Deck 3: Second-Order Linear Differential Equations

ملء الشاشة (f)
exit full mode
سؤال
What is the characteristic equation for the second-order homogeneous differential equation <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> ?

A) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> - 14r = 0
B) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> + 12r - 26 = 0
C) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> - 14 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> = 0
D) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> + 12 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 <div style=padding-top: 35px> - 26r = 0
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?

A) <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> (10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> + 1) = 0
B) 10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> + 1y = 0
C) <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> (10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> + 1y) = 0
D) 10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> + 1 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> = 0
E) 10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 <div style=padding-top: 35px> + 1y = 0
سؤال
For which of these differential equations is the characteristic equation given by 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 <div style=padding-top: 35px> + 7 = 0?

A) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 <div style=padding-top: 35px> + 7 = 0
B) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 <div style=padding-top: 35px> + 7 = 0
C) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 <div style=padding-top: 35px> + 7y = 0
D) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 <div style=padding-top: 35px> + 7y = 0
سؤال
For which of these differential equations is the characteristic equation given by <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> ?

A) <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> + 4 <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> - 21y = 0
B) ( <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> - 3)( <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> + 7) = 0
C) <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> + 4 <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> - 21 = 0
D) <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> - 4 <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 <div style=padding-top: 35px> - 21 = 0
سؤال
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   ? Select all that apply.</strong> A)   y_{1}=8 e^{-2 t}+2 e^{2 t}   B)   y_{2}=\mathrm{Ce}^{-2 t}  , where   \mathrm{C}   is any real constant C)   y_{3}=8\left(e^{2 t}+e^{-2 t}\right)   D)   y_{4}=C e^{2 t}  , where   C   is any real constant E)   y_{5}=\left(C_{1} e^{2 t}\right) \cdot\left(C_{2} e^{-2 t}\right)  , where   C_{1}   and   C_{2}   are any real constants F)   y_{6}=2 e^{-2 t}   G)   y_{7}=C\left(e^{-2 t}+e^{2 t}\right)  , where   C   is any real constant <div style=padding-top: 35px>  ?
Select all that apply.

A) y1=8e2t+2e2t y_{1}=8 e^{-2 t}+2 e^{2 t}
B) y2=Ce2t y_{2}=\mathrm{Ce}^{-2 t} , where C \mathrm{C} is any real constant
C) y3=8(e2t+e2t) y_{3}=8\left(e^{2 t}+e^{-2 t}\right)
D) y4=Ce2t y_{4}=C e^{2 t} , where C C is any real constant
E) y5=(C1e2t)(C2e2t) y_{5}=\left(C_{1} e^{2 t}\right) \cdot\left(C_{2} e^{-2 t}\right) , where C1 C_{1} and C2 C_{2} are any real constants
F) y6=2e2t y_{6}=2 e^{-2 t}
G) y7=C(e2t+e2t) y_{7}=C\left(e^{-2 t}+e^{2 t}\right) , where C C is any real constant
سؤال
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   ? Select all that apply.</strong> A)   y_{1}=C e^{-\frac{4}{3} t^{2}}  , where   C   is any real constant B)   y_{2}=-4 e^{-\frac{4}{3} t}+3 e^{\frac{4}{3} t}   C)   y_{3}=C e^{\frac{3}{4} t}  , where   C   is any real constant D)   y_{4}=C\left(e^{-\frac{4}{3} t}+e^{\frac{4}{3} t}\right)  , where   C   is any real constant E)   y_{1}=3 e^{\frac{3}{4} t}+-4 e^{-\frac{3}{4} t}   F)   y_{6}=t e^{3}   <div style=padding-top: 35px>  ?
Select all that apply.

A) y1=Ce43t2 y_{1}=C e^{-\frac{4}{3} t^{2}} , where C C is any real constant
B) y2=4e43t+3e43t y_{2}=-4 e^{-\frac{4}{3} t}+3 e^{\frac{4}{3} t}
C) y3=Ce34t y_{3}=C e^{\frac{3}{4} t} , where C C is any real constant
D) y4=C(e43t+e43t) y_{4}=C\left(e^{-\frac{4}{3} t}+e^{\frac{4}{3} t}\right) , where C C is any real constant
E) y1=3e34t+4e34t y_{1}=3 e^{\frac{3}{4} t}+-4 e^{-\frac{3}{4} t}
F) y6=te3 y_{6}=t e^{3}
سؤال
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=C\left(e^{5 t}+e^{10 t}\right)   B)   y=C_{1} e^{-5 t}+C_{2} e^{-10 t}   C)   y=C_{1} e^{5 t}+C_{2} e^{10 t}   D)   y=C\left(e^{-5 t}+e^{-10 t}\right)   E)   y=C_{1} e^{-5 t}+C_{2} e^{-10 t}+y+\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)   F)   y=\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)   <div style=padding-top: 35px>  are arbitrary real constants.

A) y=C(e5t+e10t) y=C\left(e^{5 t}+e^{10 t}\right)
B) y=C1e5t+C2e10t y=C_{1} e^{-5 t}+C_{2} e^{-10 t}
C) y=C1e5t+C2e10t y=C_{1} e^{5 t}+C_{2} e^{10 t}
D) y=C(e5t+e10t) y=C\left(e^{-5 t}+e^{-10 t}\right)
E) y=C1e5t+C2e10t+y+(C1e5t)(C2e10t) y=C_{1} e^{-5 t}+C_{2} e^{-10 t}+y+\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)
F) y=(C1e5t)(C2e10t) y=\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)
سؤال
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=4+\mathrm{Ce}^{-6 t}   B)   y=C_{1} e^{-4 t}+C_{2} e^{-6 t}   C)   y=C_{1}+C_{2} e^{-6 t}   D)   y=C_{1}+C_{2} e^{6 t}   E)   y=4+C e^{6 t}   <div style=padding-top: 35px>  are arbitrary real constants.

A) y=4+Ce6t y=4+\mathrm{Ce}^{-6 t}
B) y=C1e4t+C2e6t y=C_{1} e^{-4 t}+C_{2} e^{-6 t}
C) y=C1+C2e6t y=C_{1}+C_{2} e^{-6 t}
D) y=C1+C2e6t y=C_{1}+C_{2} e^{6 t}
E) y=4+Ce6t y=4+C e^{6 t}
سؤال
For which of the following values of r is y = C  <strong>For which of the following values of r is y = C   a solution of the second-order homogeneous differential equation 4   + y = 0? Select all that apply.</strong> A)   -\frac{1}{4}   B) -4 C) 0 D)   \frac{1}{4}   E) 4 <div style=padding-top: 35px>  a solution of the second-order homogeneous differential equation 4  <strong>For which of the following values of r is y = C   a solution of the second-order homogeneous differential equation 4   + y = 0? Select all that apply.</strong> A)   -\frac{1}{4}   B) -4 C) 0 D)   \frac{1}{4}   E) 4 <div style=padding-top: 35px>  + y = 0? Select all that apply.

A) 14 -\frac{1}{4}
B) -4
C) 0
D) 14 \frac{1}{4}
E) 4
سؤال
What is the solution of the initial value problem
 <strong>What is the solution of the initial value problem  </strong> A)   y=-\frac{4}{3}-\frac{2}{3}   B)   y=-2 t+e^{-3 t}   C)   y=\frac{2}{3} e^{-3 t}-\frac{11}{3}   D)   y=-\frac{2}{3} e^{-3 t}+\frac{11}{3}   <div style=padding-top: 35px>

A) y=4323 y=-\frac{4}{3}-\frac{2}{3}
B) y=2t+e3t y=-2 t+e^{-3 t}
C) y=23e3t113 y=\frac{2}{3} e^{-3 t}-\frac{11}{3}
D) y=23e3t+113 y=-\frac{2}{3} e^{-3 t}+\frac{11}{3}
سؤال
Consider the second-order homogeneous differential equation  <strong>Consider the second-order homogeneous differential equation   What is the general solution of this differential equation? Here, C, C<sub>1</sub> , and C<sub>2</sub> are arbitrary real constants.</strong> A)   y=C_{1} e^{-4 t}+C_{2} e^{-8 t}   B)   y=C_{1} e^{4 t}+C_{2} e^{8 t}   C)   y=C_{1} e^{t}+C_{2} e^{32 t}   D)   y=C_{1} e^{-t}+C_{2} e^{-32 t}   E)   y=C_{1} e^{4 t}+C_{2} e^{-32 t}   <div style=padding-top: 35px>
What is the general solution of this differential equation? Here, C, C1 , and C2 are arbitrary real constants.

A) y=C1e4t+C2e8t y=C_{1} e^{-4 t}+C_{2} e^{-8 t}
B) y=C1e4t+C2e8t y=C_{1} e^{4 t}+C_{2} e^{8 t}
C) y=C1et+C2e32t y=C_{1} e^{t}+C_{2} e^{32 t}
D) y=C1et+C2e32t y=C_{1} e^{-t}+C_{2} e^{-32 t}
E) y=C1e4t+C2e32t y=C_{1} e^{4 t}+C_{2} e^{-32 t}
سؤال
Consider the second-order homogeneous differential equation  <strong>Consider the second-order homogeneous differential equation   If the differential equation is equipped with the initial conditions   what is the solution of the resulting initial value problem?</strong> A)   y=9 e^{2 t}-3 e^{4 t}   B)   y=6 e^{2 t}+6 e^{4 t}   C)   y=-9 e^{-2 t}-3 e^{-4 t}   D)   y=6 e^{-2 t}+6 e^{-4 t}   <div style=padding-top: 35px>
If the differential equation is equipped with the initial conditions  <strong>Consider the second-order homogeneous differential equation   If the differential equation is equipped with the initial conditions   what is the solution of the resulting initial value problem?</strong> A)   y=9 e^{2 t}-3 e^{4 t}   B)   y=6 e^{2 t}+6 e^{4 t}   C)   y=-9 e^{-2 t}-3 e^{-4 t}   D)   y=6 e^{-2 t}+6 e^{-4 t}   <div style=padding-top: 35px>
what is the solution of the resulting initial value problem?

A) y=9e2t3e4t y=9 e^{2 t}-3 e^{4 t}
B) y=6e2t+6e4t y=6 e^{2 t}+6 e^{4 t}
C) y=9e2t3e4t y=-9 e^{-2 t}-3 e^{-4 t}
D) y=6e2t+6e4t y=6 e^{-2 t}+6 e^{-4 t}
سؤال
Consider the initial value problem
<strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px>
What is the solution of this initial value problem?

A) y = -4 + 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px>
B) y = -4 + 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px>
C) y = -2 + 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px>
D) y = -2 - 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px>
E) y = -4t - 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px> F) y = -2t - 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   <div style=padding-top: 35px>
سؤال
Consider the initial value problem
Consider the initial value problem   Fill in the blank:   ________<div style=padding-top: 35px>
Fill in the blank: Consider the initial value problem   Fill in the blank:   ________<div style=padding-top: 35px> ________
سؤال
Consider the initial value problem
 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A)   y=\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}   B)   y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}   C)   y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}   D)   y=\left(\frac{a}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{a}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}   <div style=padding-top: 35px>
What is the solution of this initial value problem?

A) y=(α287)e74t+(α2+87)e74t y=\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}
B) y=(α2+87)e74t+(α287)e74t y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}
C) y=(α2+87)e47t+(α287)e47t y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}
D) y=(a287)e47t+(a2+87)e47t y=\left(\frac{a}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{a}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}
سؤال
Consider the initial value problem
 <strong>Consider the initial value problem   For what value of ? does the solution of this initial value problem tend to zero as t  \rightarrow   \infty ?</strong> A) - 6 B) - C) 0 D) 6 E)   <div style=padding-top: 35px>
For what value of ? does the solution of this initial value problem tend to zero as t \rightarrow \infty ?

A) - 6
B) -
C) 0
D) 6
E)  <strong>Consider the initial value problem   For what value of ? does the solution of this initial value problem tend to zero as t  \rightarrow   \infty ?</strong> A) - 6 B) - C) 0 D) 6 E)   <div style=padding-top: 35px>
سؤال
Consider the initial value problem
 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A)   y=\frac{20}{3} e^{-\frac{3}{2} t}-\frac{14}{3} e^{-\frac{3}{4} t}   B)   y=\frac{4}{3} e^{\frac{3}{2} t}-\frac{2}{3} e^{\frac{3}{4} t}   C)   y=-\frac{14}{3} e^{-\frac{3}{2} t}+\frac{20}{3} e^{-\frac{3}{4} t}   D)   y=-\frac{2}{3} e^{\frac{3}{2} t}+\frac{4}{3} e^{\frac{3}{4} t}   <div style=padding-top: 35px>
What is the solution of this initial value problem?

