.
Are the vectors u<sub>1</sub> , u<sub>2</sub> , and u<sub>3</sub> linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, and C for which A u<sub>1</sub> + Bu<sub>2</sub> +Cu<sub>3</sub> = 0 that demonstrates this fact.  <div style=padding-top: 35px>
سؤال
Are the vectors u1 , u2 , u3 , and u4 linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, C, and D for which A u1 + Bu2 +Cu3 +Du3 = 0 for which that demonstrates this fact.
Are the vectors u<sub>1</sub> , u<sub>2</sub> , u<sub>3</sub> , and u<sub>4</sub> linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, C, and D for which A u<sub>1</sub> + Bu<sub>2</sub> +Cu<sub>3</sub> +Du<sub>3</sub> = 0 for which that demonstrates this fact.  <div style=padding-top: 35px>
سؤال
If λ\lambda = 0 is an eigenvalue of a 5 × 5 matrix A, then A is not invertible.
سؤال
Given that λ\lambda = 1 is an eigenvalue of the matrix B =  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. <div style=padding-top: 35px>  , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue λ\lambda = 1?

A)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. <div style=padding-top: 35px>  is the only eigenvector of B associated with the eigenvalue λ\lambda = 1.
B)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. <div style=padding-top: 35px>  is an eigenvector of B, for any nonzero real constant α\alpha , associated with the eigenvalue λ\lambda = 1.
C)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. <div style=padding-top: 35px>  is an eigenvector of B, for any nonzero real constant α\alpha , associated with the eigenvalue λ\lambda = 1.
D)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. <div style=padding-top: 35px>  is the only eigenvector of B associated with the eigenvalue λ\lambda = 1.
سؤال
Consider the matrix  <strong>Consider the matrix   Which of these is a complete list of eigenvalue-eigenvector pairs of A?</strong> A)   \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   B)   \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right), \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)   C)   \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   D)   \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)   <div style=padding-top: 35px>
Which of these is a complete list of eigenvalue-eigenvector pairs of A?

A) λ1=4,ξ1=(31)λ2=4,ξ2=(11) \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) λ1=4,ξ1=(13),λ2=4,ξ2=(11) \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right), \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) λ1=2,ξ1=(31)λ2=2,ξ2=(11) \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) λ1=2,ξ1=(13)λ2=2,ξ2=(11) \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
سؤال
Consider a system of homogeneous first-order linear differential equations of the form  <strong>Consider a system of homogeneous first-order linear differential equations of the form   = Ax, where A is a 2 × 2 constant matrix.   are solutions of this system, which of the following must also be solutions of this system? Select all that apply.</strong> A)   -2 \mathbf{x}_{1}(t)   B)   -7.2 \mathbf{x}_{1}(t)+4.4 \mathbf{x}_{2}(t)   C)   \mathbf{x}_{1}(t) \cdot \mathbf{x}_{2}(t)   D)   -6.6 t \mathbf{x}_{1}(t)+5.8 t x_{2}(t)   E)   \left.\left(7.2 \mathbf{x}_{1}(t)+5.4 \mathbf{x}_{2}(t)\right)-8\left(\mathbf{x}_{1}(t)-\mathbf{x}_{2} t\right)\right)   F)   2 \mathbf{x}_{1}(t)-3.6 \mathbf{x}_{2}(t)-4.6   <div style=padding-top: 35px>  = Ax, where A is a 2 × 2 constant matrix.  <strong>Consider a system of homogeneous first-order linear differential equations of the form   = Ax, where A is a 2 × 2 constant matrix.   are solutions of this system, which of the following must also be solutions of this system? Select all that apply.</strong> A)   -2 \mathbf{x}_{1}(t)   B)   -7.2 \mathbf{x}_{1}(t)+4.4 \mathbf{x}_{2}(t)   C)   \mathbf{x}_{1}(t) \cdot \mathbf{x}_{2}(t)   D)   -6.6 t \mathbf{x}_{1}(t)+5.8 t x_{2}(t)   E)   \left.\left(7.2 \mathbf{x}_{1}(t)+5.4 \mathbf{x}_{2}(t)\right)-8\left(\mathbf{x}_{1}(t)-\mathbf{x}_{2} t\right)\right)   F)   2 \mathbf{x}_{1}(t)-3.6 \mathbf{x}_{2}(t)-4.6   <div style=padding-top: 35px>  are solutions of this system, which of the following must also be solutions of this system? Select all that apply.

A) 2x1(t) -2 \mathbf{x}_{1}(t)
B) 7.2x1(t)+4.4x2(t) -7.2 \mathbf{x}_{1}(t)+4.4 \mathbf{x}_{2}(t)
C) x1(t)x2(t) \mathbf{x}_{1}(t) \cdot \mathbf{x}_{2}(t)
D) 6.6tx1(t)+5.8tx2(t) -6.6 t \mathbf{x}_{1}(t)+5.8 t x_{2}(t)
E) (7.2x1(t)+5.4x2(t))8(x1(t)x2t)) \left.\left(7.2 \mathbf{x}_{1}(t)+5.4 \mathbf{x}_{2}(t)\right)-8\left(\mathbf{x}_{1}(t)-\mathbf{x}_{2} t\right)\right)
F) 2x1(t)3.6x2(t)4.6 2 \mathbf{x}_{1}(t)-3.6 \mathbf{x}_{2}(t)-4.6
سؤال
Consider the first-order homogeneous system of linear differential equations <strong>Consider the first-order homogeneous system of linear differential equations   and the following three vector functions:   Which of the following statements are true? Select all that apply.</strong> A) {X<sub>1</sub>,X<sub>2</sub> ,X<sub>3</sub> } is a fundamental set of solutions for this system. B) W [X<sub>1</sub>(t), X<sub>2</sub>(t)] ? 0 for every real number t. C) X<sub>1</sub> and X<sub>2</sub> are linearly dependent. D) 6X<sub>1</sub> + 4X<sub>2</sub> + 3X<sub>3</sub> is a solution of this system. E) {X<sub>1</sub>, X<sub>2</sub>} is a fundamental set of solutions for this system. <div style=padding-top: 35px> and the following three vector functions:
<strong>Consider the first-order homogeneous system of linear differential equations   and the following three vector functions:   Which of the following statements are true? Select all that apply.</strong> A) {X<sub>1</sub>,X<sub>2</sub> ,X<sub>3</sub> } is a fundamental set of solutions for this system. B) W [X<sub>1</sub>(t), X<sub>2</sub>(t)] ? 0 for every real number t. C) X<sub>1</sub> and X<sub>2</sub> are linearly dependent. D) 6X<sub>1</sub> + 4X<sub>2</sub> + 3X<sub>3</sub> is a solution of this system. E) {X<sub>1</sub>, X<sub>2</sub>} is a fundamental set of solutions for this system. <div style=padding-top: 35px>
Which of the following statements are true? Select all that apply.

A) {X1,X2 ,X3 } is a fundamental set of solutions for this system.
B) W [X1(t), X2(t)] ? 0 for every real number t.
C) X1 and X2 are linearly dependent.
D) 6X1 + 4X2 + 3X3 is a solution of this system.
E) {X1, X2} is a fundamental set of solutions for this system.
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px>
And the following four vector functions:
<strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px>
Which of the following statements are true? Select all that apply.

A) <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> is a solution of this system, for all real numbers C1 ,C2 ,C3 , and C4 .
B) W [ <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> (t), <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> (t)] ? 0 for every real number t.
C) 5.5 <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> + 4.5 <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> + C is a solution of this system, for any real number C.
D) 4 <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> is a solution of this system.
E) { <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> , <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. <div style=padding-top: 35px> } is a fundamental set of solutions for this system.
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   =   x Determine the eigenvalue-eigenvector pairs of this system.<div style=padding-top: 35px> = Consider the first-order homogeneous system of linear differential equations   =   x Determine the eigenvalue-eigenvector pairs of this system.<div style=padding-top: 35px> x
Determine the eigenvalue-eigenvector pairs of this system.
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?<div style=padding-top: 35px>
What is the general solution of this system?
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system?<div style=padding-top: 35px>
If the system were equipped with the initial condition Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system?<div style=padding-top: 35px> what is the particular solution of the system?
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   =   x Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=9, \xi=\left(\begin{array}{l}1 \\ 1\end{array}\right)   B)   \lambda=-9, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   C)   \lambda=4, \xi=\left(\begin{array}{l}-9 \\ 4\end{array}\right)   D)   \lambda=0, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   E)   \lambda=-4, \xi=\left(\begin{array}{l}9 \\ -4\end{array}\right)   <div style=padding-top: 35px>  =  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=9, \xi=\left(\begin{array}{l}1 \\ 1\end{array}\right)   B)   \lambda=-9, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   C)   \lambda=4, \xi=\left(\begin{array}{l}-9 \\ 4\end{array}\right)   D)   \lambda=0, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   E)   \lambda=-4, \xi=\left(\begin{array}{l}9 \\ -4\end{array}\right)   <div style=padding-top: 35px>  x
Select all of the correct eigenvalue-eigenvector pairs from the following choices.

A) λ=9,ξ=(11) \lambda=9, \xi=\left(\begin{array}{l}1 \\ 1\end{array}\right)
B) λ=9,ξ=(11) \lambda=-9, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
C) λ=4,ξ=(94) \lambda=4, \xi=\left(\begin{array}{l}-9 \\ 4\end{array}\right)
D) λ=0,ξ=(10) \lambda=0, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)
E) λ=4,ξ=(94) \lambda=-4, \xi=\left(\begin{array}{l}9 \\ -4\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}   B)   x(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right)+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}   <div style=padding-top: 35px>
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.

A) x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}
B) x(t)=C1(11)e7t+C2(79)e9t x(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
C) x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}
D) x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
E) x(t)=C1(10)+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right)+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The origin is a saddle point.<div style=padding-top: 35px>
The origin is a saddle point.
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)   B)   \lambda=-9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)   C)   \lambda=-9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)   D)   \lambda=9, \xi=\left(\begin{array}{l}3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)   E)   \lambda=9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)   F)   \lambda=-9, \xi=\left(\begin{array}{c}-3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)   <div style=padding-top: 35px>
Select all of the correct eigenvalue-eigenvector pairs from the following choices.

A) λ=9,ξ=(99) \lambda=9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)
B) λ=9,ξ=(99) \lambda=-9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)
C) λ=9,ξ=(99) \lambda=-9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)
D) λ=9,ξ=(3i3i) \lambda=9, \xi=\left(\begin{array}{l}3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)
E) λ=9,ξ=(99) \lambda=9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)
F) λ=9,ξ=(3i3i) \lambda=-9, \xi=\left(\begin{array}{c}-3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}   <div style=padding-top: 35px>  =  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}   <div style=padding-top: 35px>  x
Which of these is the genreal solution of the system? Here,  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}   <div style=padding-top: 35px>  and  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}   <div style=padding-top: 35px>  are arbitrary real constants.

A) x(t)=C1(2516)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}
B) x(t)=C1(1625)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}
C) x(t)=C1(5i4i)e20t+C2(5i4i)e20t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}
D) x(t)=C1(1625)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}
E) x(t)=C1(5i4i)e20t+C2(5i4i)e20t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The origin is a node.<div style=padding-top: 35px>
The origin is a node.
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=3, \xi=\left(\begin{array}{c}0 \\ -1\end{array}\right)   B)  \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)   C)  \lambda=8, \xi=\left(\begin{array}{l}10 \\ 5\end{array}\right)   D)   \lambda=8, \xi=\left(\begin{array}{l}10 \\ -5\end{array}\right)   E)   \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   F)  \lambda=8, \xi=\left(\begin{array}{c}-5 \\ 10\end{array}\right)   <div style=padding-top: 35px>
Select all of the correct eigenvalue-eigenvector pairs from the following choices.

A) λ=3,ξ=(01) \lambda=3, \xi=\left(\begin{array}{c}0 \\ -1\end{array}\right)
B) λ=3,ξ=(01) \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)
C) λ=8,ξ=(105) \lambda=8, \xi=\left(\begin{array}{l}10 \\ 5\end{array}\right)
D) λ=8,ξ=(105) \lambda=8, \xi=\left(\begin{array}{l}10 \\ -5\end{array}\right)
E) λ=3,ξ=(10) \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)
F) λ=8,ξ=(510) \lambda=8, \xi=\left(\begin{array}{c}-5 \\ 10\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}0 \\ -1\end{array}\right) e^{5 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 0\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}   <div style=padding-top: 35px>
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.

A) x(t)=C1(310)e2t+C2(01)e5t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}
B) x(t)=C1(310)e2t+C2(01)e5t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}0 \\ -1\end{array}\right) e^{5 t}
C) x(t)=C1(310)e2t+C2(103)e2t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}
D) x(t)=C1(10)e5t+C2(310)e2t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 0\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}
E) x(t)=C1(01)e5t+C2(103)e2t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The origin is a node.<div style=padding-top: 35px>
The origin is a node.
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select all of the eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=3, \xi=\left(\begin{array}{c}-1 \\ 0\end{array}\right)   B)   \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   C)   \lambda=0, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   D)   \lambda=0, \xi=\left(\begin{array}{c}1 \\ -1\end{array}\right)   E)   \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)   F)   \lambda=3, \xi=\left(\begin{array}{l}0 \\ -1\end{array}\right)   <div style=padding-top: 35px>
Select all of the eigenvalue-eigenvector pairs from the following choices.

A) λ=3,ξ=(10) \lambda=3, \xi=\left(\begin{array}{c}-1 \\ 0\end{array}\right)
B) λ=3,ξ=(10) \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)
C) λ=0,ξ=(11) \lambda=0, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) λ=0,ξ=(11) \lambda=0, \xi=\left(\begin{array}{c}1 \\ -1\end{array}\right)
E) λ=3,ξ=(01) \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)
F) λ=3,ξ=(01) \lambda=3, \xi=\left(\begin{array}{l}0 \\ -1\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)   B)   x(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1\end{array}\right)   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)   <div style=padding-top: 35px>
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.

A) x(t)=C1(10)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) x(t)=C1(10)e2t+C2(11) x(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) x(t)=C1(10)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) x(t)=C1(01)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 2 \\ -4\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1 \\ -1\end{array}\right)+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   D)   x(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)   <div style=padding-top: 35px>
What is the general solution of this system?

A) x(t)=C1(124)e2t+C2(111)et+C3(111)et \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 2 \\ -4\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
B) x(t)=C1(124)e2t+C2(111)et+C3(111)et \mathbf{x}(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
C) x(t)=C1(111)+C2(111)et+C3(111)et \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1 \\ -1\end{array}\right)+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
D) x(t)=C1(124)e2t+C2(211)et+C3(111)et x(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
E) x(t)=C1(124)e2t+C2(111)et+C3(111) \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system?<div style=padding-top: 35px>
If the system were equipped with the initial condition Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system?<div style=padding-top: 35px> what is the particular solution of the system?
سؤال
Suppose Tank A contains 50 gallons of water in which 30 ounces of salt are dissolved, and tank B contains 35 gallons of water in which 60 ounces of salt are dissolved. The following conditions also hold:
• Water with salt concentration of 1.6 ounces per gallon flows into Tank A at a rate of 1.8 gallons per minute.
• Water with salt concentration of 3.1 ounces per gallon flows into Tank B at a rate of 1.3 gallons per minute.
• Water flows from Tank A to Tank B at a rate of 1.8 gallons per minute.
• Water flows from Tank B to Tank A at a rate of 0.65 gallons per minute.
• Water drains from Tank B at a rate of 0.65 gallons per minute.
Set up a system of equations governing the amount of salt in Tank A,X A (t), and the amount of salt in tank B, X B (t), at any time t.
سؤال
Each of the following is the general solution of a system of differential equations. For which one(s) is the origin a node? Select all that apply.
<strong>Each of the following is the general solution of a system of differential equations. For which one(s) is the origin a node? Select all that apply.  </strong> A) I B) II C) III D) None of them <div style=padding-top: 35px>

A) I
B) II
C) III
D) None of them
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   Determine a fundamental set of solutions for this system.<div style=padding-top: 35px>
Determine a fundamental set of solutions for this system.
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?<div style=padding-top: 35px>
What is the general solution of this system?
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -8 B) 8 C) 0 D) 8i E) -8i F) 64 G) -64 <div style=padding-top: 35px> = <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -8 B) 8 C) 0 D) 8i E) -8i F) 64 G) -64 <div style=padding-top: 35px> x
Which of these are eigenvalues for this system? Select all that apply.

A) -8
B) 8
C) 0
D) 8i
E) -8i
F) 64
G) -64
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is a fundamental set of solutions for this system?</strong> A)   \left\{\begin{array}{ll}-\sin (6 t) & \cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   B)   \left\{\begin{array}{ll}\sin (6 t) & -\cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   C)   \left\{\begin{array}{ll}\sin (36 t) & -\cos (36 t) \\ \cos (36 t) & \sin (36 t)\end{array}\right\}   D)   \left\{\begin{array}{ll}e^{6 t} & -e^{-6 t} \\ e^{6 t} & e^{-6 t}\end{array}\right\}   E)   \left\{\begin{array}{ll}e^{6 t} & e^{-6 t} \\ -e^{6 t}, & e^{-6 t}\end{array}\right\}   <div style=padding-top: 35px>  =  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is a fundamental set of solutions for this system?</strong> A)   \left\{\begin{array}{ll}-\sin (6 t) & \cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   B)   \left\{\begin{array}{ll}\sin (6 t) & -\cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   C)   \left\{\begin{array}{ll}\sin (36 t) & -\cos (36 t) \\ \cos (36 t) & \sin (36 t)\end{array}\right\}   D)   \left\{\begin{array}{ll}e^{6 t} & -e^{-6 t} \\ e^{6 t} & e^{-6 t}\end{array}\right\}   E)   \left\{\begin{array}{ll}e^{6 t} & e^{-6 t} \\ -e^{6 t}, & e^{-6 t}\end{array}\right\}   <div style=padding-top: 35px>  x
Which of these is a fundamental set of solutions for this system?

A) {sin(6t)cos(6t)cos(6t)sin(6t)} \left\{\begin{array}{ll}-\sin (6 t) & \cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}
B) {sin(6t)cos(6t)cos(6t)sin(6t)} \left\{\begin{array}{ll}\sin (6 t) & -\cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}
C) {sin(36t)cos(36t)cos(36t)sin(36t)} \left\{\begin{array}{ll}\sin (36 t) & -\cos (36 t) \\ \cos (36 t) & \sin (36 t)\end{array}\right\}
D) {e6te6te6te6t} \left\{\begin{array}{ll}e^{6 t} & -e^{-6 t} \\ e^{6 t} & e^{-6 t}\end{array}\right\}
E) {e6te6te6t,e6t} \left\{\begin{array}{ll}e^{6 t} & e^{-6 t} \\ -e^{6 t}, & e^{-6 t}\end{array}\right\}
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is an accurate description of the solution trajectories of the phase portrait for this system?</strong> A) The trajectories spiral towards the origin as t  \rightarrow\infty . B) The trajectories are concentric circles centered at the origin. C) The trajectories spiral away from the origin as t  \rightarrow\infty . D) The trajectories are line segments that approach the origin as t  \rightarrow\infty . E) The origin is a saddle point. <div style=padding-top: 35px>
Which of these is an accurate description of the solution trajectories of the phase portrait for this system?

A) The trajectories spiral towards the origin as t \rightarrow\infty .
B) The trajectories are concentric circles centered at the origin.
C) The trajectories spiral away from the origin as t \rightarrow\infty .
D) The trajectories are line segments that approach the origin as t \rightarrow\infty .
E) The origin is a saddle point.
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Which of these are eigenvalues for this system? Select all that apply.</strong> A) 10 B) 4 C) -4i D) 10 + 4i E) 4i F) 10 - 4i G) 4 + 10i H) 4 - 10i <div style=padding-top: 35px>
Which of these are eigenvalues for this system? Select all that apply.

A) 10
B) 4
C) -4i
D) 10 + 4i
E) 4i
F) 10 - 4i
G) 4 + 10i
H) 4 - 10i
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   <div style=padding-top: 35px>
What is the general solution of this system? Here,  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   <div style=padding-top: 35px>  and  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   <div style=padding-top: 35px>  are arbitrary real constants.

A) x(t)=C1e3t(sin(8t)cos(8t))+C2e3t[cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)
B) x(t)=C1e3t(sin(8t)cos(8t))+C2e3t(cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)
C) x(t)=C1e8t(sin(3t)cos(3t)]+C2e8t(cos(3t)sin(3t)) \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)
D) x(t)=C1e8t(sin(3t)cos(3t))+C2e8t{cos(3t)sin(3t)) \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   All solution trajectories spiral towards the origin as t  \rightarrow\infty .<div style=padding-top: 35px>
All solution trajectories spiral towards the origin as t \rightarrow\infty .
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -4 + 7i B) 7 C) -7i D) -4 E) 7i F) 7 + 4i G) 7 - 4i H) -4 - 7i <div style=padding-top: 35px> = <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -4 + 7i B) 7 C) -7i D) -4 E) 7i F) 7 + 4i G) 7 - 4i H) -4 - 7i <div style=padding-top: 35px> x
Which of these are eigenvalues for this system? Select all that apply.

A) -4 + 7i
B) 7
C) -7i
D) -4
E) 7i
F) 7 + 4i
G) 7 - 4i
H) -4 - 7i
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   C)  \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   <div style=padding-top: 35px>
What is the general solution of this system? Here,  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   C)  \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   <div style=padding-top: 35px>  and  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   C)  \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   <div style=padding-top: 35px>  are arbitrary real constants.

A) x(t)=C1e2t[sin(8t)cos(8t))+C2e2t[cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)
B) x(t)=C1e8t(sin(2t)cos(2t))+C2e8t(cos(2t)sin(2t)) \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)
C) x(t)=C1e8t[sin(2t)cos(2t)]+C2e8t[cos(2t)sin(2t)) \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)
D) x(t)=C1e2t(sin(8t)cos(8t))+C2e2t[cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of the following is an accurate statement regarding the behavior of the solution trajectories of this system as t  \rightarrow\infty ?</strong> A) All trajectories spiral towards the origin as t \rightarrow\infty . B) All trajectories spiral away from the origin as t   \rightarrow\infty . C) The trajectories are concentric circles centered at the origin. D) The trajectories are line segments that approach the origin as t  \rightarrow\infty . <div style=padding-top: 35px>
Which of the following is an accurate statement regarding the behavior of the solution trajectories of this system as t \rightarrow\infty ?

A) All trajectories spiral towards the origin as t \rightarrow\infty .
B) All trajectories spiral away from the origin as t \rightarrow\infty .
C) The trajectories are concentric circles centered at the origin.
D) The trajectories are line segments that approach the origin as t \rightarrow\infty .
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Which of these are eigenvalues for this system? Select all that apply.</strong> A) 0 B) -16 C) 4i D) -4i E) -4 F) 4 G) 16 <div style=padding-top: 35px>
Which of these are eigenvalues for this system? Select all that apply.