A) y=203e32t143e34t y=\frac{20}{3} e^{-\frac{3}{2} t}-\frac{14}{3} e^{-\frac{3}{4} t}
B) y=43e32t23e34t y=\frac{4}{3} e^{\frac{3}{2} t}-\frac{2}{3} e^{\frac{3}{4} t}
C) y=143e32t+203e34t y=-\frac{14}{3} e^{-\frac{3}{2} t}+\frac{20}{3} e^{-\frac{3}{4} t}
D) y=23e32t+43e34t y=-\frac{2}{3} e^{\frac{3}{2} t}+\frac{4}{3} e^{\frac{3}{4} t}
سؤال
Consider the initial value problem
Consider the initial value problem   What is the t-coordinate of the local extreme value of y = y(t) on the interval (0, ∞)? Enter your answer as a decimal accurate to three decimal places.<div style=padding-top: 35px>
What is the t-coordinate of the local extreme value of y = y(t) on the interval (0, ∞)? Enter your answer as a decimal accurate to three decimal places.
سؤال
Consider the initial value problem
 <strong>Consider the initial value problem   On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.</strong> A)   (-4,-3.5)   B)   \left(\frac{11}{32}, \frac{25}{32}\right)   C)   (0,1)   D)   \left(\frac{1}{8}, 1\right)   E)   (-\infty, \infty)   <div style=padding-top: 35px>
On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.

A) (4,3.5) (-4,-3.5)
B) (1132,2532) \left(\frac{11}{32}, \frac{25}{32}\right)
C) (0,1) (0,1)
D) (18,1) \left(\frac{1}{8}, 1\right)
E) (,) (-\infty, \infty)
سؤال
Consider the initial value problem
 <strong>Consider the initial value problem   On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.</strong> A)   (0,2 \pi)   B)   (-2 \pi, 2 \pi)   C)   (0, \infty)   D)   \left(\frac{\pi}{12}, \frac{5 \pi}{4}\right)   E)   \left(0, \frac{\pi}{12}\right)   F)   \left(-\frac{5 \pi}{4}, \frac{5 \pi}{8}\right)   <div style=padding-top: 35px>
On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.

A) (0,2π) (0,2 \pi)
B) (2π,2π) (-2 \pi, 2 \pi)
C) (0,) (0, \infty)
D) (π12,5π4) \left(\frac{\pi}{12}, \frac{5 \pi}{4}\right)
E) (0,π12) \left(0, \frac{\pi}{12}\right)
F) (5π4,5π8) \left(-\frac{5 \pi}{4}, \frac{5 \pi}{8}\right)
سؤال
Consider the initial value problem
<strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . <div style=padding-top: 35px>
Which of these statements are true? Select all that apply.

A) There exists a nonzero real number r such that y(t) = <strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . <div style=padding-top: 35px> is a solution of the initial value problem.
B) This initial value problem has only one solution on the interval (-7, 5).
C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t.
D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval <strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . <div style=padding-top: 35px> .
E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval <strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . <div style=padding-top: 35px> .
سؤال
Suppose that Y1 and Y2 are both solutions of the differential equation  <strong>Suppose that Y<sub>1</sub> and Y<sub>2</sub> are both solutions of the differential equation   . Which of the following must also be solutions of this differential equation? Select all that apply. Here, C<sub>1</sub> , and C<sub>2</sub> are arbitrary real constants.</strong> A)   5 y_{1}-4 y_{2}   B)   t y_{1}   C)   C_{1}   D)   \left(C_{1} y_{1}\right) \cdot\left(C_{2} y_{2}\right)   E)   C_{1}\left(y_{1}+y_{2}\right)   F)   C_{1}\left(7 y_{1}-9 y_{2}\right)-C_{2}\left(2 y_{1}-7 y_{2}\right.   <div style=padding-top: 35px>  .
Which of the following must also be solutions of this differential equation? Select all that apply. Here, C1 , and C2 are arbitrary real constants.

A) 5y14y2 5 y_{1}-4 y_{2}
B) ty1 t y_{1}
C) C1 C_{1}
D) (C1y1)(C2y2) \left(C_{1} y_{1}\right) \cdot\left(C_{2} y_{2}\right)
E) C1(y1+y2) C_{1}\left(y_{1}+y_{2}\right)
F) C1(7y19y2)C2(2y17y2 C_{1}\left(7 y_{1}-9 y_{2}\right)-C_{2}\left(2 y_{1}-7 y_{2}\right.
سؤال
If Y1 and Y2 are both solutions of the differential equation If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of the differential equation   then Y<sub>1</sub> - Y<sub>2</sub> is also a solution of this equation.<div style=padding-top: 35px> then Y1 - Y2 is also a solution of this equation.
سؤال
Consider the differential equation <strong>Consider the differential equation   Which of the following statements is true?</strong> A) If 2   is a solution of this differential equation, then so is   . B) If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of this differential equation, then Y<sub>1</sub> - Y<sub>2</sub> cannot be a solution of it. C) The Principle of Superposition guarantees that if y<sub>1</sub> and y<sub>2</sub> are both solutions of this differential equation, then C<sub>1</sub> y<sub>1</sub> + C<sub>2</sub> y<sub>2</sub> must also be a solution of it, for any choice of real constants and . D) There exist nonzero real constants C<sub>1</sub> and C<sub>2</sub> such that C<sub>1</sub> y<sub>1</sub> - C<sub>2</sub> y<sub>2</sub> is a solution of this differential equation. <div style=padding-top: 35px>
Which of the following statements is true?

A) If 2 <strong>Consider the differential equation   Which of the following statements is true?</strong> A) If 2   is a solution of this differential equation, then so is   . B) If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of this differential equation, then Y<sub>1</sub> - Y<sub>2</sub> cannot be a solution of it. C) The Principle of Superposition guarantees that if y<sub>1</sub> and y<sub>2</sub> are both solutions of this differential equation, then C<sub>1</sub> y<sub>1</sub> + C<sub>2</sub> y<sub>2</sub> must also be a solution of it, for any choice of real constants and . D) There exist nonzero real constants C<sub>1</sub> and C<sub>2</sub> such that C<sub>1</sub> y<sub>1</sub> - C<sub>2</sub> y<sub>2</sub> is a solution of this differential equation. <div style=padding-top: 35px> is a solution of this differential equation, then so is <strong>Consider the differential equation   Which of the following statements is true?</strong> A) If 2   is a solution of this differential equation, then so is   . B) If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of this differential equation, then Y<sub>1</sub> - Y<sub>2</sub> cannot be a solution of it. C) The Principle of Superposition guarantees that if y<sub>1</sub> and y<sub>2</sub> are both solutions of this differential equation, then C<sub>1</sub> y<sub>1</sub> + C<sub>2</sub> y<sub>2</sub> must also be a solution of it, for any choice of real constants and . D) There exist nonzero real constants C<sub>1</sub> and C<sub>2</sub> such that C<sub>1</sub> y<sub>1</sub> - C<sub>2</sub> y<sub>2</sub> is a solution of this differential equation. <div style=padding-top: 35px> .
B) If Y1 and Y2 are both solutions of this differential equation, then Y1 - Y2 cannot be a solution of it.
C) The Principle of Superposition guarantees that if y1 and y2 are both solutions of this differential equation, then C1 y1 + C2 y2 must also be a solution of it, for any choice of real constants and .
D) There exist nonzero real constants C1 and C2 such that C1 y1 - C2 y2 is a solution of this differential equation.
سؤال
Compute the Wronskian of the pair of functions <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8   <div style=padding-top: 35px>

A) -2 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8   <div style=padding-top: 35px>
B) -6 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8   <div style=padding-top: 35px>
C) -8 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8   <div style=padding-top: 35px>
D) -6
E) -8 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8   <div style=padding-top: 35px>
سؤال
Compute the Wronskian of the pair of functions sin(5t) and cos(5t).

A) -5
B) -4
C) 1
D) 4
E) 5
سؤال
Compute the Wronskian of the pair of functions 2t Compute the Wronskian of the pair of functions 2t   and 4   .<div style=padding-top: 35px> and 4 Compute the Wronskian of the pair of functions 2t   and 4   .<div style=padding-top: 35px> .
سؤال
Consider the pair of functions y1 = ln t and y1 = t ln t.
Compute the Wronskian of this function pair.

A) 1t2 \frac{1}{t^{2}}
B) 11 \frac{1}{1}
C) lntt \frac{\ln t}{t}
D) (lnt)2 (\ln t)^{2}
E) ln(t2) \ln \left(t^{2}\right)
سؤال
Consider the pair of functions y1 = ln t and y1 = t ln t.
Which of these statements is true?

A) Both y1 and y2 can be solutions of the differential equation  <strong>Consider the pair of functions y<sub>1</sub> = ln t and y<sub>1</sub> = t ln t. Which of these statements is true?</strong> A) Both y<sub>1</sub> and y<sub>2</sub> can be solutions of the differential equation   on the interval (0,  \infty ), where p(t) and q(t) are continuous on (0,  \infty ). B) The Wronskian for this function pair is strictly positive on (0,  \infty ). C) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (0,  \infty ). D) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (0,  \infty ). <div style=padding-top: 35px>  on the interval (0, \infty ), where p(t) and q(t) are continuous on (0, \infty ).
B) The Wronskian for this function pair is strictly positive on (0, \infty ).
C) Abel's theorem implies that y1 and y2 cannot both be solutions of any differential equation of the form  <strong>Consider the pair of functions y<sub>1</sub> = ln t and y<sub>1</sub> = t ln t. Which of these statements is true?</strong> A) Both y<sub>1</sub> and y<sub>2</sub> can be solutions of the differential equation   on the interval (0,  \infty ), where p(t) and q(t) are continuous on (0,  \infty ). B) The Wronskian for this function pair is strictly positive on (0,  \infty ). C) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (0,  \infty ). D) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (0,  \infty ). <div style=padding-top: 35px>  on the interval (0, \infty ).
D) The pair y1 and y2 constitutes a fundamental set of solutions to some second-order differential equation of the form  <strong>Consider the pair of functions y<sub>1</sub> = ln t and y<sub>1</sub> = t ln t. Which of these statements is true?</strong> A) Both y<sub>1</sub> and y<sub>2</sub> can be solutions of the differential equation   on the interval (0,  \infty ), where p(t) and q(t) are continuous on (0,  \infty ). B) The Wronskian for this function pair is strictly positive on (0,  \infty ). C) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (0,  \infty ). D) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (0,  \infty ). <div style=padding-top: 35px>  on the interval (0, \infty ).
سؤال
Consider the pair of functions y1 = t and y2 = 3t2.
Which of these statements are true? Select all that apply.