A) 0
B) -16
C) 4i
D) -4i
E) -4
F) 4
G) 16
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select the vectors from this list that, together, constitute a fundamental set of solutions for this system.</strong> A)   \left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)   B)   \left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)   C)   \left[\begin{array}{l}-\cos (6 t) \\ \sin (6 t) \\ \cos (6 t)\end{array}\right)   D)   \left(\begin{array}{l}\cos (6 t) \\ \sin (6 t) \\ -\cos (6 t)\end{array}\right)   E)   \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\cos (6 t)\end{array}\right)   F)   \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\sin (6 t)\end{array}\right)   G)   \left[\begin{array}{l}-\sin (6 t) \\ \cos (6 t) \\ \sin (6 t)\end{array}\right)   <div style=padding-top: 35px>
Select the vectors from this list that, together, constitute a fundamental set of solutions for this system.

A) (010) \left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)
B) (100) \left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)
C) [cos(6t)sin(6t)cos(6t)) \left[\begin{array}{l}-\cos (6 t) \\ \sin (6 t) \\ \cos (6 t)\end{array}\right)
D) (cos(6t)sin(6t)cos(6t)) \left(\begin{array}{l}\cos (6 t) \\ \sin (6 t) \\ -\cos (6 t)\end{array}\right)
E) (sin(6t)cos(6t)cos(6t)) \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\cos (6 t)\end{array}\right)
F) (sin(6t)cos(6t)sin(6t)) \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\sin (6 t)\end{array}\right)
G) [sin(6t)cos(6t)sin(6t)) \left[\begin{array}{l}-\sin (6 t) \\ \cos (6 t) \\ \sin (6 t)\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Determine the eigenvalues for this system and describe the behavior of the solution trajectories as t  \rightarrow\infty .</strong> A)  \lambda=1 \pm i \sqrt{77}  ; all solution trajectories spiral toward the origin as   t \rightarrow \infty  . B)   \lambda=1 \pm i \sqrt{77}  ; all solution trajectories spiral away from the origin as   t \rightarrow \infty  . C)   \lambda=1 \pm i \sqrt{77} ;   the origin is a saddle. D)   \lambda=-1 \pm i \sqrt{77}  ; all solution trajectories spiral toward the origin as   t \rightarrow \infty  . E)   \lambda=-1 \pm i \sqrt{77}  ; all solution trajectories spiral away from the origin as   t \rightarrow \infty  . <div style=padding-top: 35px>
Determine the eigenvalues for this system and describe the behavior of the solution trajectories as t \rightarrow\infty .

A) λ=1±i77 \lambda=1 \pm i \sqrt{77} ; all solution trajectories spiral toward the origin as t t \rightarrow \infty .
B) λ=1±i77 \lambda=1 \pm i \sqrt{77} ; all solution trajectories spiral away from the origin as t t \rightarrow \infty .
C) λ=1±i77; \lambda=1 \pm i \sqrt{77} ; the origin is a saddle.
D) λ=1±i77 \lambda=-1 \pm i \sqrt{77} ; all solution trajectories spiral toward the origin as t t \rightarrow \infty .
E) λ=1±i77 \lambda=-1 \pm i \sqrt{77} ; all solution trajectories spiral away from the origin as t t \rightarrow \infty .
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations ‪   (i) For what real values of α does this system have complex eigenvalues? (ii) What do the solution trajectories look like for the values of α found in part (i)?<div style=padding-top: 35px>
(i) For what real values of α does this system have complex eigenvalues?
(ii) What do the solution trajectories look like for the values of α found in part (i)?
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   =   x What is the bifurcation value of α, if any?<div style=padding-top: 35px> = Consider the first-order homogeneous system of linear differential equations   =   x What is the bifurcation value of α, if any?<div style=padding-top: 35px> x
What is the bifurcation value of α, if any?
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these statements is true?</strong> A) For any real number  \alpha , the eigenvalues for this system are real numbers. B) For -8 <  \alpha  < 0, the trajectories spiral towards the origin as t  \rightarrow\infty . C) For  \alpha  < -8, the trajectories spiral away from the origin as t  \rightarrow\infty . D) For  \alpha = 8, the eigenvalues are purely imaginary and the trajectories are concentric circles centered at the origin. <div style=padding-top: 35px>
Which of these statements is true?

A) For any real number α\alpha , the eigenvalues for this system are real numbers.
B) For -8 < α\alpha < 0, the trajectories spiral towards the origin as t \rightarrow\infty .
C) For α\alpha < -8, the trajectories spiral away from the origin as t \rightarrow\infty .
D) For α\alpha = 8, the eigenvalues are purely imaginary and the trajectories are concentric circles centered at the origin.
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   The eigenvalues and corresponding eigenvectors for this system are:   Which of these is the general solution for this system?</strong> A)  \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t)\end{array}\right)+C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right]   <div style=padding-top: 35px>
The eigenvalues and corresponding eigenvectors for this system are:
 <strong>Consider the first-order homogeneous system of linear differential equations   The eigenvalues and corresponding eigenvectors for this system are:   Which of these is the general solution for this system?</strong> A)  \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t)\end{array}\right)+C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right]   <div style=padding-top: 35px>
Which of these is the general solution for this system?

A) x(t)=C1et[sin(5t)cos(5t))+C2et[sin(5t)cos(5t)) \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t)\end{array}\right)+C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)
B) x(t)=C1et(sin(5t)cos(5t))+C2et(sin(5t)cos(5t)) \mathbf{x}(t)=C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)
C) x(t)=C1et[sin(5t)cos(5t)]+C2et[cos(5t)sin(5t)) \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right)
D) x(t)=C1et{sin(5t)cos(5t)]+C2et[cos(5t)sin(5t)] \mathbf{x}(t)=C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right]
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix ?(t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{ll}e^{4 t}-4 e^{-5 t} \\ e^{4 t} 5 e^{-5 t}\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{ll}-e^{4 t} & -5 e^{-5 t} \\ e^{4 t} & 4 e^{-5 t}\end{array}\right)   C)   \Psi(t)=\left(\begin{array}{l}e^{4 t} 4 e^{-5 t} \\ e^{4 t}-5 e^{-5 t}\end{array}\right)   D)   \psi(t)=\left(\begin{array}{l}e^{-4 t} 4 e^{-5 t} \\ e^{-4 t}-5 e^{-5 t}\end{array}\right)   <div style=padding-top: 35px>
Which of these is the fundamental matrix ?(t) for this system?

A) ψ(t)=(e4t4e5te4t5e5t) \psi(t)=\left(\begin{array}{ll}e^{4 t}-4 e^{-5 t} \\ e^{4 t} 5 e^{-5 t}\end{array}\right)
B) Ψ(t)=(e4t5e5te4t4e5t) \Psi(t)=\left(\begin{array}{ll}-e^{4 t} & -5 e^{-5 t} \\ e^{4 t} & 4 e^{-5 t}\end{array}\right)
C) Ψ(t)=(e4t4e5te4t5e5t) \Psi(t)=\left(\begin{array}{l}e^{4 t} 4 e^{-5 t} \\ e^{4 t}-5 e^{-5 t}\end{array}\right)
D) ψ(t)=(e4t4e5te4t5e5t) \psi(t)=\left(\begin{array}{l}e^{-4 t} 4 e^{-5 t} \\ e^{-4 t}-5 e^{-5 t}\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)   <div style=padding-top: 35px>
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)   <div style=padding-top: 35px>  (t) for this system?

A) ψ(t)=(7e1te6t8e1t0) \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)
B) Ψ(t)=(7e1/08e1te6t) \Psi(t)=\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)
C) ψ(t)=(7e1te6t8e1t0) \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)
D) ψ(t)=(7e1t08e1te6t) \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
? Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does  <div style=padding-top: 35px>
Given a fundamental matrix Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does  <div style=padding-top: 35px> (t) for the system, for what constant vector Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does  <div style=padding-top: 35px> does
Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does  <div style=padding-top: 35px>
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t}-3 e^{-12 t}\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t} 3 e^{-12 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & -9 e^{9 t} \\ 16 e^{-16 t} & 16 e^{9 t}\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & 9 e^{9 t} \\ -16 e^{-16 t} & 16 e^{9 t}\end{array}\right)   <div style=padding-top: 35px>
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t}-3 e^{-12 t}\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t} 3 e^{-12 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & -9 e^{9 t} \\ 16 e^{-16 t} & 16 e^{9 t}\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & 9 e^{9 t} \\ -16 e^{-16 t} & 16 e^{9 t}\end{array}\right)   <div style=padding-top: 35px>  (t) for this system?

A) ψ(t)=(4e12t4e12t3e12t3e12t) \psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t}-3 e^{-12 t}\end{array}\right)
B) Ψ(t)=(4e12t4e12t3e12t3e12t) \Psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t} 3 e^{-12 t}\end{array}\right)
C) ψ(t)=(9e16t9e9t16e16t16e9t) \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & -9 e^{9 t} \\ 16 e^{-16 t} & 16 e^{9 t}\end{array}\right)
D) ψ(t)=(9e16t9e9t16e16t16e9t) \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & 9 e^{9 t} \\ -16 e^{-16 t} & 16 e^{9 t}\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   =   x The columns of the fundamental matrix of this system,   (t), must be linearly independent.<div style=padding-top: 35px> = Consider the first-order homogeneous system of linear differential equations   =   x The columns of the fundamental matrix of this system,   (t), must be linearly independent.<div style=padding-top: 35px> x
The columns of the fundamental matrix of this system, Consider the first-order homogeneous system of linear differential equations   =   x The columns of the fundamental matrix of this system,   (t), must be linearly independent.<div style=padding-top: 35px> (t), must be linearly independent.
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The fundamental matrix of this system,   (t), is invertible.<div style=padding-top: 35px>
The fundamental matrix of this system, Consider the first-order homogeneous system of linear differential equations   The fundamental matrix of this system,   (t), is invertible.<div style=padding-top: 35px> (t), is invertible.
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t)\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right]   <div style=padding-top: 35px>
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t)\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right]   <div style=padding-top: 35px>  (t) for this system?

A) ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)) \psi(t)=\left(\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t)\end{array}\right)
B) Ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)) \Psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t)\end{array}\right)
C) ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)) \psi(t)=\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right)
D) ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)] \psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right]
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,    is an arbitrary constant vector.</strong> A)   \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}   B)   x(t)=\psi(t) \mathbf{C}   C)   \mathbf{x}(t)=\psi(0) \mathbf{C}   D)   \mathbf{x}(t)=\psi(t)+C   <div style=padding-top: 35px>
Given a fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,    is an arbitrary constant vector.</strong> A)   \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}   B)   x(t)=\psi(t) \mathbf{C}   C)   \mathbf{x}(t)=\psi(0) \mathbf{C}   D)   \mathbf{x}(t)=\psi(t)+C   <div style=padding-top: 35px>  (t) for the system, which of these is the general solution of this system?
Here,  <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,    is an arbitrary constant vector.</strong> A)   \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}   B)   x(t)=\psi(t) \mathbf{C}   C)   \mathbf{x}(t)=\psi(0) \mathbf{C}   D)   \mathbf{x}(t)=\psi(t)+C   <div style=padding-top: 35px>  is an arbitrary constant vector.

A) x(t)=ψ1(t)C \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}
B) x(t)=ψ(t)C x(t)=\psi(t) \mathbf{C}
C) x(t)=ψ(0)C \mathbf{x}(t)=\psi(0) \mathbf{C}
D) x(t)=ψ(t)+C \mathbf{x}(t)=\psi(t)+C
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)   B)   \psi(t)=\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t)\end{array}\right)   <div style=padding-top: 35px>
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)   B)   \psi(t)=\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t)\end{array}\right)   <div style=padding-top: 35px>  (t) for this system?

A) ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)
B) ψ(t)={e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)
C) ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)
D) ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t)\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
X = <strong>Consider the first-order homogeneous system of linear differential equations X =   x Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here, C =   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =    (t) + C C) x(t) =    <sup>-1</sup>(t)C D) x(t) =   (0)C <div style=padding-top: 35px> x
Given a fundamental matrix <strong>Consider the first-order homogeneous system of linear differential equations X =   x Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here, C =   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =    (t) + C C) x(t) =    <sup>-1</sup>(t)C D) x(t) =   (0)C <div style=padding-top: 35px> (t) for the system, which of these is the general solution of this system? Here, C = <strong>Consider the first-order homogeneous system of linear differential equations X =   x Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here, C =   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =    (t) + C C) x(t) =    <sup>-1</sup>(t)C D) x(t) =   (0)C <div style=padding-top: 35px> is an arbitrary constant vector.

A) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t)C
B) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t) + C
C) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 -1(t)C
D) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (0)C
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
Which of these is the fundamental matrix <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  <div style=padding-top: 35px> (t) for this system?

A)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
B)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
C)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
D)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  <div style=padding-top: 35px>
سؤال
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =   (t) + C C) x(t) =   <sup>-1</sup>(t)C D) x(t) =   (0)C <div style=padding-top: 35px>
Given a fundamental matrix <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =   (t) + C C) x(t) =   <sup>-1</sup>(t)C D) x(t) =   (0)C <div style=padding-top: 35px> (t) for the system, which of these is the general solution of this system? Here, <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =   (t) + C C) x(t) =   <sup>-1</sup>(t)C D) x(t) =   (0)C <div style=padding-top: 35px> is an arbitrary constant vector.

A) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t)C
B) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t) + C
C) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 -1(t)C
D) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (0)C
سؤال
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select a pair of vectors from these choices that constitute a fundamental set of solutions for this system.</strong> A)   \left(\begin{array}{l}e^{-7 t} \\ 0\end{array}\right)   B)  \left(\begin{array}{l}0 \\ e^{-7 t}\end{array}\right)   C)   \left(\begin{array}{l}e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)   D)  \left(\begin{array}{l}e^{-7 t} \\ 2(t+2) e^{-7 t}\end{array}\right)   E)   \left(\begin{array}{l}t e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)   F)  \left(\begin{array}{l}e^{-7 t} \\ t e^{-7 t}\end{array}\right)   <div style=padding-top: 35px>
Select a pair of vectors from these choices that constitute a fundamental set of solutions for this system.

A) (e7t0) \left(\begin{array}{l}e^{-7 t} \\ 0\end{array}\right)
B) (0e7t) \left(\begin{array}{l}0 \\ e^{-7 t}\end{array}\right)
C) (e7t2e7t) \left(\begin{array}{l}e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)
D) (e7t2(t+2)e7t) \left(\begin{array}{l}e^{-7 t} \\ 2(t+2) e^{-7 t}\end{array}\right)
E) (te7t2e7t) \left(\begin{array}{l}t e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)
F) (e7tte7t) \left(\begin{array}{l}e^{-7 t} \\ t e^{-7 t}\end{array}\right)
سؤال
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?<div style=padding-top: 35px>
What is the general solution of this system?
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/97
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 7: Systems of First-Order Linear Equations
1
Into which of the following systems can this homogeneous second-order differential equation be transformed?
<strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   + 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   - 7 u = 0

A) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   - 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7
B) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   - 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7
C) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = - <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   - 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7
D) <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = - <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   , <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   = 5 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7   - 7 <strong>Into which of the following systems can this homogeneous second-order differential equation be transformed?   + 5   - 7 u = 0</strong> A)   =   ,   = 5   - 7   B)   =   ,   = 7   - 5   C)   = -   ,   = 7   - 5   D)   = -   ,   = 5   - 7
  =   ,   = 7   - 5   =   =   ,   = 7   - 5   ,   =   ,   = 7   - 5   = 7   =   ,   = 7   - 5   - 5   =   ,   = 7   - 5
2
Into which of the following systems can this homogeneous third-order differential equation be transformed?
 <strong>Into which of the following systems can this homogeneous third-order differential equation be transformed?  </strong> A)   x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}   B)   x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=\frac{10}{5 t} x_{3}+\frac{2}{5 t^{2}} x_{2}+\frac{8}{5 t^{3}} x_{1}   C)   x_{1^{\prime}}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=10 x_{3}+2 x_{2}+8 x_{1}   D)   x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}

A) x1=x2,x2=x3,x3=10x32x28x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=-10 x_{3}-2 x_{2}-8 x_{1}
B) x1=x2,x2=x3,x3=105tx3+25t2x2+85t3x1 x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=\frac{10}{5 t} x_{3}+\frac{2}{5 t^{2}} x_{2}+\frac{8}{5 t^{3}} x_{1}
C) x1=x2,x2=x3,x3=10x3+2x2+8x1 x_{1^{\prime}}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3}^{\prime}=10 x_{3}+2 x_{2}+8 x_{1}
D) x1=x2,x2=x3,x3=105tx325t2x285t3x1 x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}
x1=x2,x2=x3,x3=105tx325t2x285t3x1 x_{1^{\prime}}^{\prime}=x_{2}, x_{2}^{\prime}=x_{3}, x_{3^{\prime}}^{\prime}=\frac{-10}{5 t} x_{3}-\frac{2}{5 t^{2}} x_{2}-\frac{8}{5 t^{3}} x_{1}
3
Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:
<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ...

A)<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ...
B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ... .
C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/<strong>Transform this nonhomogeneous second-order initial value problem into an initial value problem comprised of two first-order differential equations:  </strong> A)  B)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ . C)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ .. D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/ ... ..
D)https://d2lvgg3v3hfg70.cloudfront.net/TBW1042/11eec281_8310_7efd_8720_6bc18854d758_TBW1042_11...

4
Consider this system of first-order differential equations:
Consider this system of first-order differential equations:   (i) Transform this system into a second-order differential equation whose solution is X<sub>1</sub> .   (ii) Find the general solution of the differential equation in part (i). (iii) Use your solution in (ii) to now find X<sub>2</sub>.
(i) Transform this system into a second-order differential equation whose solution is X1 .
Consider this system of first-order differential equations:   (i) Transform this system into a second-order differential equation whose solution is X<sub>1</sub> .   (ii) Find the general solution of the differential equation in part (i). (iii) Use your solution in (ii) to now find X<sub>2</sub>.
(ii) Find the general solution of the differential equation in part (i).
(iii) Use your solution in (ii) to now find X2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
5
Consider this system of first-order differential equations:
 <strong>Consider this system of first-order differential equations:   Transform this system into a second-order differential equation whose solution is X<sub>2</sub> .</strong> A)   x_{2}^{\prime \prime}+12 x_{2}^{\prime}-45 x_{2}=0   B)   x_{2}^{\prime \prime}-12 x_{2}^{\prime}+45 x_{2}=0   C)   x_{2}^{\prime \prime}-12 x_{2}^{\prime}+2025 x_{2}=0   D)   x_{2}^{\prime \prime}+12 x_{2}^{\prime}-2025 x_{2}=0
Transform this system into a second-order differential equation whose solution is X2 .

A) x2+12x245x2=0 x_{2}^{\prime \prime}+12 x_{2}^{\prime}-45 x_{2}=0
B) x212x2+45x2=0 x_{2}^{\prime \prime}-12 x_{2}^{\prime}+45 x_{2}=0
C) x212x2+2025x2=0 x_{2}^{\prime \prime}-12 x_{2}^{\prime}+2025 x_{2}=0
D) x2+12x22025x2=0 x_{2}^{\prime \prime}+12 x_{2}^{\prime}-2025 x_{2}=0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
6
Compute:  <strong>Compute:  </strong> A)   \left[\begin{array}{ll}0 & -4 \\ 12 & -4\end{array}\right]   B)   \left[\begin{array}{ll}6 & 4 \\ 2 & 6\end{array}\right]   C)   \left[\begin{array}{ll}0 & 4 \\ 12 & 6\end{array}\right]   D)   \left[\begin{array}{ll}-12 & -8 \\ -4 & -12\end{array}\right]

A) [04124] \left[\begin{array}{ll}0 & -4 \\ 12 & -4\end{array}\right]
B) [6426] \left[\begin{array}{ll}6 & 4 \\ 2 & 6\end{array}\right]
C) [04126] \left[\begin{array}{ll}0 & 4 \\ 12 & 6\end{array}\right]
D) [128412] \left[\begin{array}{ll}-12 & -8 \\ -4 & -12\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
7
Compute:  <strong>Compute:  </strong> A)   \left[\begin{array}{ll}3 & -4 \\ 7 & -9 \\ -1 & -2\end{array}\right]   B)   \left[\begin{array}{cc}9 & 0 \\ 19 & -19 \\ -3 & -2\end{array}\right]   C)   \left[\begin{array}{ll}-3 & -8 \\ -5 & 1 \\ 1 & -2\end{array}\right]   D)   \left[\begin{array}{ll}-9 & -12 \\ -17 & 11 \\ 3 & -2\end{array}\right]

A) [347912] \left[\begin{array}{ll}3 & -4 \\ 7 & -9 \\ -1 & -2\end{array}\right]
B) [90191932] \left[\begin{array}{cc}9 & 0 \\ 19 & -19 \\ -3 & -2\end{array}\right]
C) [385112] \left[\begin{array}{ll}-3 & -8 \\ -5 & 1 \\ 1 & -2\end{array}\right]
D) [912171132] \left[\begin{array}{ll}-9 & -12 \\ -17 & 11 \\ 3 & -2\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
8
Consider these matrices:
<strong>Consider these matrices:   Which of the following matrices are defined? Select all that apply.</strong> A) AB B)   C) BA D) AC E) DC F) BD G) A + B
Which of the following matrices are defined? Select all that apply.