A) W[y1 , y2](t) > 0 for all values of t in the interval (-2, 2).
B) W[y1 , y1](t) = 3t2
C) The pair y1 and y2 constitutes a fundamental set of solutions to some second-order differential equation of the form <strong>Consider the pair of functions y<sub>1</sub> = t and y<sub>2</sub> = 3t<sup>2</sup>. Which of these statements are true? Select all that apply.</strong> A) W[y<sub>1</sub> , y<sub>2</sub>](t) > 0 for all values of t in the interval (-2, 2). B) W[y<sub>1</sub> , y<sub>1</sub>](t) = 3t<sup>2</sup> C) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (-2, 2). D) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (-2, 2). E) Since there exists a value of t<sub>0</sub> in the interval (-2, 2) for which W[y<sub>1</sub> ,y<sub>2</sub> ](t) = 0, there must exist a differential equation of the form   for which the pair y<sub>1</sub> and y<sub>2</sub> constitute a fundamental set of solutions on the interval (-2, 2). <div style=padding-top: 35px> on the interval (-2, 2).
D) Abel's theorem implies that y1 and y2 cannot both be solutions of any differential equation of the form <strong>Consider the pair of functions y<sub>1</sub> = t and y<sub>2</sub> = 3t<sup>2</sup>. Which of these statements are true? Select all that apply.</strong> A) W[y<sub>1</sub> , y<sub>2</sub>](t) > 0 for all values of t in the interval (-2, 2). B) W[y<sub>1</sub> , y<sub>1</sub>](t) = 3t<sup>2</sup> C) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (-2, 2). D) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (-2, 2). E) Since there exists a value of t<sub>0</sub> in the interval (-2, 2) for which W[y<sub>1</sub> ,y<sub>2</sub> ](t) = 0, there must exist a differential equation of the form   for which the pair y<sub>1</sub> and y<sub>2</sub> constitute a fundamental set of solutions on the interval (-2, 2). <div style=padding-top: 35px> on the interval (-2, 2).
E) Since there exists a value of t0 in the interval (-2, 2) for which W[y1 ,y2 ](t) = 0, there must exist a differential equation of the form <strong>Consider the pair of functions y<sub>1</sub> = t and y<sub>2</sub> = 3t<sup>2</sup>. Which of these statements are true? Select all that apply.</strong> A) W[y<sub>1</sub> , y<sub>2</sub>](t) > 0 for all values of t in the interval (-2, 2). B) W[y<sub>1</sub> , y<sub>1</sub>](t) = 3t<sup>2</sup> C) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (-2, 2). D) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (-2, 2). E) Since there exists a value of t<sub>0</sub> in the interval (-2, 2) for which W[y<sub>1</sub> ,y<sub>2</sub> ](t) = 0, there must exist a differential equation of the form   for which the pair y<sub>1</sub> and y<sub>2</sub> constitute a fundamental set of solutions on the interval (-2, 2). <div style=padding-top: 35px> for which the pair y1 and y2 constitute a fundamental set of solutions on the interval (-2, 2).
سؤال
Which of these is a fundamental set of solutions for the differential equation  <strong>Which of these is a fundamental set of solutions for the differential equation   Select all that apply.</strong> A)   y_{1}=\cos (10 t)   and   y_{2}=\sin (10 t)   B)   y_{3}=7 \cos (10 t)-20 \sin (10 t)   and   y_{4}=10 \cos (10 t)-14 \sin (10 t)   C)   y_{5}=e^{-10 t}   and   y_{6}=e^{10 t}   D)   y_{7}=e^{10 t} \sin (10 t)   and   y_{8}=e^{10 t} \cos (10 t)   E)   y_{9}=7 \sin (10 t)   and   y_{10}=7 \sin (10 t)-8 \cos (10 t)   <div style=padding-top: 35px>
Select all that apply.

A) y1=cos(10t) y_{1}=\cos (10 t) and y2=sin(10t) y_{2}=\sin (10 t)
B) y3=7cos(10t)20sin(10t) y_{3}=7 \cos (10 t)-20 \sin (10 t) and y4=10cos(10t)14sin(10t) y_{4}=10 \cos (10 t)-14 \sin (10 t)
C) y5=e10t y_{5}=e^{-10 t} and y6=e10t y_{6}=e^{10 t}
D) y7=e10tsin(10t) y_{7}=e^{10 t} \sin (10 t) and y8=e10tcos(10t) y_{8}=e^{10 t} \cos (10 t)
E) y9=7sin(10t) y_{9}=7 \sin (10 t) and y10=7sin(10t)8cos(10t) y_{10}=7 \sin (10 t)-8 \cos (10 t)
سؤال
The pair of functions The pair of functions   forms a fundamental set of solutions for the differential equation  <div style=padding-top: 35px>
forms a fundamental set of solutions for the differential equation The pair of functions   forms a fundamental set of solutions for the differential equation  <div style=padding-top: 35px>
سؤال
What is the characteristic equation for the second-order homogeneous differential equation  <strong>What is the characteristic equation for the second-order homogeneous differential equation   + 36y=0?</strong> A)   (r-6)(r+6)=0   B)   r^{2}+6=0   C)   r^{2}+36=0   D)   r^{2}+36 r=0   <div style=padding-top: 35px>  + 36y=0?

A) (r6)(r+6)=0 (r-6)(r+6)=0
B) r2+6=0 r^{2}+6=0
C) r2+36=0 r^{2}+36=0
D) r2+36r=0 r^{2}+36 r=0
سؤال
For which of these differential equations is the characteristic equation given by  <strong>For which of these differential equations is the characteristic equation given by   </strong> A)   y^{\prime \prime}+50=0   B)   y^{\prime \prime}+50 y=0   C)   y^{\prime \prime}-2 y^{\prime}+50=0   D)   y^{\prime \prime}-2 y^{\prime}+50 y=0   E)   \left(y^{\prime}-(1-7 i)\right)\left(y^{\prime}-(1+7 i)\right)=0   F)   \left(y^{\prime}-(1-7 i) y\right)\left(y^{\prime}-(1+7 i) y\right)=0   <div style=padding-top: 35px>

A) y+50=0 y^{\prime \prime}+50=0
B) y+50y=0 y^{\prime \prime}+50 y=0
C) y2y+50=0 y^{\prime \prime}-2 y^{\prime}+50=0
D) y2y+50y=0 y^{\prime \prime}-2 y^{\prime}+50 y=0
E) (y(17i))(y(1+7i))=0 \left(y^{\prime}-(1-7 i)\right)\left(y^{\prime}-(1+7 i)\right)=0
F) (y(17i)y)(y(1+7i)y)=0 \left(y^{\prime}-(1-7 i) y\right)\left(y^{\prime}-(1+7 i) y\right)=0
سؤال
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   Select all that apply.</strong> A)   y_{1}=2 \sin \left(\frac{6}{7} t\right)   B)   y_{2}=C\left(\cos \frac{6}{7} t+\sin \frac{6}{7} t\right)  , where   C   is any real constant C)   y_{3}=-2 \cos \left(\frac{7}{6} t\right)   D)   y_{4}=e^{\frac{6}{7} t}   E)   y_{5}=C_{1} e^{\frac{6}{7} t}+C_{2} e^{-\frac{6}{7} t}   where   C_{1}   and   C_{2}   are any real constants F)   y_{6}=5 e^{\frac{7}{6} t}+7 e^{-\frac{7}{6} t}   G)   y_{7}=\sin \left(\frac{6}{7} t\right)+C  , where   C   is any real constant <div style=padding-top: 35px>
Select all that apply.

A) y1=2sin(67t) y_{1}=2 \sin \left(\frac{6}{7} t\right)
B) y2=C(cos67t+sin67t) y_{2}=C\left(\cos \frac{6}{7} t+\sin \frac{6}{7} t\right) , where C C is any real constant
C) y3=2cos(76t) y_{3}=-2 \cos \left(\frac{7}{6} t\right)
D) y4=e67t y_{4}=e^{\frac{6}{7} t}
E) y5=C1e67t+C2e67t y_{5}=C_{1} e^{\frac{6}{7} t}+C_{2} e^{-\frac{6}{7} t} where C1 C_{1} and C2 C_{2} are any real constants
F) y6=5e76t+7e76t y_{6}=5 e^{\frac{7}{6} t}+7 e^{-\frac{7}{6} t}
G) y7=sin(67t)+C y_{7}=\sin \left(\frac{6}{7} t\right)+C , where C C is any real constant
سؤال
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   Select all that apply.</strong> A)   y_{1}=-\frac{1}{2} \pi \sin (3 t)   B)   y_{2}=e^{6 t} \cos (3 t)   C)   y_{3}=2 e^{6 t}   D)   y_{4}=5 e^{6 t}(\sin (3 t)+\cos (3 t))   E)   y_{5}=C e^{-6 t} \cos (3 t)  , where   C   is any real constant F)   y_{6}=e^{-6 t} \cos (3 t)   <div style=padding-top: 35px>
Select all that apply.

A) y1=12πsin(3t) y_{1}=-\frac{1}{2} \pi \sin (3 t)
B) y2=e6tcos(3t) y_{2}=e^{6 t} \cos (3 t)
C) y3=2e6t y_{3}=2 e^{6 t}
D) y4=5e6t(sin(3t)+cos(3t)) y_{4}=5 e^{6 t}(\sin (3 t)+\cos (3 t))
E) y5=Ce6tcos(3t) y_{5}=C e^{-6 t} \cos (3 t) , where C C is any real constant
F) y6=e6tcos(3t) y_{6}=e^{-6 t} \cos (3 t)
سؤال
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=C\left(\cos \frac{t}{3}+\sin \frac{t}{3}\right)   B)   y=C_{1} \cos (3 t)+C_{2} \sin (3 t)   C)   y=C(\cos (3 t)+\sin (3 t))   D)   y=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right)   E)   y=\cos \left(\frac{t}{3}\right)+\sin \left(\frac{t}{3}\right)+C t   F)   y=\cos (3 t)+\sin (3 t)+C   <div style=padding-top: 35px>
are arbitrary real constants.

A) y=C(cost3+sint3) y=C\left(\cos \frac{t}{3}+\sin \frac{t}{3}\right)
B) y=C1cos(3t)+C2sin(3t) y=C_{1} \cos (3 t)+C_{2} \sin (3 t)
C) y=C(cos(3t)+sin(3t)) y=C(\cos (3 t)+\sin (3 t))
D) y=C1cos(t3)+C2sin(t3) y=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right)
E) y=cos(t3)+sin(t3)+Ct y=\cos \left(\frac{t}{3}\right)+\sin \left(\frac{t}{3}\right)+C t
F) y=cos(3t)+sin(3t)+C y=\cos (3 t)+\sin (3 t)+C
سؤال
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=C_{1} e^{4 t} \sin (6 t)+C_{2} e^{4 t} \cos (6 t)   B)   y=e^{-4 t}\left(C_{1} \sin (6 t)+C_{2} \cos (6 t)\right)   C)   y=C_{1} e^{4 t} \cos (6 t)+C_{2} e^{4 t} \sin (6 t)+C   D)   y=e^{6 t}(\sin (4 t)+\cos (6 t))+C   E)   y=C_{1} e^{-4 t} \sin (6 t)+C_{2} e^{-4 t} \cos (6 t)+C   <div style=padding-top: 35px>
are arbitrary real constants.

A) y=C1e4tsin(6t)+C2e4tcos(6t) y=C_{1} e^{4 t} \sin (6 t)+C_{2} e^{4 t} \cos (6 t)
B) y=e4t(C1sin(6t)+C2cos(6t)) y=e^{-4 t}\left(C_{1} \sin (6 t)+C_{2} \cos (6 t)\right)
C) y=C1e4tcos(6t)+C2e4tsin(6t)+C y=C_{1} e^{4 t} \cos (6 t)+C_{2} e^{4 t} \sin (6 t)+C
D) y=e6t(sin(4t)+cos(6t))+C y=e^{6 t}(\sin (4 t)+\cos (6 t))+C
E) y=C1e4tsin(6t)+C2e4tcos(6t)+C y=C_{1} e^{-4 t} \sin (6 t)+C_{2} e^{-4 t} \cos (6 t)+C
سؤال
What is the solution of this initial value problem:  <strong>What is the solution of this initial value problem:   </strong> A)   y=3 \cos (11 t)+\frac{10}{11} \sin (11 t)   B)   y=\cos (11 t)+\sin (11 t)   C)   y=3 \sin (11 t)+10 \cos (11 t)   D)   y=10 e^{-11 t}+3 e^{-11 t}   E)   y=3 e^{121 t}+\frac{10}{11} e^{-121 t}   <div style=padding-top: 35px>

A) y=3cos(11t)+1011sin(11t) y=3 \cos (11 t)+\frac{10}{11} \sin (11 t)
B) y=cos(11t)+sin(11t) y=\cos (11 t)+\sin (11 t)
C) y=3sin(11t)+10cos(11t) y=3 \sin (11 t)+10 \cos (11 t)
D) y=10e11t+3e11t y=10 e^{-11 t}+3 e^{-11 t}
E) y=3e121t+1011e121t y=3 e^{121 t}+\frac{10}{11} e^{-121 t}
سؤال
What is the solution of this initial value problem:
 <strong>What is the solution of this initial value problem:  </strong> A)   y=e^{3 t}\left[3 \cos (7 t)-\frac{4}{7} \sin (7 t)\right]   B)   y=e^{-3 t}(3 \cos (7 t)+2 \sin (7 t))   C)   y=e^{7 t}\left(3 \cos (3 t)+\frac{14}{3} \sin (3 t)\right)   D)   y=e^{-7 t}\left[3 \cos (3 t)-\frac{4}{3} \sin (3 t)\right]   <div style=padding-top: 35px>

A) y=e3t[3cos(7t)47sin(7t)] y=e^{3 t}\left[3 \cos (7 t)-\frac{4}{7} \sin (7 t)\right]
B) y=e3t(3cos(7t)+2sin(7t)) y=e^{-3 t}(3 \cos (7 t)+2 \sin (7 t))
C) y=e7t(3cos(3t)+143sin(3t)) y=e^{7 t}\left(3 \cos (3 t)+\frac{14}{3} \sin (3 t)\right)
D) y=e7t[3cos(3t)43sin(3t)] y=e^{-7 t}\left[3 \cos (3 t)-\frac{4}{3} \sin (3 t)\right]
سؤال
Consider the initial value problem:
 <strong>Consider the initial value problem:   What is the solution of this initial value problem?</strong> A)   y=2 \sin \left(\frac{t}{6}\right)+12 \cos \left(\frac{t}{6}\right)   B)   y=-12 \cos \left(\frac{t}{6}\right)-2 \sin \left(\frac{t}{6}\right)   C)   y=2 \cos (6 t)-2 \sin (6 t)   D)   y=-2 \cos (6 t)-2 \sin (6 t)   <div style=padding-top: 35px>
What is the solution of this initial value problem?

A) y=2sin(t6)+12cos(t6) y=2 \sin \left(\frac{t}{6}\right)+12 \cos \left(\frac{t}{6}\right)
B) y=12cos(t6)2sin(t6) y=-12 \cos \left(\frac{t}{6}\right)-2 \sin \left(\frac{t}{6}\right)
C) y=2cos(6t)2sin(6t) y=2 \cos (6 t)-2 \sin (6 t)
D) y=2cos(6t)2sin(6t) y=-2 \cos (6 t)-2 \sin (6 t)
سؤال
Consider the initial value problem:
 <strong>Consider the initial value problem:   Which of the following is an accurate description of the long-term behavior of the solution?</strong> A) y(t) decreases to 0 as t \rightarrow   \infty . B) y(t) is periodic with period 20 \pi . C) y(t) oscillates toward 0 as t  \rightarrow   \infty . D) y(t) becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . <div style=padding-top: 35px>
Which of the following is an accurate description of the long-term behavior of the solution?

A) y(t) decreases to 0 as t \rightarrow \infty .
B) y(t) is periodic with period 20 π\pi .
C) y(t) oscillates toward 0 as t \rightarrow \infty .
D) y(t) becomes unbounded in both the positive and negative y-directions as t \rightarrow \infty .
سؤال
Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem
 <strong>Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem   For any choice of \alpha and  \beta  satisfying  </strong> A) y is periodic with period    \pi . B) y is periodic with period 2  \pi . C) y becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . D) y oscillates toward 0 as t  \rightarrow   \infty . E) y increases toward + \infty  if  \beta  > 0, and decreases toward - \infty  if \beta  < 0. <div style=padding-top: 35px>
For any choice of α\alpha and β\beta satisfying  <strong>Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem   For any choice of \alpha and  \beta  satisfying  </strong> A) y is periodic with period    \pi . B) y is periodic with period 2  \pi . C) y becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . D) y oscillates toward 0 as t  \rightarrow   \infty . E) y increases toward + \infty  if  \beta  > 0, and decreases toward - \infty  if \beta  < 0. <div style=padding-top: 35px>

A) y is periodic with period  <strong>Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem   For any choice of \alpha and  \beta  satisfying  </strong> A) y is periodic with period    \pi . B) y is periodic with period 2  \pi . C) y becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . D) y oscillates toward 0 as t  \rightarrow   \infty . E) y increases toward + \infty  if  \beta  > 0, and decreases toward - \infty  if \beta  < 0. <div style=padding-top: 35px>  π\pi .
B) y is periodic with period 2 π\pi .
C) y becomes unbounded in both the positive and negative y-directions as t \rightarrow \infty .
D) y oscillates toward 0 as t \rightarrow \infty .
E) y increases toward + \infty if β\beta > 0, and decreases toward - \infty if β\beta < 0.
سؤال
Which of the following are solutions to the homogeneous second-order Cauchy Euler differential equation  <strong>Which of the following are solutions to the homogeneous second-order Cauchy Euler differential equation    . Select all that apply.</strong> A)   y=t^{12}+t   B)   y=\mathrm{Cr}^{-12}  , where   \mathrm{C}   is any real constant C)   y=16 t   D)   y=C\left(\frac{1}{t^{12}}+t\right)  , where   C   is any real constant E)   y=-9 r^{12}+C  , where   C   is any real constant F)   y=C_{1} t^{12}+C_{2} t+C  , where   C_{3} C_{1}  , and   C_{2}   are arbitrary real constants <div style=padding-top: 35px>  . Select all that apply.

A) y=t12+t y=t^{12}+t
B) y=Cr12 y=\mathrm{Cr}^{-12} , where C \mathrm{C} is any real constant
C) y=16t y=16 t
D) y=C(1t12+t) y=C\left(\frac{1}{t^{12}}+t\right) , where C C is any real constant
E) y=9r12+C y=-9 r^{12}+C , where C C is any real constant
F) y=C1t12+C2t+C y=C_{1} t^{12}+C_{2} t+C , where C3C1 C_{3} C_{1} , and C2 C_{2} are arbitrary real constants
سؤال
Consider the homogeneous second-order Cauchy Euler differential equation
 <strong>Consider the homogeneous second-order Cauchy Euler differential equation   What is the general solution of this differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y=C_{1} t^{10}+C_{2} t^{6}   B)   y=C_{1} t^{10}+C_{2} t^{6}  . C)   y=C_{1} r^{10 t}+C_{2} t^{6 t}   D)   y=C_{1} t^{10 t}+C_{2} f^{6 t}  . E)   y=C_{1} t^{-5}+C_{2} t^{-6}   <div style=padding-top: 35px>
What is the general solution of this differential equation? Here, C1 and C2 are arbitrary real constants.

A) y=C1t10+C2t6 y=C_{1} t^{10}+C_{2} t^{6}
B) y=C1t10+C2t6 y=C_{1} t^{10}+C_{2} t^{6} .
C) y=C1r10t+C2t6t y=C_{1} r^{10 t}+C_{2} t^{6 t}
D) y=C1t10t+C2f6t y=C_{1} t^{10 t}+C_{2} f^{6 t} .
E) y=C1t5+C2t6 y=C_{1} t^{-5}+C_{2} t^{-6}
سؤال
Consider the homogeneous second-order Cauchy Euler differential equation
Consider the homogeneous second-order Cauchy Euler differential equation   What is the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4?<div style=padding-top: 35px>
What is the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α, Consider the homogeneous second-order Cauchy Euler differential equation   What is the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4?<div style=padding-top: 35px> (1) = 4?
سؤال
Consider the homogeneous second-order Cauchy Euler differential equation
Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 6 tend to 0 as t → ∞? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.<div style=padding-top: 35px>
For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α, Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 6 tend to 0 as t → ∞? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.<div style=padding-top: 35px> (1) = 6 tend to 0 as t → ∞? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.
سؤال
Consider the homogeneous second-order Cauchy Euler differential equation
Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4 remain bounded as   ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.<div style=padding-top: 35px>
For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α, Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4 remain bounded as   ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.<div style=padding-top: 35px> (1) = 4 remain bounded as Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4 remain bounded as   ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.<div style=padding-top: 35px> ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.
سؤال
For what value(s) of α\alpha is y =  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>  a solution of the second-order homogeneous differential equation  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>

A)  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>
B) 0 and  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>
C) 0 and -  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>
D) -  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>
E) -  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>  and  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and   <div style=padding-top: 35px>
سؤال
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   ? Select all that apply.</strong> A)   y_{1}=e^{-\frac{3}{2} t}+e^{\frac{3}{2} t}   B)   y_{2}=-6 t e^{\frac{3}{2} t}+8   C)   y_{3}=C_{1} e^{-\frac{3}{2} t}+C_{2} t e^{-\frac{3}{2} t}  , where   C_{1}   and   C_{2}   are arbitrary real constants D)   y_{4}=8 e^{\frac{3}{2} t}   E)   y_{5}=C e^{\frac{3}{2} t}+10 t e^{\frac{3}{2} t}   F)   y_{6}=2 e^{\frac{3}{2} t}+8 t e^{\frac{3}{2} t}+8  42_00 <div style=padding-top: 35px>  ?
Select all that apply.

A) y1=e32t+e32t y_{1}=e^{-\frac{3}{2} t}+e^{\frac{3}{2} t}
B) y2=6te32t+8 y_{2}=-6 t e^{\frac{3}{2} t}+8
C) y3=C1e32t+C2te32t y_{3}=C_{1} e^{-\frac{3}{2} t}+C_{2} t e^{-\frac{3}{2} t} , where C1 C_{1} and C2 C_{2} are arbitrary real constants
D) y4=8e32t y_{4}=8 e^{\frac{3}{2} t}
E) y5=Ce32t+10te32t y_{5}=C e^{\frac{3}{2} t}+10 t e^{\frac{3}{2} t}
F) y6=2e32t+8te32t+8 y_{6}=2 e^{\frac{3}{2} t}+8 t e^{\frac{3}{2} t}+8 42_00
سؤال
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   arbitrary real constants.</strong> A)   y=C_{1} e^{-\frac{3}{4} t}+C_{2} t e^{-\frac{3}{4} t}   B)   y=C_{1} e^{-\frac{3}{4} t}+C_{2} e^{\frac{3}{4} t}   C)   y=C_{1} e^{\frac{3}{4} t}+C_{2} t e^{\frac{3}{4} t}   D)   y=C_{1} e^{-\frac{4}{3} t}+C_{2} t e^{-\frac{4}{3} t}   E)   y=C_{1} t e^{-\frac{3}{4} t}+C_{2}   <div style=padding-top: 35px>
arbitrary real constants.

A) y=C1e34t+C2te34t y=C_{1} e^{-\frac{3}{4} t}+C_{2} t e^{-\frac{3}{4} t}
B) y=C1e34t+C2e34t y=C_{1} e^{-\frac{3}{4} t}+C_{2} e^{\frac{3}{4} t}
C) y=C1e34t+C2te34t y=C_{1} e^{\frac{3}{4} t}+C_{2} t e^{\frac{3}{4} t}
D) y=C1e43t+C2te43t y=C_{1} e^{-\frac{4}{3} t}+C_{2} t e^{-\frac{4}{3} t}
E) y=C1te34t+C2 y=C_{1} t e^{-\frac{3}{4} t}+C_{2}
سؤال
What is the solution of this initial value problem:
What is the solution of this initial value problem:  <div style=padding-top: 35px>
سؤال
Consider this initial value problem:
 <strong>Consider this initial value problem:   What is the solution of this initial value problem?</strong> A)   y=\frac{14}{9} e^{-\frac{9}{2} t}+2 e^{\frac{9}{2} t}   B)   y=\frac{22}{9} e^{-\frac{9}{2} t}-14 e^{-\frac{9}{2} t}   C)   y=e^{\frac{9}{2} t}(2-14 t)   D)   y=e^{-\frac{9}{2} t}(2+4 t)   <div style=padding-top: 35px>
What is the solution of this initial value problem?

A) y=149e92t+2e92t y=\frac{14}{9} e^{-\frac{9}{2} t}+2 e^{\frac{9}{2} t}
B) y=229e92t14e92t y=\frac{22}{9} e^{-\frac{9}{2} t}-14 e^{-\frac{9}{2} t}
C) y=e92t(214t) y=e^{\frac{9}{2} t}(2-14 t)
D) y=e92t(2+4t) y=e^{-\frac{9}{2} t}(2+4 t)
سؤال
Consider this initial value problem:
 <strong>Consider this initial value problem:   Which of the following is an accurate description of the long-term behavior of the solution?</strong> A) y(t) tends to 0 as t  \rightarrow   \infty . B) y(t) is strictly increasing and approaches  \infty  as t  \rightarrow   \infty . C) y(t) is strictly decreasing and approaches - \infty  as t  \rightarrow   \infty . D) y(t) becomes unbounded in both the positive and negative y-direction as t  \rightarrow   \infty . <div style=padding-top: 35px>
Which of the following is an accurate description of the long-term behavior of the solution?