A) AB
B) <strong>Consider these matrices:   Which of the following matrices are defined? Select all that apply.</strong> A) AB B)   C) BA D) AC E) DC F) BD G) A + B
C) BA
D) AC
E) DC
F) BD
G) A + B
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
9
Consider the matrix  <strong>Consider the matrix  </strong> A)   \left[\begin{array}{lllll}24 & -6 & -3 & -27 & 21 \\ 9 & -15 & -15 & 6 & 15\end{array}\right]   B)   \left[\begin{array}{cc}8 & 3 \\ -2 & -5 \\ -1 & -5 \\ -9 & 2 \\ 7 & 5\end{array}\right]   C)   \left[\begin{array}{ll}24 & 9 \\ -6 & -15 \\ -3 & -15 \\ -27 & 6 \\ 21 & 15\end{array}\right]   D)   \left[\begin{array}{ll}21 & 15 \\ -27 & 6 \\ -3 & -15 \\ -6 & -15 \\ 24 & 9\end{array}\right]   E)   \left[\begin{array}{ll}9 & 24 \\ -15 & -6 \\ -15 & -3 \\ 6 & -27 \\ 15 & 21\end{array}\right]

A) [2463272191515615] \left[\begin{array}{lllll}24 & -6 & -3 & -27 & 21 \\ 9 & -15 & -15 & 6 & 15\end{array}\right]
B) [8325159275] \left[\begin{array}{cc}8 & 3 \\ -2 & -5 \\ -1 & -5 \\ -9 & 2 \\ 7 & 5\end{array}\right]
C) [2496153152762115] \left[\begin{array}{ll}24 & 9 \\ -6 & -15 \\ -3 & -15 \\ -27 & 6 \\ 21 & 15\end{array}\right]
D) [2115276315615249] \left[\begin{array}{ll}21 & 15 \\ -27 & 6 \\ -3 & -15 \\ -6 & -15 \\ 24 & 9\end{array}\right]
E) [9241561536271521] \left[\begin{array}{ll}9 & 24 \\ -15 & -6 \\ -15 & -3 \\ 6 & -27 \\ 15 & 21\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
10
If A is an 2 × 4 matrix and B is an 4 × 9 matrix, then:

A) BA is defined and has order 2 × 9.
B) BA is defined and has order 9 × 2.
C) AB is defined and has order 9 × 2.
D) AB is defined and has order 2 × 9.
E) Neither AB nor BA is defined.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
11
Consider these matrices:
D = Consider these matrices: D =   E =   Compute  E = Consider these matrices: D =   E =   Compute
Compute Consider these matrices: D =   E =   Compute
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
12
Consider these matrices:
Consider these matrices:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
13
Consider these matrices:
Consider these matrices:   Compute ED
Compute ED
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
14
Consider the matrix function
A(t) =  <strong>Consider the matrix function A(t) =   Compute   (t).</strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \left[\begin{array}{l}2 \cos (2 t)-5 \sin (5 t) \\ -5 \sin (5 t)-2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ll}\cos (2 t) & -\sin (5 t) \\ -\sin (5 t) & -\cos (2 t)\end{array}\right]   D)   \left[\begin{array}{ll}-\cos (2 t) & \sin (5 t) \\ \sin (5 t) & \cos (2 t)\end{array}\right]
Compute  <strong>Consider the matrix function A(t) =   Compute   (t).</strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \left[\begin{array}{l}2 \cos (2 t)-5 \sin (5 t) \\ -5 \sin (5 t)-2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ll}\cos (2 t) & -\sin (5 t) \\ -\sin (5 t) & -\cos (2 t)\end{array}\right]   D)   \left[\begin{array}{ll}-\cos (2 t) & \sin (5 t) \\ \sin (5 t) & \cos (2 t)\end{array}\right]    (t).

A) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
B) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{l}2 \cos (2 t)-5 \sin (5 t) \\ -5 \sin (5 t)-2 \cos (2 t)\end{array}\right]
C) [cos(2t)sin(5t)sin(5t)cos(2t)] \left[\begin{array}{ll}\cos (2 t) & -\sin (5 t) \\ -\sin (5 t) & -\cos (2 t)\end{array}\right]
D) [cos(2t)sin(5t)sin(5t)cos(2t)] \left[\begin{array}{ll}-\cos (2 t) & \sin (5 t) \\ \sin (5 t) & \cos (2 t)\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
15
Consider the matrix function A(t)  <strong>Consider the matrix function A(t)   Compute  </strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ccc}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   D)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]    Compute  <strong>Consider the matrix function A(t)   Compute  </strong> A)   \left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   B)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   C)   \left[\begin{array}{ccc}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]   D)   \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]

A) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
B) 14cos2(2t)+25sin2(5t)[2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & -5 \sin (5 t) \\ -5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
C) [2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \left[\begin{array}{ccc}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
D) 14cos2(2t)+25sin2(5t)[2cos(2t)5sin(5t)5sin(5t)2cos(2t)] \frac{1}{4 \cos ^{2}(2 t)+25 \sin ^{2}(5 t)}\left[\begin{array}{ll}-2 \cos (2 t) & 5 \sin (5 t) \\ 5 \sin (5 t) & 2 \cos (2 t)\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
16
Consider the matrix function Consider the matrix function   . Compute  .
Compute Consider the matrix function   . Compute
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
17
Consider the matrix Consider the matrix   Compute B<sup>-1</sup> Compute B-1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
18
Consider the following system of linear equations:
Consider the following system of linear equations:   What is the augmented matrix for this system?
What is the augmented matrix for this system?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
19
Consider the following system of linear equations:
Consider the following system of linear equations:   Reduce the augmented matrix of this system to echelon form.
Reduce the augmented matrix of this system to echelon form.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
20
Consider the following system of linear equations:
Consider the following system of linear equations:   The system is inconsistent.
The system is inconsistent.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
21
Consider the following system of linear equations:
Consider the following system of linear equations:   Find a condition involving   that ensures the system has infinitely many solutions.
Find a condition involving Consider the following system of linear equations:   Find a condition involving   that ensures the system has infinitely many solutions. that ensures the system has infinitely many solutions.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
22
Consider this set of vectors: <strong>Consider this set of vectors:   Which of these statements is true?</strong> A) The vectors in this set are linearly independent. B) The vectors in this set are linearly dependent. C) The system Ax = 0, where A =   , has only the solution x = 0. D) The system Ax = 0, where A =   , is inconsistent. Which of these statements is true?

A) The vectors in this set are linearly independent.
B) The vectors in this set are linearly dependent.
C) The system Ax = 0, where A = <strong>Consider this set of vectors:   Which of these statements is true?</strong> A) The vectors in this set are linearly independent. B) The vectors in this set are linearly dependent. C) The system Ax = 0, where A =   , has only the solution x = 0. D) The system Ax = 0, where A =   , is inconsistent. , has only the solution x = 0.
D) The system Ax = 0, where A = <strong>Consider this set of vectors:   Which of these statements is true?</strong> A) The vectors in this set are linearly independent. B) The vectors in this set are linearly dependent. C) The system Ax = 0, where A =   , has only the solution x = 0. D) The system Ax = 0, where A =   , is inconsistent. , is inconsistent.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
23
Are the vectors u1 , u2 , and u3 linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, and C for which A u1 + Bu2 +Cu3 = 0
that demonstrates this fact.
Are the vectors u<sub>1</sub> , u<sub>2</sub> , and u<sub>3</sub> linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, and C for which A u<sub>1</sub> + Bu<sub>2</sub> +Cu<sub>3</sub> = 0 that demonstrates this fact.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
24
Are the vectors u1 , u2 , u3 , and u4 linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, C, and D for which A u1 + Bu2 +Cu3 +Du3 = 0 for which that demonstrates this fact.
Are the vectors u<sub>1</sub> , u<sub>2</sub> , u<sub>3</sub> , and u<sub>4</sub> linearly independent or linearly dependent? If they are linearly dependent, identify appropriate constants A, B, C, and D for which A u<sub>1</sub> + Bu<sub>2</sub> +Cu<sub>3</sub> +Du<sub>3</sub> = 0 for which that demonstrates this fact.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
25
If λ\lambda = 0 is an eigenvalue of a 5 × 5 matrix A, then A is not invertible.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
26
Given that λ\lambda = 1 is an eigenvalue of the matrix B =  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1.  , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue λ\lambda = 1?

A)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1.  is the only eigenvector of B associated with the eigenvalue λ\lambda = 1.
B)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1.  is an eigenvector of B, for any nonzero real constant α\alpha , associated with the eigenvalue λ\lambda = 1.
C)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1.  is an eigenvector of B, for any nonzero real constant α\alpha , associated with the eigenvalue λ\lambda = 1.
D)  <strong>Given that  \lambda  = 1 is an eigenvalue of the matrix B =   , which of the following statements is true regarding the eigenvector of B associated with this eigenvalue  \lambda = 1?</strong> A)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1. B)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. C)    is an eigenvector of B, for any nonzero real constant  \alpha , associated with the eigenvalue  \lambda  = 1. D)   is the only eigenvector of B associated with the eigenvalue  \lambda  = 1.  is the only eigenvector of B associated with the eigenvalue λ\lambda = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
27
Consider the matrix  <strong>Consider the matrix   Which of these is a complete list of eigenvalue-eigenvector pairs of A?</strong> A)   \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   B)   \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right), \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)   C)   \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   D)   \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
Which of these is a complete list of eigenvalue-eigenvector pairs of A?

A) λ1=4,ξ1=(31)λ2=4,ξ2=(11) \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) λ1=4,ξ1=(13),λ2=4,ξ2=(11) \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right), \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) λ1=2,ξ1=(31)λ2=2,ξ2=(11) \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) λ1=2,ξ1=(13)λ2=2,ξ2=(11) \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
28
Consider a system of homogeneous first-order linear differential equations of the form  <strong>Consider a system of homogeneous first-order linear differential equations of the form   = Ax, where A is a 2 × 2 constant matrix.   are solutions of this system, which of the following must also be solutions of this system? Select all that apply.</strong> A)   -2 \mathbf{x}_{1}(t)   B)   -7.2 \mathbf{x}_{1}(t)+4.4 \mathbf{x}_{2}(t)   C)   \mathbf{x}_{1}(t) \cdot \mathbf{x}_{2}(t)   D)   -6.6 t \mathbf{x}_{1}(t)+5.8 t x_{2}(t)   E)   \left.\left(7.2 \mathbf{x}_{1}(t)+5.4 \mathbf{x}_{2}(t)\right)-8\left(\mathbf{x}_{1}(t)-\mathbf{x}_{2} t\right)\right)   F)   2 \mathbf{x}_{1}(t)-3.6 \mathbf{x}_{2}(t)-4.6    = Ax, where A is a 2 × 2 constant matrix.  <strong>Consider a system of homogeneous first-order linear differential equations of the form   = Ax, where A is a 2 × 2 constant matrix.   are solutions of this system, which of the following must also be solutions of this system? Select all that apply.</strong> A)   -2 \mathbf{x}_{1}(t)   B)   -7.2 \mathbf{x}_{1}(t)+4.4 \mathbf{x}_{2}(t)   C)   \mathbf{x}_{1}(t) \cdot \mathbf{x}_{2}(t)   D)   -6.6 t \mathbf{x}_{1}(t)+5.8 t x_{2}(t)   E)   \left.\left(7.2 \mathbf{x}_{1}(t)+5.4 \mathbf{x}_{2}(t)\right)-8\left(\mathbf{x}_{1}(t)-\mathbf{x}_{2} t\right)\right)   F)   2 \mathbf{x}_{1}(t)-3.6 \mathbf{x}_{2}(t)-4.6    are solutions of this system, which of the following must also be solutions of this system? Select all that apply.

A) 2x1(t) -2 \mathbf{x}_{1}(t)
B) 7.2x1(t)+4.4x2(t) -7.2 \mathbf{x}_{1}(t)+4.4 \mathbf{x}_{2}(t)
C) x1(t)x2(t) \mathbf{x}_{1}(t) \cdot \mathbf{x}_{2}(t)
D) 6.6tx1(t)+5.8tx2(t) -6.6 t \mathbf{x}_{1}(t)+5.8 t x_{2}(t)
E) (7.2x1(t)+5.4x2(t))8(x1(t)x2t)) \left.\left(7.2 \mathbf{x}_{1}(t)+5.4 \mathbf{x}_{2}(t)\right)-8\left(\mathbf{x}_{1}(t)-\mathbf{x}_{2} t\right)\right)
F) 2x1(t)3.6x2(t)4.6 2 \mathbf{x}_{1}(t)-3.6 \mathbf{x}_{2}(t)-4.6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
29
Consider the first-order homogeneous system of linear differential equations <strong>Consider the first-order homogeneous system of linear differential equations   and the following three vector functions:   Which of the following statements are true? Select all that apply.</strong> A) {X<sub>1</sub>,X<sub>2</sub> ,X<sub>3</sub> } is a fundamental set of solutions for this system. B) W [X<sub>1</sub>(t), X<sub>2</sub>(t)] ? 0 for every real number t. C) X<sub>1</sub> and X<sub>2</sub> are linearly dependent. D) 6X<sub>1</sub> + 4X<sub>2</sub> + 3X<sub>3</sub> is a solution of this system. E) {X<sub>1</sub>, X<sub>2</sub>} is a fundamental set of solutions for this system. and the following three vector functions:
<strong>Consider the first-order homogeneous system of linear differential equations   and the following three vector functions:   Which of the following statements are true? Select all that apply.</strong> A) {X<sub>1</sub>,X<sub>2</sub> ,X<sub>3</sub> } is a fundamental set of solutions for this system. B) W [X<sub>1</sub>(t), X<sub>2</sub>(t)] ? 0 for every real number t. C) X<sub>1</sub> and X<sub>2</sub> are linearly dependent. D) 6X<sub>1</sub> + 4X<sub>2</sub> + 3X<sub>3</sub> is a solution of this system. E) {X<sub>1</sub>, X<sub>2</sub>} is a fundamental set of solutions for this system.
Which of the following statements are true? Select all that apply.