A) y(t) tends to 0 as t \rightarrow \infty .
B) y(t) is strictly increasing and approaches \infty as t \rightarrow \infty .
C) y(t) is strictly decreasing and approaches - \infty as t \rightarrow \infty .
D) y(t) becomes unbounded in both the positive and negative y-direction as t \rightarrow \infty .
سؤال
Consider this initial value problem:
 <strong>Consider this initial value problem:   For what values of  \alpha  does the solution tend to 0 as t  \rightarrow   \infty ?</strong> A) all real numbers B) all nonzero real numbers C) all positive real numbers D) all negative real numbers <div style=padding-top: 35px>
For what values of α\alpha does the solution tend to 0 as t \rightarrow \infty ?

A) all real numbers
B) all nonzero real numbers
C) all positive real numbers
D) all negative real numbers
سؤال
Use the method of reduction of order to find a second solution of the differential equation Use the method of reduction of order to find a second solution of the differential equation   using the fact that y<sub>1</sub> = t<sup>-1</sup> is a solution. is a solution.<div style=padding-top: 35px> using the fact that y1 = t-1 is a solution. is a solution.
سؤال
Use the method of reduction of order to find a second solution of the differential equation , Use the method of reduction of order to find a second solution of the differential equation ,   using the fact that y<sub>1</sub> = t is a solution.<div style=padding-top: 35px> using the fact that y1 = t is a solution.
سؤال
What is the general solution of the homogeneous second-order Cauchy Euler differential equation  <strong>What is the general solution of the homogeneous second-order Cauchy Euler differential equation   are arbitrary real constants.</strong> A)   y=C_{1} t^{-6}+C_{2} t^{6}   B)   y=C_{1}(t \ln t)^{-6}+C_{2}(t \ln t)^{6}   C)   y=t^{-6}\left(C_{1}+C_{2} \ln t\right)   D)   y=C_{1} t^{-6}+C_{2}(t \ln t)^{-6}   <div style=padding-top: 35px>  are arbitrary real constants.

A) y=C1t6+C2t6 y=C_{1} t^{-6}+C_{2} t^{6}
B) y=C1(tlnt)6+C2(tlnt)6 y=C_{1}(t \ln t)^{-6}+C_{2}(t \ln t)^{6}
C) y=t6(C1+C2lnt) y=t^{-6}\left(C_{1}+C_{2} \ln t\right)
D) y=C1t6+C2(tlnt)6 y=C_{1} t^{-6}+C_{2}(t \ln t)^{-6}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{-3 t}+C_{2} e^{7 t}   B)   y(t)=C_{1} e^{-3 t}+C_{2} t e^{-3 t}   C)   y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}   D)   y(t)=C_{1} e^{3 t}+C_{2} e^{-7 t}   E)   y(t)=C_{1} e^{-7 t}+C_{2} t e^{-7 t}   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e3t+C2e7t y(t)=C_{1} e^{-3 t}+C_{2} e^{7 t}
B) y(t)=C1e3t+C2te3t y(t)=C_{1} e^{-3 t}+C_{2} t e^{-3 t}
C) y(t)=C1e3t+C2te3t y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}
D) y(t)=C1e3t+C2e7t y(t)=C_{1} e^{3 t}+C_{2} e^{-7 t}
E) y(t)=C1e7t+C2te7t y(t)=C_{1} e^{-7 t}+C_{2} t e^{-7 t}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>  Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=\left(e^{-6 t}+e^{-2 t}\right) \cdot(A t+B)   B)   Y(t)=A t+B   C)   Y(t)=A t   D)   Y(t)=A t+e^{-6 t}+e^{-2 t}   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=(e6t+e2t)(At+B) Y(t)=\left(e^{-6 t}+e^{-2 t}\right) \cdot(A t+B)
B) Y(t)=At+B Y(t)=A t+B
C) Y(t)=At Y(t)=A t
D) Y(t)=At+e6t+e2t Y(t)=A t+e^{-6 t}+e^{-2 t}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=e^{2 t}+e^{5 t}+C_{1}   B)   y(t)=C_{1}\left(e^{2 t}+e^{-5 t}\right)+C_{2}   C)   y(t)=C_{1} e^{-2 t}+C_{2} e^{-5 t}   D)   y(t)=C_{1} e^{-2 t}+C_{2} e^{5 t}   E)   y(t)=C_{1}\left(e^{-2 t}+e^{-5 t}\right)+C_{2}   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=e2t+e5t+C1 y(t)=e^{2 t}+e^{5 t}+C_{1}
B) y(t)=C1(e2t+e5t)+C2 y(t)=C_{1}\left(e^{2 t}+e^{-5 t}\right)+C_{2}
C) y(t)=C1e2t+C2e5t y(t)=C_{1} e^{-2 t}+C_{2} e^{-5 t}
D) y(t)=C1e2t+C2e5t y(t)=C_{1} e^{-2 t}+C_{2} e^{5 t}
E) y(t)=C1(e2t+e5t)+C2 y(t)=C_{1}\left(e^{-2 t}+e^{-5 t}\right)+C_{2}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A e^{-3 t}   B)   Y(t)=e^{A t}   C)   Y(t)=A e^{B t}   D)   Y(t)=A+e^{-3 t}   E)   Y(t)=A e^{-3 t}+B   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Ae3t Y(t)=A e^{-3 t}
B) Y(t)=eAt Y(t)=e^{A t}
C) Y(t)=AeBt Y(t)=A e^{B t}
D) Y(t)=A+e3t Y(t)=A+e^{-3 t}
E) Y(t)=Ae3t+B Y(t)=A e^{-3 t}+B
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here,C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1}\left(e^{10 t}+e^{6 t}\right)+C_{2}   B)   y(t)=C_{1} e^{-10 t}+C_{2} e^{6 t}   C)   y(t)=C_{1} e^{-10 t}+C_{2} e^{-6 t}   D)   y(t)=C_{1} e^{10 t}+C_{2} e^{6 t}   E)   y(t)=C_{1} e^{-10 t}+C_{2}\left(e^{-6 t}+t\right)   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here,C1 and C2 are arbitrary real constants.

A) y(t)=C1(e10t+e6t)+C2 y(t)=C_{1}\left(e^{10 t}+e^{6 t}\right)+C_{2}
B) y(t)=C1e10t+C2e6t y(t)=C_{1} e^{-10 t}+C_{2} e^{6 t}
C) y(t)=C1e10t+C2e6t y(t)=C_{1} e^{-10 t}+C_{2} e^{-6 t}
D) y(t)=C1e10t+C2e6t y(t)=C_{1} e^{10 t}+C_{2} e^{6 t}
E) y(t)=C1e10t+C2(e6t+t) y(t)=C_{1} e^{-10 t}+C_{2}\left(e^{-6 t}+t\right)
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A e^{8 t}\left[\sin \frac{\pi}{9} t+\cos \frac{\pi}{9} t\right]+B   B)   Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)+B   C)   Y(t)=e^{A t}(\sin (B t)+\cos (B t))   D)   Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)   E)   Y(t)=e^{8 t}\left(A \sin \frac{\pi}{9} t+B \cos \frac{\pi}{9} t\right)   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Ae8t[sinπ9t+cosπ9t]+B Y(t)=A e^{8 t}\left[\sin \frac{\pi}{9} t+\cos \frac{\pi}{9} t\right]+B
B) Y(t)=Ae8tsin(π9t)+B Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)+B
C) Y(t)=eAt(sin(Bt)+cos(Bt)) Y(t)=e^{A t}(\sin (B t)+\cos (B t))
D) Y(t)=Ae8tsin(π9t) Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)
E) Y(t)=e8t(Asinπ9t+Bcosπ9t) Y(t)=e^{8 t}\left(A \sin \frac{\pi}{9} t+B \cos \frac{\pi}{9} t\right)
سؤال
Which of these is the general solution of the second-order nonhomogeneous differential equation  <strong>Which of these is the general solution of the second-order nonhomogeneous differential equation   and all capital letters are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{-\frac{9}{2} t}+C_{2} t e^{-\frac{9}{2} t}+\mathrm{A} t^{2}   B)   y(t)=e^{-\frac{9}{2} t}\left(A t^{2}+B t+C\right)+C_{1}   C)   y(t)=e^{\frac{9}{2} t}\left(t+C_{1}\right)+A t^{2}+B t+C   D)   y(t)=e^{-\frac{9}{2} t}\left(C_{1}+C_{2} t\right)+A t^{2}+B t+C   E)   y(t)=C_{1} e^{\frac{9}{2} t}+C_{2} t e^{\frac{9}{2} t}+A t^{2}+B t   <div style=padding-top: 35px>
and all capital letters are arbitrary real constants.

A) y(t)=C1e92t+C2te92t+At2 y(t)=C_{1} e^{-\frac{9}{2} t}+C_{2} t e^{-\frac{9}{2} t}+\mathrm{A} t^{2}
B) y(t)=e92t(At2+Bt+C)+C1 y(t)=e^{-\frac{9}{2} t}\left(A t^{2}+B t+C\right)+C_{1}
C) y(t)=e92t(t+C1)+At2+Bt+C y(t)=e^{\frac{9}{2} t}\left(t+C_{1}\right)+A t^{2}+B t+C
D) y(t)=e92t(C1+C2t)+At2+Bt+C y(t)=e^{-\frac{9}{2} t}\left(C_{1}+C_{2} t\right)+A t^{2}+B t+C
E) y(t)=C1e92t+C2te92t+At2+Bt y(t)=C_{1} e^{\frac{9}{2} t}+C_{2} t e^{\frac{9}{2} t}+A t^{2}+B t
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=e^{\frac{2}{5} t}\left(C_{1}+C_{2} t\right)   B)   y(t)=C_{1} e^{\frac{2}{5} t}+C_{2} e^{-\frac{2}{5} t}   C)   y(t)=e^{\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}   D)   y(t)=e^{-\frac{2}{5} t}\left(C_{1}+C_{2} t\right)   E)   y(t)=e^{-\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=e25t(C1+C2t) y(t)=e^{\frac{2}{5} t}\left(C_{1}+C_{2} t\right)
B) y(t)=C1e25t+C2e25t y(t)=C_{1} e^{\frac{2}{5} t}+C_{2} e^{-\frac{2}{5} t}
C) y(t)=e25t(t+C1)+C2 y(t)=e^{\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}
D) y(t)=e25t(C1+C2t) y(t)=e^{-\frac{2}{5} t}\left(C_{1}+C_{2} t\right)
E) y(t)=e25t(t+C1)+C2 y(t)=e^{-\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A e^{-6 t}+B e^{9 t}+C t e^{-3 t}+D   B)   Y(t)=(A+B t)\left(e^{-6 t}+e^{9 t}+t e^{-3 t}+C\right.   C)   Y(t)=A e^{-6 t}+B e^{9 t}+(C t+D) e^{-3 t}+E   D)   Y(t)=(A+B t) e^{-6 t}+(C+D t) e^{9 t}+(E+F t) e^{-3 t}+G   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Ae6t+Be9t+Cte3t+D Y(t)=A e^{-6 t}+B e^{9 t}+C t e^{-3 t}+D
B) Y(t)=(A+Bt)(e6t+e9t+te3t+C Y(t)=(A+B t)\left(e^{-6 t}+e^{9 t}+t e^{-3 t}+C\right.
C) Y(t)=Ae6t+Be9t+(Ct+D)e3t+E Y(t)=A e^{-6 t}+B e^{9 t}+(C t+D) e^{-3 t}+E
D) Y(t)=(A+Bt)e6t+(C+Dt)e9t+(E+Ft)e3t+G Y(t)=(A+B t) e^{-6 t}+(C+D t) e^{9 t}+(E+F t) e^{-3 t}+G
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} \sin (5 t)+C_{2} \cos (5 t)   B)   y(t)=C_{1} \sin (25 t)+C_{2} \cos (25 t)   C)   y(t)=C_{1}+C_{2} e^{-5 t}   D)   y(t)=C_{1} e^{-5 t}+C_{2} e^{5 t}   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1sin(5t)+C2cos(5t) y(t)=C_{1} \sin (5 t)+C_{2} \cos (5 t)
B) y(t)=C1sin(25t)+C2cos(25t) y(t)=C_{1} \sin (25 t)+C_{2} \cos (25 t)
C) y(t)=C1+C2e5t y(t)=C_{1}+C_{2} e^{-5 t}
D) y(t)=C1e5t+C2e5t y(t)=C_{1} e^{-5 t}+C_{2} e^{5 t}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A t^{2}+B t+C+D e^{-\sqrt{3} t}   B)   Y(t)=\left(A t^{2}+B t\right) e^{-\sqrt{3} t}   C)   Y(t)=A t(B t+3) e^{-\sqrt{3} t}   D)   Y(t)=\left(A t^{2}+B t+C\right) e^{-\sqrt{3} t}   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=At2+Bt+C+De3t Y(t)=A t^{2}+B t+C+D e^{-\sqrt{3} t}
B) Y(t)=(At2+Bt)e3t Y(t)=\left(A t^{2}+B t\right) e^{-\sqrt{3} t}
C) Y(t)=At(Bt+3)e3t Y(t)=A t(B t+3) e^{-\sqrt{3} t}
D) Y(t)=(At2+Bt+C)e3t Y(t)=\left(A t^{2}+B t+C\right) e^{-\sqrt{3} t}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{2 t}(\sin (4 t)+\cos (4 t))+C_{2}   B)   y(t)=C_{1} e^{4 t} \sin (2 t)+C_{2} e^{4 t} \cos (2 t)   C)   y(t)=C_{1} e^{4 t}(\sin (2 t)+\cos (2 t))+C_{2}   D)   y(t)=C_{1} e^{2 t} \sin (4 t)+C_{2} e^{2 t} \cos (4 t)   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e2t(sin(4t)+cos(4t))+C2 y(t)=C_{1} e^{2 t}(\sin (4 t)+\cos (4 t))+C_{2}
B) y(t)=C1e4tsin(2t)+C2e4tcos(2t) y(t)=C_{1} e^{4 t} \sin (2 t)+C_{2} e^{4 t} \cos (2 t)
C) y(t)=C1e4t(sin(2t)+cos(2t))+C2 y(t)=C_{1} e^{4 t}(\sin (2 t)+\cos (2 t))+C_{2}
D) y(t)=C1e2tsin(4t)+C2e2tcos(4t) y(t)=C_{1} e^{2 t} \sin (4 t)+C_{2} e^{2 t} \cos (4 t)
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A t+B t^{4}   B)   Y(t)=\left(A t+B t^{4}\right) e^{4 t} \sin (2 t)+\left(C t+D t^{4}\right) e^{4 t} \cos (2 t)   C)   Y(t)=A t^{4}+B t^{3}+C t^{2}+D t+E   D)   Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{4 t}(\sin (2 t)+\cos (2 t))   E)   Y(t)=\left(A t^{4}+B t\right) e^{2 t} \sin (4 t)+\left(C t^{4}+D t\right) e^{2 t} \cos (4 t)   F)   Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{2 t}(\sin (4 t)+\cos (4 t))   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=At+Bt4 Y(t)=A t+B t^{4}
B) Y(t)=(At+Bt4)e4tsin(2t)+(Ct+Dt4)e4tcos(2t) Y(t)=\left(A t+B t^{4}\right) e^{4 t} \sin (2 t)+\left(C t+D t^{4}\right) e^{4 t} \cos (2 t)
C) Y(t)=At4+Bt3+Ct2+Dt+E Y(t)=A t^{4}+B t^{3}+C t^{2}+D t+E
D) Y(t)=(At4+Bt3+Ct2+Dt+E)e4t(sin(2t)+cos(2t)) Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{4 t}(\sin (2 t)+\cos (2 t))
E) Y(t)=(At4+Bt)e2tsin(4t)+(Ct4+Dt)e2tcos(4t) Y(t)=\left(A t^{4}+B t\right) e^{2 t} \sin (4 t)+\left(C t^{4}+D t\right) e^{2 t} \cos (4 t)
F) Y(t)=(At4+Bt3+Ct2+Dt+E)e2t(sin(4t)+cos(4t)) Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{2 t}(\sin (4 t)+\cos (4 t))
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{5 t}(\sin (-5 t)+\cos (-5 t))+C_{2}   B)   y(t)=C_{1} e^{-5 t} \sin (5 t)+C_{2} e^{-5 t} \cos (5 t)   C)   y(t)=C_{1} e^{5 t} \sin (-5 t)+C_{2} e^{5 t} \cos (-5 t)   D)   y(t)=C_{1} e^{-5 t}(\sin (5 t)+\cos (5 t))+C_{2}   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e5t(sin(5t)+cos(5t))+C2 y(t)=C_{1} e^{5 t}(\sin (-5 t)+\cos (-5 t))+C_{2}
B) y(t)=C1e5tsin(5t)+C2e5tcos(5t) y(t)=C_{1} e^{-5 t} \sin (5 t)+C_{2} e^{-5 t} \cos (5 t)
C) y(t)=C1e5tsin(5t)+C2e5tcos(5t) y(t)=C_{1} e^{5 t} \sin (-5 t)+C_{2} e^{5 t} \cos (-5 t)
D) y(t)=C1e5t(sin(5t)+cos(5t))+C2 y(t)=C_{1} e^{-5 t}(\sin (5 t)+\cos (5 t))+C_{2}
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A   B)   Y(t)=A e^{-4 t} \sin (4 t)+B e^{-4 t} \cos (4 t)   C)   Y(t)=A e^{4 t} \sin (-4 t)+B e^{4 t} \cos (-4 t)   D)   Y(t)=A \sin (4 t)+B \cos (4 t)   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=A Y(t)=A
B) Y(t)=Ae4tsin(4t)+Be4tcos(4t) Y(t)=A e^{-4 t} \sin (4 t)+B e^{-4 t} \cos (4 t)
C) Y(t)=Ae4tsin(4t)+Be4tcos(4t) Y(t)=A e^{4 t} \sin (-4 t)+B e^{4 t} \cos (-4 t)
D) Y(t)=Asin(4t)+Bcos(4t) Y(t)=A \sin (4 t)+B \cos (4 t)
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=e^{6 t}\left(C_{1} \sin (5 t)+C_{2} \cos (5 t)\right)   B)   y(t)=C_{1} e^{-\frac{6}{5} t}+C_{2} e^{\frac{6}{5} t}   C)   y(t)=C_{1} e^{-\frac{5}{6} t}+C_{2} e^{\frac{5}{6} t}   D)   y(t)=C_{1} \sin \left(\frac{5}{6} t\right)+C_{2} \cos \left(\frac{5}{6} t\right)   E)   y(t)=C_{1} \sin \left(\frac{6}{5} t\right)+C_{2} \cos \left(\frac{6}{5} t\right)   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=e6t(C1sin(5t)+C2cos(5t)) y(t)=e^{6 t}\left(C_{1} \sin (5 t)+C_{2} \cos (5 t)\right)
B) y(t)=C1e65t+C2e65t y(t)=C_{1} e^{-\frac{6}{5} t}+C_{2} e^{\frac{6}{5} t}
C) y(t)=C1e56t+C2e56t y(t)=C_{1} e^{-\frac{5}{6} t}+C_{2} e^{\frac{5}{6} t}
D) y(t)=C1sin(56t)+C2cos(56t) y(t)=C_{1} \sin \left(\frac{5}{6} t\right)+C_{2} \cos \left(\frac{5}{6} t\right)
E) y(t)=C1sin(65t)+C2cos(65t) y(t)=C_{1} \sin \left(\frac{6}{5} t\right)+C_{2} \cos \left(\frac{6}{5} t\right)
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A t \cos (3 t)   B)   Y(t)=A t \cos (3 t)+B t \sin (3 t)   C)   Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)   D)   Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)   E)   Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Atcos(3t) Y(t)=A t \cos (3 t)
B) Y(t)=Atcos(3t)+Btsin(3t) Y(t)=A t \cos (3 t)+B t \sin (3 t)
C) Y(t)=(At+B)sin(3t)+(Ct+D)cos(3t) Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)
D) Y(t)=(At2+Bt+C)sin(3t)+(Dt2+Et+F)cos(3t) Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)
E) Y(t)=At2cos(3t)+Bt2sin(3t) Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants </strong> A)   Y(t)=A t \cos (3 t)   B)   Y(t)=A t \cos (3 t)+B t \sin (3 t)   C)   Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)   D)   Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)   E)   Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)   <div style=padding-top: 35px>
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants

A) Y(t)=Atcos(3t) Y(t)=A t \cos (3 t)
B) Y(t)=Atcos(3t)+Btsin(3t) Y(t)=A t \cos (3 t)+B t \sin (3 t)
C) Y(t)=(At+B)sin(3t)+(Ct+D)cos(3t) Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)
D) Y(t)=(At2+Bt+C)sin(3t)+(Dt2+Et+F)cos(3t) Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)
E) Y(t)=At2cos(3t)+Bt2sin(3t) Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)
سؤال
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A \sin (5 t)+B e^{5 t}+C   B)   Y(t)=(A t+B) \sin (5 t)+C e^{5 t}+D   C)   Y(t)=e^{5 t}(A \sin (5 t)+B \cos (5 t)+C)+D   D)   Y(t)=A \sin (5 t)+B \cos (5 t)+C e^{5 t}+D   E)   Y(t)=(A t+B) \sin (5 t)+(C t+D) \cos (5 t)+E e^{5 t}+F   <div style=padding-top: 35px>
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Asin(5t)+Be5t+C Y(t)=A \sin (5 t)+B e^{5 t}+C
B) Y(t)=(At+B)sin(5t)+Ce5t+D Y(t)=(A t+B) \sin (5 t)+C e^{5 t}+D
C) Y(t)=e5t(Asin(5t)+Bcos(5t)+C)+D Y(t)=e^{5 t}(A \sin (5 t)+B \cos (5 t)+C)+D
D) Y(t)=Asin(5t)+Bcos(5t)+Ce5t+D Y(t)=A \sin (5 t)+B \cos (5 t)+C e^{5 t}+D
E) Y(t)=(At+B)sin(5t)+(Ct+D)cos(5t)+Ee5t+F Y(t)=(A t+B) \sin (5 t)+(C t+D) \cos (5 t)+E e^{5 t}+F
سؤال
Which of these is the general solution of the second-order nonhomogeneous differential equation  <strong>Which of these is the general solution of the second-order nonhomogeneous differential equation   and all capital letters are arbitrary real constants.</strong> A)   y(t)=C_{1}+C_{2} e^{-\frac{10}{11} t}+A e^{-\frac{10}{11} t}+(B t+C) e^{-\frac{10}{11} t}   B)   y(t)=C_{1}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{\frac{10}{11} t}+C e^{-\frac{10}{11} t}   C)   y(t)=C_{1} e^{-\frac{10}{11} t}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{-\frac{10}{11} t}+(C t+D) e^{\frac{10}{11} t}   D)   y(t)=C_{1}+C_{2} e^{-\frac{10}{\pi 1} t}+A e^{-\frac{10}{11} t}+B e^{\frac{10}{11} t}   <div style=padding-top: 35px>  and all capital letters are arbitrary real constants.

A) y(t)=C1+C2e1011t+Ae1011t+(Bt+C)e1011t y(t)=C_{1}+C_{2} e^{-\frac{10}{11} t}+A e^{-\frac{10}{11} t}+(B t+C) e^{-\frac{10}{11} t}
B) y(t)=C1+C2e1011t+(At+B)e1011t+Ce1011t y(t)=C_{1}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{\frac{10}{11} t}+C e^{-\frac{10}{11} t}
C) y(t)=C1e1011t+C2e1011t+(At+B)e1011t+(Ct+D)e1011t y(t)=C_{1} e^{-\frac{10}{11} t}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{-\frac{10}{11} t}+(C t+D) e^{\frac{10}{11} t}
D) y(t)=C1+C2e10π1t+Ae1011t+Be1011t y(t)=C_{1}+C_{2} e^{-\frac{10}{\pi 1} t}+A e^{-\frac{10}{11} t}+B e^{\frac{10}{11} t}
سؤال
Which of these is the general solution of the second-order nonhomogeneous differential equation  <strong>Which of these is the general solution of the second-order nonhomogeneous differential equation   , and all capital letters are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)   B)   y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)   C)   y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)   D)   y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)   E)   y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)   <div style=padding-top: 35px>  , and all capital letters are arbitrary real constants.