A) {X1,X2 ,X3 } is a fundamental set of solutions for this system.
B) W [X1(t), X2(t)] ? 0 for every real number t.
C) X1 and X2 are linearly dependent.
D) 6X1 + 4X2 + 3X3 is a solution of this system.
E) {X1, X2} is a fundamental set of solutions for this system.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
30
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system.
And the following four vector functions:
<strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system.
Which of the following statements are true? Select all that apply.

A) <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. is a solution of this system, for all real numbers C1 ,C2 ,C3 , and C4 .
B) W [ <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. (t), <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. (t)] ? 0 for every real number t.
C) 5.5 <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. + 4.5 <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. + C is a solution of this system, for any real number C.
D) 4 <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. is a solution of this system.
E) { <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. , <strong>Consider the first-order homogeneous system of linear differential equations   And the following four vector functions:   Which of the following statements are true? Select all that apply.</strong> A)   is a solution of this system, for all real numbers C<sub>1</sub> ,C<sub>2</sub> ,C<sub>3</sub> , and C<sub>4</sub> . B) W [   (t),   (t)] ? 0 for every real number t. C) 5.5   + 4.5   + C is a solution of this system, for any real number C. D) 4   is a solution of this system. E) {   ,   } is a fundamental set of solutions for this system. } is a fundamental set of solutions for this system.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
31
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   =   x Determine the eigenvalue-eigenvector pairs of this system. = Consider the first-order homogeneous system of linear differential equations   =   x Determine the eigenvalue-eigenvector pairs of this system. x
Determine the eigenvalue-eigenvector pairs of this system.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
32
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?
What is the general solution of this system?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
33
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system?
If the system were equipped with the initial condition Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system? what is the particular solution of the system?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
34
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   =   x Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=9, \xi=\left(\begin{array}{l}1 \\ 1\end{array}\right)   B)   \lambda=-9, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   C)   \lambda=4, \xi=\left(\begin{array}{l}-9 \\ 4\end{array}\right)   D)   \lambda=0, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   E)   \lambda=-4, \xi=\left(\begin{array}{l}9 \\ -4\end{array}\right)    =  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=9, \xi=\left(\begin{array}{l}1 \\ 1\end{array}\right)   B)   \lambda=-9, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   C)   \lambda=4, \xi=\left(\begin{array}{l}-9 \\ 4\end{array}\right)   D)   \lambda=0, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   E)   \lambda=-4, \xi=\left(\begin{array}{l}9 \\ -4\end{array}\right)    x
Select all of the correct eigenvalue-eigenvector pairs from the following choices.

A) λ=9,ξ=(11) \lambda=9, \xi=\left(\begin{array}{l}1 \\ 1\end{array}\right)
B) λ=9,ξ=(11) \lambda=-9, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
C) λ=4,ξ=(94) \lambda=4, \xi=\left(\begin{array}{l}-9 \\ 4\end{array}\right)
D) λ=0,ξ=(10) \lambda=0, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)
E) λ=4,ξ=(94) \lambda=-4, \xi=\left(\begin{array}{l}9 \\ -4\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
35
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}   B)   x(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right)+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.

A) x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}
B) x(t)=C1(11)e7t+C2(79)e9t x(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
C) x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}
D) x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
E) x(t)=C1(10)+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right)+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
36
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The origin is a saddle point.
The origin is a saddle point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
37
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)   B)   \lambda=-9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)   C)   \lambda=-9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)   D)   \lambda=9, \xi=\left(\begin{array}{l}3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)   E)   \lambda=9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)   F)   \lambda=-9, \xi=\left(\begin{array}{c}-3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)
Select all of the correct eigenvalue-eigenvector pairs from the following choices.

A) λ=9,ξ=(99) \lambda=9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)
B) λ=9,ξ=(99) \lambda=-9, \xi=\left(\begin{array}{l}-9 \\ -9\end{array}\right)
C) λ=9,ξ=(99) \lambda=-9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)
D) λ=9,ξ=(3i3i) \lambda=9, \xi=\left(\begin{array}{l}3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)
E) λ=9,ξ=(99) \lambda=9, \xi=\left(\begin{array}{l}9 \\ -9\end{array}\right)
F) λ=9,ξ=(3i3i) \lambda=-9, \xi=\left(\begin{array}{c}-3 \mathrm{i} \\ 3 \mathrm{i}\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
38
Consider the first-order homogeneous system of linear differential equations  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}    =  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}    x
Which of these is the genreal solution of the system? Here,  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}    and  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}    are arbitrary real constants.

A) x(t)=C1(2516)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}
B) x(t)=C1(1625)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}
C) x(t)=C1(5i4i)e20t+C2(5i4i)e20t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}
D) x(t)=C1(1625)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}
E) x(t)=C1(5i4i)e20t+C2(5i4i)e20t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
39
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The origin is a node.
The origin is a node.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
40
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select all of the correct eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=3, \xi=\left(\begin{array}{c}0 \\ -1\end{array}\right)   B)  \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)   C)  \lambda=8, \xi=\left(\begin{array}{l}10 \\ 5\end{array}\right)   D)   \lambda=8, \xi=\left(\begin{array}{l}10 \\ -5\end{array}\right)   E)   \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   F)  \lambda=8, \xi=\left(\begin{array}{c}-5 \\ 10\end{array}\right)
Select all of the correct eigenvalue-eigenvector pairs from the following choices.

A) λ=3,ξ=(01) \lambda=3, \xi=\left(\begin{array}{c}0 \\ -1\end{array}\right)
B) λ=3,ξ=(01) \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)
C) λ=8,ξ=(105) \lambda=8, \xi=\left(\begin{array}{l}10 \\ 5\end{array}\right)
D) λ=8,ξ=(105) \lambda=8, \xi=\left(\begin{array}{l}10 \\ -5\end{array}\right)
E) λ=3,ξ=(10) \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)
F) λ=8,ξ=(510) \lambda=8, \xi=\left(\begin{array}{c}-5 \\ 10\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
41
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}0 \\ -1\end{array}\right) e^{5 t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 0\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.

A) x(t)=C1(310)e2t+C2(01)e5t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}
B) x(t)=C1(310)e2t+C2(01)e5t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}0 \\ -1\end{array}\right) e^{5 t}
C) x(t)=C1(310)e2t+C2(103)e2t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}
D) x(t)=C1(10)e5t+C2(310)e2t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 0\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{l}3 \\ -10\end{array}\right) e^{-2 t}
E) x(t)=C1(01)e5t+C2(103)e2t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{-5 t}+C_{2}\left(\begin{array}{l}-10 \\ -3\end{array}\right) e^{2 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
42
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The origin is a node.
The origin is a node.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
43
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select all of the eigenvalue-eigenvector pairs from the following choices.</strong> A)   \lambda=3, \xi=\left(\begin{array}{c}-1 \\ 0\end{array}\right)   B)   \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)   C)   \lambda=0, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)   D)   \lambda=0, \xi=\left(\begin{array}{c}1 \\ -1\end{array}\right)   E)   \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)   F)   \lambda=3, \xi=\left(\begin{array}{l}0 \\ -1\end{array}\right)
Select all of the eigenvalue-eigenvector pairs from the following choices.

A) λ=3,ξ=(10) \lambda=3, \xi=\left(\begin{array}{c}-1 \\ 0\end{array}\right)
B) λ=3,ξ=(10) \lambda=-3, \xi=\left(\begin{array}{l}1 \\ 0\end{array}\right)
C) λ=0,ξ=(11) \lambda=0, \xi=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) λ=0,ξ=(11) \lambda=0, \xi=\left(\begin{array}{c}1 \\ -1\end{array}\right)
E) λ=3,ξ=(01) \lambda=-3, \xi=\left(\begin{array}{l}0 \\ 1\end{array}\right)
F) λ=3,ξ=(01) \lambda=3, \xi=\left(\begin{array}{l}0 \\ -1\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
44
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)   B)   x(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1\end{array}\right)   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)   D)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.

A) x(t)=C1(10)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) x(t)=C1(10)e2t+C2(11) x(t)=C_{1}\left(\begin{array}{c}-1 \\ 0\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) x(t)=C1(10)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) x(t)=C1(01)e2t+C2(11) \mathbf{x}(t)=C_{1}\left(\begin{array}{l}0 \\ 1\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{l}1 \\ -1\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
45
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?</strong> A)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 2 \\ -4\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   B)   \mathbf{x}(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   C)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1 \\ -1\end{array}\right)+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   D)   x(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}   E)   \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)
What is the general solution of this system?

A) x(t)=C1(124)e2t+C2(111)et+C3(111)et \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-1 \\ 2 \\ -4\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
B) x(t)=C1(124)e2t+C2(111)et+C3(111)et \mathbf{x}(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
C) x(t)=C1(111)+C2(111)et+C3(111)et \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1 \\ -1\end{array}\right)+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
D) x(t)=C1(124)e2t+C2(211)et+C3(111)et x(t)=C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
E) x(t)=C1(124)e2t+C2(111)et+C3(111) \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
46
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system?
If the system were equipped with the initial condition Consider the first-order homogeneous system of linear differential equations   If the system were equipped with the initial condition   what is the particular solution of the system? what is the particular solution of the system?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
47
Suppose Tank A contains 50 gallons of water in which 30 ounces of salt are dissolved, and tank B contains 35 gallons of water in which 60 ounces of salt are dissolved. The following conditions also hold:
• Water with salt concentration of 1.6 ounces per gallon flows into Tank A at a rate of 1.8 gallons per minute.
• Water with salt concentration of 3.1 ounces per gallon flows into Tank B at a rate of 1.3 gallons per minute.
• Water flows from Tank A to Tank B at a rate of 1.8 gallons per minute.
• Water flows from Tank B to Tank A at a rate of 0.65 gallons per minute.
• Water drains from Tank B at a rate of 0.65 gallons per minute.
Set up a system of equations governing the amount of salt in Tank A,X A (t), and the amount of salt in tank B, X B (t), at any time t.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
48
Each of the following is the general solution of a system of differential equations. For which one(s) is the origin a node? Select all that apply.
<strong>Each of the following is the general solution of a system of differential equations. For which one(s) is the origin a node? Select all that apply.  </strong> A) I B) II C) III D) None of them

A) I
B) II
C) III
D) None of them
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
49
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   Determine a fundamental set of solutions for this system.
Determine a fundamental set of solutions for this system.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
50
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?
What is the general solution of this system?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
51
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -8 B) 8 C) 0 D) 8i E) -8i F) 64 G) -64 = <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -8 B) 8 C) 0 D) 8i E) -8i F) 64 G) -64 x
Which of these are eigenvalues for this system? Select all that apply.