A) y(t)=C1et+C2tet+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)
B) y(t)=C1+C2t+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)
C) y(t)=C1+C2t+Asin(7t)+Bcos(5π2t) y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)
D) y(t)=C1t+Asin(7t)+Bcos(5π2t) y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)
E) y(t)=C1t+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)
سؤال
Consider this second-order nonhomogeneous differential equation:  <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{3 t}(\sin (4 t)+\cos (4 t))+C_{2}   B)   y(t)=C_{1} e^{4 t}\left(\sin (3 t)+C_{2} e^{4 t}(\cos (3 t)\right.   C)   y(t)=C_{1} e^{4 t}(\sin (3 t)+\cos (3 t))+C_{2}   D)   y(t)=C_{1} e^{3 t}\left(\sin (4 t)+C_{2} e^{3 t}(\cos (4 t)\right.   <div style=padding-top: 35px>  Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e3t(sin(4t)+cos(4t))+C2 y(t)=C_{1} e^{3 t}(\sin (4 t)+\cos (4 t))+C_{2}
B) y(t)=C1e4t(sin(3t)+C2e4t(cos(3t) y(t)=C_{1} e^{4 t}\left(\sin (3 t)+C_{2} e^{4 t}(\cos (3 t)\right.
C) y(t)=C1e4t(sin(3t)+cos(3t))+C2 y(t)=C_{1} e^{4 t}(\sin (3 t)+\cos (3 t))+C_{2}
D) y(t)=C1e3t(sin(4t)+C2e3t(cos(4t) y(t)=C_{1} e^{3 t}\left(\sin (4 t)+C_{2} e^{3 t}(\cos (4 t)\right.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/119
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 3: Second-Order Linear Differential Equations
1
What is the characteristic equation for the second-order homogeneous differential equation <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 ?

A) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 - 14r = 0
B) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 + 12r - 26 = 0
C) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 - 14 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 = 0
D) 9 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 + 12 <strong>What is the characteristic equation for the second-order homogeneous differential equation   ?</strong> A) 9   - 14r = 0 B) 9   + 12r - 26 = 0 C) 9   - 14   = 0 D) 9   + 12   - 26r = 0 - 26r = 0
9 9   + 12r - 26 = 0 + 12r - 26 = 0
2
For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?

A) <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 (10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 + 1) = 0
B) 10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 + 1y = 0
C) <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 (10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 + 1y) = 0
D) 10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 + 1 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 = 0
E) 10 <strong>For which of these differential equations is the characteristic equation given by r(10r + 1) = 0?</strong> A)   (10   + 1) = 0 B) 10   + 1y = 0 C)   (10   + 1y) = 0 D) 10   + 1   = 0 E) 10   + 1y = 0 + 1y = 0
10 10   + 1   = 0 + 1 10   + 1   = 0 = 0
3
For which of these differential equations is the characteristic equation given by 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 + 7 = 0?

A) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 + 7 = 0
B) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 + 7 = 0
C) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 + 7y = 0
D) 6 <strong>For which of these differential equations is the characteristic equation given by 6   + 7 = 0?</strong> A) 6   + 7 = 0 B) 6   + 7 = 0 C) 6   + 7y = 0 D) 6   + 7y = 0 + 7y = 0
6 6   + 7y = 0 + 7y = 0
4
For which of these differential equations is the characteristic equation given by <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 ?

A) <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 + 4 <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 - 21y = 0
B) ( <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 - 3)( <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 + 7) = 0
C) <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 + 4 <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 - 21 = 0
D) <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 - 4 <strong>For which of these differential equations is the characteristic equation given by   ?</strong> A)   + 4   - 21y = 0 B) (   - 3)(   + 7) = 0 C)   + 4   - 21 = 0 D)   - 4   - 21 = 0 - 21 = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
5
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   ? Select all that apply.</strong> A)   y_{1}=8 e^{-2 t}+2 e^{2 t}   B)   y_{2}=\mathrm{Ce}^{-2 t}  , where   \mathrm{C}   is any real constant C)   y_{3}=8\left(e^{2 t}+e^{-2 t}\right)   D)   y_{4}=C e^{2 t}  , where   C   is any real constant E)   y_{5}=\left(C_{1} e^{2 t}\right) \cdot\left(C_{2} e^{-2 t}\right)  , where   C_{1}   and   C_{2}   are any real constants F)   y_{6}=2 e^{-2 t}   G)   y_{7}=C\left(e^{-2 t}+e^{2 t}\right)  , where   C   is any real constant  ?
Select all that apply.

A) y1=8e2t+2e2t y_{1}=8 e^{-2 t}+2 e^{2 t}
B) y2=Ce2t y_{2}=\mathrm{Ce}^{-2 t} , where C \mathrm{C} is any real constant
C) y3=8(e2t+e2t) y_{3}=8\left(e^{2 t}+e^{-2 t}\right)
D) y4=Ce2t y_{4}=C e^{2 t} , where C C is any real constant
E) y5=(C1e2t)(C2e2t) y_{5}=\left(C_{1} e^{2 t}\right) \cdot\left(C_{2} e^{-2 t}\right) , where C1 C_{1} and C2 C_{2} are any real constants
F) y6=2e2t y_{6}=2 e^{-2 t}
G) y7=C(e2t+e2t) y_{7}=C\left(e^{-2 t}+e^{2 t}\right) , where C C is any real constant
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
6
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   ? Select all that apply.</strong> A)   y_{1}=C e^{-\frac{4}{3} t^{2}}  , where   C   is any real constant B)   y_{2}=-4 e^{-\frac{4}{3} t}+3 e^{\frac{4}{3} t}   C)   y_{3}=C e^{\frac{3}{4} t}  , where   C   is any real constant D)   y_{4}=C\left(e^{-\frac{4}{3} t}+e^{\frac{4}{3} t}\right)  , where   C   is any real constant E)   y_{1}=3 e^{\frac{3}{4} t}+-4 e^{-\frac{3}{4} t}   F)   y_{6}=t e^{3}    ?
Select all that apply.

A) y1=Ce43t2 y_{1}=C e^{-\frac{4}{3} t^{2}} , where C C is any real constant
B) y2=4e43t+3e43t y_{2}=-4 e^{-\frac{4}{3} t}+3 e^{\frac{4}{3} t}
C) y3=Ce34t y_{3}=C e^{\frac{3}{4} t} , where C C is any real constant
D) y4=C(e43t+e43t) y_{4}=C\left(e^{-\frac{4}{3} t}+e^{\frac{4}{3} t}\right) , where C C is any real constant
E) y1=3e34t+4e34t y_{1}=3 e^{\frac{3}{4} t}+-4 e^{-\frac{3}{4} t}
F) y6=te3 y_{6}=t e^{3}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
7
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=C\left(e^{5 t}+e^{10 t}\right)   B)   y=C_{1} e^{-5 t}+C_{2} e^{-10 t}   C)   y=C_{1} e^{5 t}+C_{2} e^{10 t}   D)   y=C\left(e^{-5 t}+e^{-10 t}\right)   E)   y=C_{1} e^{-5 t}+C_{2} e^{-10 t}+y+\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)   F)   y=\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)    are arbitrary real constants.

A) y=C(e5t+e10t) y=C\left(e^{5 t}+e^{10 t}\right)
B) y=C1e5t+C2e10t y=C_{1} e^{-5 t}+C_{2} e^{-10 t}
C) y=C1e5t+C2e10t y=C_{1} e^{5 t}+C_{2} e^{10 t}
D) y=C(e5t+e10t) y=C\left(e^{-5 t}+e^{-10 t}\right)
E) y=C1e5t+C2e10t+y+(C1e5t)(C2e10t) y=C_{1} e^{-5 t}+C_{2} e^{-10 t}+y+\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)
F) y=(C1e5t)(C2e10t) y=\left(C_{1} e^{-5 t}\right) \cdot\left(C_{2} e^{-10 t}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
8
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=4+\mathrm{Ce}^{-6 t}   B)   y=C_{1} e^{-4 t}+C_{2} e^{-6 t}   C)   y=C_{1}+C_{2} e^{-6 t}   D)   y=C_{1}+C_{2} e^{6 t}   E)   y=4+C e^{6 t}    are arbitrary real constants.

A) y=4+Ce6t y=4+\mathrm{Ce}^{-6 t}
B) y=C1e4t+C2e6t y=C_{1} e^{-4 t}+C_{2} e^{-6 t}
C) y=C1+C2e6t y=C_{1}+C_{2} e^{-6 t}
D) y=C1+C2e6t y=C_{1}+C_{2} e^{6 t}
E) y=4+Ce6t y=4+C e^{6 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
9
For which of the following values of r is y = C  <strong>For which of the following values of r is y = C   a solution of the second-order homogeneous differential equation 4   + y = 0? Select all that apply.</strong> A)   -\frac{1}{4}   B) -4 C) 0 D)   \frac{1}{4}   E) 4  a solution of the second-order homogeneous differential equation 4  <strong>For which of the following values of r is y = C   a solution of the second-order homogeneous differential equation 4   + y = 0? Select all that apply.</strong> A)   -\frac{1}{4}   B) -4 C) 0 D)   \frac{1}{4}   E) 4  + y = 0? Select all that apply.

A) 14 -\frac{1}{4}
B) -4
C) 0
D) 14 \frac{1}{4}
E) 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
10
What is the solution of the initial value problem
 <strong>What is the solution of the initial value problem  </strong> A)   y=-\frac{4}{3}-\frac{2}{3}   B)   y=-2 t+e^{-3 t}   C)   y=\frac{2}{3} e^{-3 t}-\frac{11}{3}   D)   y=-\frac{2}{3} e^{-3 t}+\frac{11}{3}

A) y=4323 y=-\frac{4}{3}-\frac{2}{3}
B) y=2t+e3t y=-2 t+e^{-3 t}
C) y=23e3t113 y=\frac{2}{3} e^{-3 t}-\frac{11}{3}
D) y=23e3t+113 y=-\frac{2}{3} e^{-3 t}+\frac{11}{3}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
11
Consider the second-order homogeneous differential equation  <strong>Consider the second-order homogeneous differential equation   What is the general solution of this differential equation? Here, C, C<sub>1</sub> , and C<sub>2</sub> are arbitrary real constants.</strong> A)   y=C_{1} e^{-4 t}+C_{2} e^{-8 t}   B)   y=C_{1} e^{4 t}+C_{2} e^{8 t}   C)   y=C_{1} e^{t}+C_{2} e^{32 t}   D)   y=C_{1} e^{-t}+C_{2} e^{-32 t}   E)   y=C_{1} e^{4 t}+C_{2} e^{-32 t}
What is the general solution of this differential equation? Here, C, C1 , and C2 are arbitrary real constants.

A) y=C1e4t+C2e8t y=C_{1} e^{-4 t}+C_{2} e^{-8 t}
B) y=C1e4t+C2e8t y=C_{1} e^{4 t}+C_{2} e^{8 t}
C) y=C1et+C2e32t y=C_{1} e^{t}+C_{2} e^{32 t}
D) y=C1et+C2e32t y=C_{1} e^{-t}+C_{2} e^{-32 t}
E) y=C1e4t+C2e32t y=C_{1} e^{4 t}+C_{2} e^{-32 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
12
Consider the second-order homogeneous differential equation  <strong>Consider the second-order homogeneous differential equation   If the differential equation is equipped with the initial conditions   what is the solution of the resulting initial value problem?</strong> A)   y=9 e^{2 t}-3 e^{4 t}   B)   y=6 e^{2 t}+6 e^{4 t}   C)   y=-9 e^{-2 t}-3 e^{-4 t}   D)   y=6 e^{-2 t}+6 e^{-4 t}
If the differential equation is equipped with the initial conditions  <strong>Consider the second-order homogeneous differential equation   If the differential equation is equipped with the initial conditions   what is the solution of the resulting initial value problem?</strong> A)   y=9 e^{2 t}-3 e^{4 t}   B)   y=6 e^{2 t}+6 e^{4 t}   C)   y=-9 e^{-2 t}-3 e^{-4 t}   D)   y=6 e^{-2 t}+6 e^{-4 t}
what is the solution of the resulting initial value problem?

A) y=9e2t3e4t y=9 e^{2 t}-3 e^{4 t}
B) y=6e2t+6e4t y=6 e^{2 t}+6 e^{4 t}
C) y=9e2t3e4t y=-9 e^{-2 t}-3 e^{-4 t}
D) y=6e2t+6e4t y=6 e^{-2 t}+6 e^{-4 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
13
Consider the initial value problem
<strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2
What is the solution of this initial value problem?