A) -8
B) 8
C) 0
D) 8i
E) -8i
F) 64
G) -64
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
52
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is a fundamental set of solutions for this system?</strong> A)   \left\{\begin{array}{ll}-\sin (6 t) & \cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   B)   \left\{\begin{array}{ll}\sin (6 t) & -\cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   C)   \left\{\begin{array}{ll}\sin (36 t) & -\cos (36 t) \\ \cos (36 t) & \sin (36 t)\end{array}\right\}   D)   \left\{\begin{array}{ll}e^{6 t} & -e^{-6 t} \\ e^{6 t} & e^{-6 t}\end{array}\right\}   E)   \left\{\begin{array}{ll}e^{6 t} & e^{-6 t} \\ -e^{6 t}, & e^{-6 t}\end{array}\right\}    =  <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these is a fundamental set of solutions for this system?</strong> A)   \left\{\begin{array}{ll}-\sin (6 t) & \cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   B)   \left\{\begin{array}{ll}\sin (6 t) & -\cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}   C)   \left\{\begin{array}{ll}\sin (36 t) & -\cos (36 t) \\ \cos (36 t) & \sin (36 t)\end{array}\right\}   D)   \left\{\begin{array}{ll}e^{6 t} & -e^{-6 t} \\ e^{6 t} & e^{-6 t}\end{array}\right\}   E)   \left\{\begin{array}{ll}e^{6 t} & e^{-6 t} \\ -e^{6 t}, & e^{-6 t}\end{array}\right\}    x
Which of these is a fundamental set of solutions for this system?

A) {sin(6t)cos(6t)cos(6t)sin(6t)} \left\{\begin{array}{ll}-\sin (6 t) & \cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}
B) {sin(6t)cos(6t)cos(6t)sin(6t)} \left\{\begin{array}{ll}\sin (6 t) & -\cos (6 t) \\ \cos (6 t) & \sin (6 t)\end{array}\right\}
C) {sin(36t)cos(36t)cos(36t)sin(36t)} \left\{\begin{array}{ll}\sin (36 t) & -\cos (36 t) \\ \cos (36 t) & \sin (36 t)\end{array}\right\}
D) {e6te6te6te6t} \left\{\begin{array}{ll}e^{6 t} & -e^{-6 t} \\ e^{6 t} & e^{-6 t}\end{array}\right\}
E) {e6te6te6t,e6t} \left\{\begin{array}{ll}e^{6 t} & e^{-6 t} \\ -e^{6 t}, & e^{-6 t}\end{array}\right\}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
53
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is an accurate description of the solution trajectories of the phase portrait for this system?</strong> A) The trajectories spiral towards the origin as t  \rightarrow\infty . B) The trajectories are concentric circles centered at the origin. C) The trajectories spiral away from the origin as t  \rightarrow\infty . D) The trajectories are line segments that approach the origin as t  \rightarrow\infty . E) The origin is a saddle point.
Which of these is an accurate description of the solution trajectories of the phase portrait for this system?

A) The trajectories spiral towards the origin as t \rightarrow\infty .
B) The trajectories are concentric circles centered at the origin.
C) The trajectories spiral away from the origin as t \rightarrow\infty .
D) The trajectories are line segments that approach the origin as t \rightarrow\infty .
E) The origin is a saddle point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
54
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Which of these are eigenvalues for this system? Select all that apply.</strong> A) 10 B) 4 C) -4i D) 10 + 4i E) 4i F) 10 - 4i G) 4 + 10i H) 4 - 10i
Which of these are eigenvalues for this system? Select all that apply.

A) 10
B) 4
C) -4i
D) 10 + 4i
E) 4i
F) 10 - 4i
G) 4 + 10i
H) 4 - 10i
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
55
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)
What is the general solution of this system? Here,  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)    and  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)    are arbitrary real constants.

A) x(t)=C1e3t(sin(8t)cos(8t))+C2e3t[cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{-3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{-3 t}\left[\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)
B) x(t)=C1e3t(sin(8t)cos(8t))+C2e3t(cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{3 t}\left(\begin{array}{l}\sin (8 t) \\ \cos (8 t)\end{array}\right)+C_{2} e^{3 t}\left(\begin{array}{l}-\cos (8 t) \\ \sin (8 t)\end{array}\right)
C) x(t)=C1e8t(sin(3t)cos(3t)]+C2e8t(cos(3t)sin(3t)) \mathbf{x}(t)=C_{1} e^{-8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right]+C_{2} e^{-8 t}\left(\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)
D) x(t)=C1e8t(sin(3t)cos(3t))+C2e8t{cos(3t)sin(3t)) \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (3 t) \\ \cos (3 t)\end{array}\right)+C_{2} e^{8 t}\left\{\begin{array}{l}-\cos (3 t) \\ \sin (3 t)\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
56
Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   All solution trajectories spiral towards the origin as t  \rightarrow\infty .
All solution trajectories spiral towards the origin as t \rightarrow\infty .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
57
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -4 + 7i B) 7 C) -7i D) -4 E) 7i F) 7 + 4i G) 7 - 4i H) -4 - 7i = <strong>Consider the first-order homogeneous system of linear differential equations   =   x Which of these are eigenvalues for this system? Select all that apply.</strong> A) -4 + 7i B) 7 C) -7i D) -4 E) 7i F) 7 + 4i G) 7 - 4i H) -4 - 7i x
Which of these are eigenvalues for this system? Select all that apply.

A) -4 + 7i
B) 7
C) -7i
D) -4
E) 7i
F) 7 + 4i
G) 7 - 4i
H) -4 - 7i
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
58
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   C)  \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)
What is the general solution of this system? Here,  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   C)  \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)    and  <strong>Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   and   are arbitrary real constants.</strong> A)   \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   C)  \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)    are arbitrary real constants.

A) x(t)=C1e2t[sin(8t)cos(8t))+C2e2t[cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)
B) x(t)=C1e8t(sin(2t)cos(2t))+C2e8t(cos(2t)sin(2t)) \mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right)+C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)
C) x(t)=C1e8t[sin(2t)cos(2t)]+C2e8t[cos(2t)sin(2t)) \mathbf{x}(t)=C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t)\end{array}\right)
D) x(t)=C1e2t(sin(8t)cos(8t))+C2e2t[cos(8t)sin(8t)) \mathbf{x}(t)=C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t)\end{array}\right)+C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t)\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
59
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of the following is an accurate statement regarding the behavior of the solution trajectories of this system as t  \rightarrow\infty ?</strong> A) All trajectories spiral towards the origin as t \rightarrow\infty . B) All trajectories spiral away from the origin as t   \rightarrow\infty . C) The trajectories are concentric circles centered at the origin. D) The trajectories are line segments that approach the origin as t  \rightarrow\infty .
Which of the following is an accurate statement regarding the behavior of the solution trajectories of this system as t \rightarrow\infty ?

A) All trajectories spiral towards the origin as t \rightarrow\infty .
B) All trajectories spiral away from the origin as t \rightarrow\infty .
C) The trajectories are concentric circles centered at the origin.
D) The trajectories are line segments that approach the origin as t \rightarrow\infty .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
60
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Which of these are eigenvalues for this system? Select all that apply.</strong> A) 0 B) -16 C) 4i D) -4i E) -4 F) 4 G) 16
Which of these are eigenvalues for this system? Select all that apply.

A) 0
B) -16
C) 4i
D) -4i
E) -4
F) 4
G) 16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
61
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select the vectors from this list that, together, constitute a fundamental set of solutions for this system.</strong> A)   \left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)   B)   \left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)   C)   \left[\begin{array}{l}-\cos (6 t) \\ \sin (6 t) \\ \cos (6 t)\end{array}\right)   D)   \left(\begin{array}{l}\cos (6 t) \\ \sin (6 t) \\ -\cos (6 t)\end{array}\right)   E)   \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\cos (6 t)\end{array}\right)   F)   \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\sin (6 t)\end{array}\right)   G)   \left[\begin{array}{l}-\sin (6 t) \\ \cos (6 t) \\ \sin (6 t)\end{array}\right)
Select the vectors from this list that, together, constitute a fundamental set of solutions for this system.

A) (010) \left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)
B) (100) \left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)
C) [cos(6t)sin(6t)cos(6t)) \left[\begin{array}{l}-\cos (6 t) \\ \sin (6 t) \\ \cos (6 t)\end{array}\right)
D) (cos(6t)sin(6t)cos(6t)) \left(\begin{array}{l}\cos (6 t) \\ \sin (6 t) \\ -\cos (6 t)\end{array}\right)
E) (sin(6t)cos(6t)cos(6t)) \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\cos (6 t)\end{array}\right)
F) (sin(6t)cos(6t)sin(6t)) \left(\begin{array}{l}\sin (6 t) \\ \cos (6 t) \\ -\sin (6 t)\end{array}\right)
G) [sin(6t)cos(6t)sin(6t)) \left[\begin{array}{l}-\sin (6 t) \\ \cos (6 t) \\ \sin (6 t)\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
62
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Determine the eigenvalues for this system and describe the behavior of the solution trajectories as t  \rightarrow\infty .</strong> A)  \lambda=1 \pm i \sqrt{77}  ; all solution trajectories spiral toward the origin as   t \rightarrow \infty  . B)   \lambda=1 \pm i \sqrt{77}  ; all solution trajectories spiral away from the origin as   t \rightarrow \infty  . C)   \lambda=1 \pm i \sqrt{77} ;   the origin is a saddle. D)   \lambda=-1 \pm i \sqrt{77}  ; all solution trajectories spiral toward the origin as   t \rightarrow \infty  . E)   \lambda=-1 \pm i \sqrt{77}  ; all solution trajectories spiral away from the origin as   t \rightarrow \infty  .
Determine the eigenvalues for this system and describe the behavior of the solution trajectories as t \rightarrow\infty .

A) λ=1±i77 \lambda=1 \pm i \sqrt{77} ; all solution trajectories spiral toward the origin as t t \rightarrow \infty .
B) λ=1±i77 \lambda=1 \pm i \sqrt{77} ; all solution trajectories spiral away from the origin as t t \rightarrow \infty .
C) λ=1±i77; \lambda=1 \pm i \sqrt{77} ; the origin is a saddle.
D) λ=1±i77 \lambda=-1 \pm i \sqrt{77} ; all solution trajectories spiral toward the origin as t t \rightarrow \infty .
E) λ=1±i77 \lambda=-1 \pm i \sqrt{77} ; all solution trajectories spiral away from the origin as t t \rightarrow \infty .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
63
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations ‪   (i) For what real values of α does this system have complex eigenvalues? (ii) What do the solution trajectories look like for the values of α found in part (i)?
(i) For what real values of α does this system have complex eigenvalues?
(ii) What do the solution trajectories look like for the values of α found in part (i)?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
64
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   =   x What is the bifurcation value of α, if any? = Consider the first-order homogeneous system of linear differential equations   =   x What is the bifurcation value of α, if any? x
What is the bifurcation value of α, if any?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
65
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these statements is true?</strong> A) For any real number  \alpha , the eigenvalues for this system are real numbers. B) For -8 <  \alpha  < 0, the trajectories spiral towards the origin as t  \rightarrow\infty . C) For  \alpha  < -8, the trajectories spiral away from the origin as t  \rightarrow\infty . D) For  \alpha = 8, the eigenvalues are purely imaginary and the trajectories are concentric circles centered at the origin.
Which of these statements is true?

A) For any real number α\alpha , the eigenvalues for this system are real numbers.
B) For -8 < α\alpha < 0, the trajectories spiral towards the origin as t \rightarrow\infty .
C) For α\alpha < -8, the trajectories spiral away from the origin as t \rightarrow\infty .
D) For α\alpha = 8, the eigenvalues are purely imaginary and the trajectories are concentric circles centered at the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
66
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   The eigenvalues and corresponding eigenvectors for this system are:   Which of these is the general solution for this system?</strong> A)  \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t)\end{array}\right)+C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right]
The eigenvalues and corresponding eigenvectors for this system are:
 <strong>Consider the first-order homogeneous system of linear differential equations   The eigenvalues and corresponding eigenvectors for this system are:   Which of these is the general solution for this system?</strong> A)  \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t)\end{array}\right)+C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   B)   \mathbf{x}(t)=C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)   C)   \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right)   D)   \mathbf{x}(t)=C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right]
Which of these is the general solution for this system?

A) x(t)=C1et[sin(5t)cos(5t))+C2et[sin(5t)cos(5t)) \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}\sin (5 t) \\ -\cos (5 t)\end{array}\right)+C_{2} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)
B) x(t)=C1et(sin(5t)cos(5t))+C2et(sin(5t)cos(5t)) \mathbf{x}(t)=C_{1} e^{t}\left(\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right)
C) x(t)=C1et[sin(5t)cos(5t)]+C2et[cos(5t)sin(5t)) \mathbf{x}(t)=C_{1} e^{t}\left[\begin{array}{l}-\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right)
D) x(t)=C1et{sin(5t)cos(5t)]+C2et[cos(5t)sin(5t)] \mathbf{x}(t)=C_{1} e^{t}\left\{\begin{array}{l}\sin (5 t) \\ \cos (5 t)\end{array}\right]+C_{2} e^{t}\left[\begin{array}{l}\cos (5 t) \\ -\sin (5 t)\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
67
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix ?(t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{ll}e^{4 t}-4 e^{-5 t} \\ e^{4 t} 5 e^{-5 t}\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{ll}-e^{4 t} & -5 e^{-5 t} \\ e^{4 t} & 4 e^{-5 t}\end{array}\right)   C)   \Psi(t)=\left(\begin{array}{l}e^{4 t} 4 e^{-5 t} \\ e^{4 t}-5 e^{-5 t}\end{array}\right)   D)   \psi(t)=\left(\begin{array}{l}e^{-4 t} 4 e^{-5 t} \\ e^{-4 t}-5 e^{-5 t}\end{array}\right)
Which of these is the fundamental matrix ?(t) for this system?

A) ψ(t)=(e4t4e5te4t5e5t) \psi(t)=\left(\begin{array}{ll}e^{4 t}-4 e^{-5 t} \\ e^{4 t} 5 e^{-5 t}\end{array}\right)
B) Ψ(t)=(e4t5e5te4t4e5t) \Psi(t)=\left(\begin{array}{ll}-e^{4 t} & -5 e^{-5 t} \\ e^{4 t} & 4 e^{-5 t}\end{array}\right)
C) Ψ(t)=(e4t4e5te4t5e5t) \Psi(t)=\left(\begin{array}{l}e^{4 t} 4 e^{-5 t} \\ e^{4 t}-5 e^{-5 t}\end{array}\right)
D) ψ(t)=(e4t4e5te4t5e5t) \psi(t)=\left(\begin{array}{l}e^{-4 t} 4 e^{-5 t} \\ e^{-4 t}-5 e^{-5 t}\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
68
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)    (t) for this system?

A) ψ(t)=(7e1te6t8e1t0) \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)
B) Ψ(t)=(7e1/08e1te6t) \Psi(t)=\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)
C) ψ(t)=(7e1te6t8e1t0) \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)
D) ψ(t)=(7e1t08e1te6t) \psi(t)=\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
69
Consider the first-order homogeneous system of linear differential equations
? Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does
Given a fundamental matrix Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does  (t) for the system, for what constant vector Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does  does
Consider the first-order homogeneous system of linear differential equations ?   Given a fundamental matrix   (t) for the system, for what constant vector   does
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
70
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t}-3 e^{-12 t}\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t} 3 e^{-12 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & -9 e^{9 t} \\ 16 e^{-16 t} & 16 e^{9 t}\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & 9 e^{9 t} \\ -16 e^{-16 t} & 16 e^{9 t}\end{array}\right)
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)   \psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t}-3 e^{-12 t}\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t} 3 e^{-12 t}\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & -9 e^{9 t} \\ 16 e^{-16 t} & 16 e^{9 t}\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & 9 e^{9 t} \\ -16 e^{-16 t} & 16 e^{9 t}\end{array}\right)    (t) for this system?

A) ψ(t)=(4e12t4e12t3e12t3e12t) \psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t}-3 e^{-12 t}\end{array}\right)
B) Ψ(t)=(4e12t4e12t3e12t3e12t) \Psi(t)=\left(\begin{array}{l}4 e^{12 t}-4 e^{-12 t} \\ 3 e^{12 t} 3 e^{-12 t}\end{array}\right)
C) ψ(t)=(9e16t9e9t16e16t16e9t) \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & -9 e^{9 t} \\ 16 e^{-16 t} & 16 e^{9 t}\end{array}\right)
D) ψ(t)=(9e16t9e9t16e16t16e9t) \psi(t)=\left(\begin{array}{ll}9 e^{-16 t} & 9 e^{9 t} \\ -16 e^{-16 t} & 16 e^{9 t}\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
71
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   =   x The columns of the fundamental matrix of this system,   (t), must be linearly independent. = Consider the first-order homogeneous system of linear differential equations   =   x The columns of the fundamental matrix of this system,   (t), must be linearly independent. x
The columns of the fundamental matrix of this system, Consider the first-order homogeneous system of linear differential equations   =   x The columns of the fundamental matrix of this system,   (t), must be linearly independent. (t), must be linearly independent.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
72
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   The fundamental matrix of this system,   (t), is invertible.
The fundamental matrix of this system, Consider the first-order homogeneous system of linear differential equations   The fundamental matrix of this system,   (t), is invertible. (t), is invertible.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
73
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t)\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right]
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t)\end{array}\right)   B)   \Psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right]    (t) for this system?

A) ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)) \psi(t)=\left(\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t)\end{array}\right)
B) Ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)) \Psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t)\end{array}\right)
C) ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)) \psi(t)=\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right)
D) ψ(t)=(sin(3t)cos(3t)cos(3t)sin(3t)] \psi(t)=\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t)\end{array}\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
74
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,    is an arbitrary constant vector.</strong> A)   \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}   B)   x(t)=\psi(t) \mathbf{C}   C)   \mathbf{x}(t)=\psi(0) \mathbf{C}   D)   \mathbf{x}(t)=\psi(t)+C
Given a fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,    is an arbitrary constant vector.</strong> A)   \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}   B)   x(t)=\psi(t) \mathbf{C}   C)   \mathbf{x}(t)=\psi(0) \mathbf{C}   D)   \mathbf{x}(t)=\psi(t)+C    (t) for the system, which of these is the general solution of this system?
Here,  <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,    is an arbitrary constant vector.</strong> A)   \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}   B)   x(t)=\psi(t) \mathbf{C}   C)   \mathbf{x}(t)=\psi(0) \mathbf{C}   D)   \mathbf{x}(t)=\psi(t)+C    is an arbitrary constant vector.

A) x(t)=ψ1(t)C \mathbf{x}(t)=\psi^{-1}(t) \mathbf{C}
B) x(t)=ψ(t)C x(t)=\psi(t) \mathbf{C}
C) x(t)=ψ(0)C \mathbf{x}(t)=\psi(0) \mathbf{C}
D) x(t)=ψ(t)+C \mathbf{x}(t)=\psi(t)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
75
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)   B)   \psi(t)=\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t)\end{array}\right)
Which of these is the fundamental matrix  <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)   B)   \psi(t)=\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   C)   \psi(t)=\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)   D)   \psi(t)=\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t)\end{array}\right)    (t) for this system?

A) ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)
B) ψ(t)={e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)
C) ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t)\end{array}\right)
D) ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t)\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
76
Consider the first-order homogeneous system of linear differential equations
X = <strong>Consider the first-order homogeneous system of linear differential equations X =   x Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here, C =   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =    (t) + C C) x(t) =    <sup>-1</sup>(t)C D) x(t) =   (0)C x
Given a fundamental matrix <strong>Consider the first-order homogeneous system of linear differential equations X =   x Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here, C =   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =    (t) + C C) x(t) =    <sup>-1</sup>(t)C D) x(t) =   (0)C (t) for the system, which of these is the general solution of this system? Here, C = <strong>Consider the first-order homogeneous system of linear differential equations X =   x Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here, C =   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =    (t) + C C) x(t) =    <sup>-1</sup>(t)C D) x(t) =   (0)C is an arbitrary constant vector.

A) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t)C
B) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t) + C
C) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 -1(t)C
D) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (0)C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
77
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)
Which of these is the fundamental matrix <strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)  (t) for this system?

A)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)
B)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)
C)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)
D)<strong>Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t) for this system?</strong> A)  B)  C)  D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
78
Consider the first-order homogeneous system of linear differential equations
<strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =   (t) + C C) x(t) =   <sup>-1</sup>(t)C D) x(t) =   (0)C
Given a fundamental matrix <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =   (t) + C C) x(t) =   <sup>-1</sup>(t)C D) x(t) =   (0)C (t) for the system, which of these is the general solution of this system? Here, <strong>Consider the first-order homogeneous system of linear differential equations   Given a fundamental matrix   (t) for the system, which of these is the general solution of this system? Here,   is an arbitrary constant vector.</strong> A) x(t) =   (t)C B) x(t) =   (t) + C C) x(t) =   <sup>-1</sup>(t)C D) x(t) =   (0)C is an arbitrary constant vector.

A) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t)C
B) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (t) + C
C) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 -1(t)C
D) x(t) = 11eec32a_dc1b_6687_8720_5fa3d39c7544_TBW1042_11 (0)C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
79
Consider the first-order homogeneous system of linear differential equations
 <strong>Consider the first-order homogeneous system of linear differential equations   Select a pair of vectors from these choices that constitute a fundamental set of solutions for this system.</strong> A)   \left(\begin{array}{l}e^{-7 t} \\ 0\end{array}\right)   B)  \left(\begin{array}{l}0 \\ e^{-7 t}\end{array}\right)   C)   \left(\begin{array}{l}e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)   D)  \left(\begin{array}{l}e^{-7 t} \\ 2(t+2) e^{-7 t}\end{array}\right)   E)   \left(\begin{array}{l}t e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)   F)  \left(\begin{array}{l}e^{-7 t} \\ t e^{-7 t}\end{array}\right)
Select a pair of vectors from these choices that constitute a fundamental set of solutions for this system.

A) (e7t0) \left(\begin{array}{l}e^{-7 t} \\ 0\end{array}\right)
B) (0e7t) \left(\begin{array}{l}0 \\ e^{-7 t}\end{array}\right)
C) (e7t2e7t) \left(\begin{array}{l}e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)
D) (e7t2(t+2)e7t) \left(\begin{array}{l}e^{-7 t} \\ 2(t+2) e^{-7 t}\end{array}\right)
E) (te7t2e7t) \left(\begin{array}{l}t e^{-7 t} \\ 2 e^{-7 t}\end{array}\right)
F) (e7tte7t) \left(\begin{array}{l}e^{-7 t} \\ t e^{-7 t}\end{array}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
80
Consider the first-order homogeneous system of linear differential equations
Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system?
What is the general solution of this system?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 97 في هذه المجموعة.