A) y = -4 + 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2
B) y = -4 + 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2
C) y = -2 + 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2
D) y = -2 - 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2
E) y = -4t - 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2   F) y = -2t - 2 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A) y = -4 + 2   B) y = -4 + 2   C) y = -2 + 2   D) y = -2 - 2   E) y = -4t - 2   F) y = -2t - 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
14
Consider the initial value problem
Consider the initial value problem   Fill in the blank:   ________
Fill in the blank: Consider the initial value problem   Fill in the blank:   ________ ________
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
15
Consider the initial value problem
 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A)   y=\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}   B)   y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}   C)   y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}   D)   y=\left(\frac{a}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{a}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}
What is the solution of this initial value problem?

A) y=(α287)e74t+(α2+87)e74t y=\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}
B) y=(α2+87)e74t+(α287)e74t y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{7}{4} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{7}{4} t}
C) y=(α2+87)e47t+(α287)e47t y=\left(\frac{\alpha}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{\alpha}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}
D) y=(a287)e47t+(a2+87)e47t y=\left(\frac{a}{2}-\frac{8}{7}\right) e^{\frac{4}{7} t}+\left(\frac{a}{2}+\frac{8}{7}\right) e^{\frac{4}{7} t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
16
Consider the initial value problem
 <strong>Consider the initial value problem   For what value of ? does the solution of this initial value problem tend to zero as t  \rightarrow   \infty ?</strong> A) - 6 B) - C) 0 D) 6 E)
For what value of ? does the solution of this initial value problem tend to zero as t \rightarrow \infty ?

A) - 6
B) -
C) 0
D) 6
E)  <strong>Consider the initial value problem   For what value of ? does the solution of this initial value problem tend to zero as t  \rightarrow   \infty ?</strong> A) - 6 B) - C) 0 D) 6 E)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
17
Consider the initial value problem
 <strong>Consider the initial value problem   What is the solution of this initial value problem?</strong> A)   y=\frac{20}{3} e^{-\frac{3}{2} t}-\frac{14}{3} e^{-\frac{3}{4} t}   B)   y=\frac{4}{3} e^{\frac{3}{2} t}-\frac{2}{3} e^{\frac{3}{4} t}   C)   y=-\frac{14}{3} e^{-\frac{3}{2} t}+\frac{20}{3} e^{-\frac{3}{4} t}   D)   y=-\frac{2}{3} e^{\frac{3}{2} t}+\frac{4}{3} e^{\frac{3}{4} t}
What is the solution of this initial value problem?

A) y=203e32t143e34t y=\frac{20}{3} e^{-\frac{3}{2} t}-\frac{14}{3} e^{-\frac{3}{4} t}
B) y=43e32t23e34t y=\frac{4}{3} e^{\frac{3}{2} t}-\frac{2}{3} e^{\frac{3}{4} t}
C) y=143e32t+203e34t y=-\frac{14}{3} e^{-\frac{3}{2} t}+\frac{20}{3} e^{-\frac{3}{4} t}
D) y=23e32t+43e34t y=-\frac{2}{3} e^{\frac{3}{2} t}+\frac{4}{3} e^{\frac{3}{4} t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
18
Consider the initial value problem
Consider the initial value problem   What is the t-coordinate of the local extreme value of y = y(t) on the interval (0, ∞)? Enter your answer as a decimal accurate to three decimal places.
What is the t-coordinate of the local extreme value of y = y(t) on the interval (0, ∞)? Enter your answer as a decimal accurate to three decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
19
Consider the initial value problem
 <strong>Consider the initial value problem   On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.</strong> A)   (-4,-3.5)   B)   \left(\frac{11}{32}, \frac{25}{32}\right)   C)   (0,1)   D)   \left(\frac{1}{8}, 1\right)   E)   (-\infty, \infty)
On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.

A) (4,3.5) (-4,-3.5)
B) (1132,2532) \left(\frac{11}{32}, \frac{25}{32}\right)
C) (0,1) (0,1)
D) (18,1) \left(\frac{1}{8}, 1\right)
E) (,) (-\infty, \infty)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
20
Consider the initial value problem
 <strong>Consider the initial value problem   On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.</strong> A)   (0,2 \pi)   B)   (-2 \pi, 2 \pi)   C)   (0, \infty)   D)   \left(\frac{\pi}{12}, \frac{5 \pi}{4}\right)   E)   \left(0, \frac{\pi}{12}\right)   F)   \left(-\frac{5 \pi}{4}, \frac{5 \pi}{8}\right)
On which of these intervals is this initial value problem certain to have a unique twice differentiable solution? Select all that apply.

A) (0,2π) (0,2 \pi)
B) (2π,2π) (-2 \pi, 2 \pi)
C) (0,) (0, \infty)
D) (π12,5π4) \left(\frac{\pi}{12}, \frac{5 \pi}{4}\right)
E) (0,π12) \left(0, \frac{\pi}{12}\right)
F) (5π4,5π8) \left(-\frac{5 \pi}{4}, \frac{5 \pi}{8}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
21
Consider the initial value problem
<strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   .
Which of these statements are true? Select all that apply.

A) There exists a nonzero real number r such that y(t) = <strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . is a solution of the initial value problem.
B) This initial value problem has only one solution on the interval (-7, 5).
C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t.
D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval <strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . .
E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval <strong>Consider the initial value problem   Which of these statements are true? Select all that apply.</strong> A) There exists a nonzero real number r such that y(t) =   is a solution of the initial value problem. B) This initial value problem has only one solution on the interval (-7, 5). C) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. D) There must exist a function y = ?(t) that satisfies this initial value problem on the interval   . E) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
22
Suppose that Y1 and Y2 are both solutions of the differential equation  <strong>Suppose that Y<sub>1</sub> and Y<sub>2</sub> are both solutions of the differential equation   . Which of the following must also be solutions of this differential equation? Select all that apply. Here, C<sub>1</sub> , and C<sub>2</sub> are arbitrary real constants.</strong> A)   5 y_{1}-4 y_{2}   B)   t y_{1}   C)   C_{1}   D)   \left(C_{1} y_{1}\right) \cdot\left(C_{2} y_{2}\right)   E)   C_{1}\left(y_{1}+y_{2}\right)   F)   C_{1}\left(7 y_{1}-9 y_{2}\right)-C_{2}\left(2 y_{1}-7 y_{2}\right.    .
Which of the following must also be solutions of this differential equation? Select all that apply. Here, C1 , and C2 are arbitrary real constants.

A) 5y14y2 5 y_{1}-4 y_{2}
B) ty1 t y_{1}
C) C1 C_{1}
D) (C1y1)(C2y2) \left(C_{1} y_{1}\right) \cdot\left(C_{2} y_{2}\right)
E) C1(y1+y2) C_{1}\left(y_{1}+y_{2}\right)
F) C1(7y19y2)C2(2y17y2 C_{1}\left(7 y_{1}-9 y_{2}\right)-C_{2}\left(2 y_{1}-7 y_{2}\right.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
23
If Y1 and Y2 are both solutions of the differential equation If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of the differential equation   then Y<sub>1</sub> - Y<sub>2</sub> is also a solution of this equation. then Y1 - Y2 is also a solution of this equation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
24
Consider the differential equation <strong>Consider the differential equation   Which of the following statements is true?</strong> A) If 2   is a solution of this differential equation, then so is   . B) If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of this differential equation, then Y<sub>1</sub> - Y<sub>2</sub> cannot be a solution of it. C) The Principle of Superposition guarantees that if y<sub>1</sub> and y<sub>2</sub> are both solutions of this differential equation, then C<sub>1</sub> y<sub>1</sub> + C<sub>2</sub> y<sub>2</sub> must also be a solution of it, for any choice of real constants and . D) There exist nonzero real constants C<sub>1</sub> and C<sub>2</sub> such that C<sub>1</sub> y<sub>1</sub> - C<sub>2</sub> y<sub>2</sub> is a solution of this differential equation.
Which of the following statements is true?

A) If 2 <strong>Consider the differential equation   Which of the following statements is true?</strong> A) If 2   is a solution of this differential equation, then so is   . B) If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of this differential equation, then Y<sub>1</sub> - Y<sub>2</sub> cannot be a solution of it. C) The Principle of Superposition guarantees that if y<sub>1</sub> and y<sub>2</sub> are both solutions of this differential equation, then C<sub>1</sub> y<sub>1</sub> + C<sub>2</sub> y<sub>2</sub> must also be a solution of it, for any choice of real constants and . D) There exist nonzero real constants C<sub>1</sub> and C<sub>2</sub> such that C<sub>1</sub> y<sub>1</sub> - C<sub>2</sub> y<sub>2</sub> is a solution of this differential equation. is a solution of this differential equation, then so is <strong>Consider the differential equation   Which of the following statements is true?</strong> A) If 2   is a solution of this differential equation, then so is   . B) If Y<sub>1</sub> and Y<sub>2</sub> are both solutions of this differential equation, then Y<sub>1</sub> - Y<sub>2</sub> cannot be a solution of it. C) The Principle of Superposition guarantees that if y<sub>1</sub> and y<sub>2</sub> are both solutions of this differential equation, then C<sub>1</sub> y<sub>1</sub> + C<sub>2</sub> y<sub>2</sub> must also be a solution of it, for any choice of real constants and . D) There exist nonzero real constants C<sub>1</sub> and C<sub>2</sub> such that C<sub>1</sub> y<sub>1</sub> - C<sub>2</sub> y<sub>2</sub> is a solution of this differential equation. .
B) If Y1 and Y2 are both solutions of this differential equation, then Y1 - Y2 cannot be a solution of it.
C) The Principle of Superposition guarantees that if y1 and y2 are both solutions of this differential equation, then C1 y1 + C2 y2 must also be a solution of it, for any choice of real constants and .
D) There exist nonzero real constants C1 and C2 such that C1 y1 - C2 y2 is a solution of this differential equation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
25
Compute the Wronskian of the pair of functions <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8

A) -2 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8
B) -6 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8
C) -8 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8
D) -6
E) -8 <strong>Compute the Wronskian of the pair of functions  </strong> A) -2   B) -6   C) -8   D) -6 E) -8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
26
Compute the Wronskian of the pair of functions sin(5t) and cos(5t).

A) -5
B) -4
C) 1
D) 4
E) 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
27
Compute the Wronskian of the pair of functions 2t Compute the Wronskian of the pair of functions 2t   and 4   . and 4 Compute the Wronskian of the pair of functions 2t   and 4   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
28
Consider the pair of functions y1 = ln t and y1 = t ln t.
Compute the Wronskian of this function pair.

A) 1t2 \frac{1}{t^{2}}
B) 11 \frac{1}{1}
C) lntt \frac{\ln t}{t}
D) (lnt)2 (\ln t)^{2}
E) ln(t2) \ln \left(t^{2}\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
29
Consider the pair of functions y1 = ln t and y1 = t ln t.
Which of these statements is true?

A) Both y1 and y2 can be solutions of the differential equation  <strong>Consider the pair of functions y<sub>1</sub> = ln t and y<sub>1</sub> = t ln t. Which of these statements is true?</strong> A) Both y<sub>1</sub> and y<sub>2</sub> can be solutions of the differential equation   on the interval (0,  \infty ), where p(t) and q(t) are continuous on (0,  \infty ). B) The Wronskian for this function pair is strictly positive on (0,  \infty ). C) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (0,  \infty ). D) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (0,  \infty ).  on the interval (0, \infty ), where p(t) and q(t) are continuous on (0, \infty ).
B) The Wronskian for this function pair is strictly positive on (0, \infty ).
C) Abel's theorem implies that y1 and y2 cannot both be solutions of any differential equation of the form  <strong>Consider the pair of functions y<sub>1</sub> = ln t and y<sub>1</sub> = t ln t. Which of these statements is true?</strong> A) Both y<sub>1</sub> and y<sub>2</sub> can be solutions of the differential equation   on the interval (0,  \infty ), where p(t) and q(t) are continuous on (0,  \infty ). B) The Wronskian for this function pair is strictly positive on (0,  \infty ). C) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (0,  \infty ). D) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (0,  \infty ).  on the interval (0, \infty ).
D) The pair y1 and y2 constitutes a fundamental set of solutions to some second-order differential equation of the form  <strong>Consider the pair of functions y<sub>1</sub> = ln t and y<sub>1</sub> = t ln t. Which of these statements is true?</strong> A) Both y<sub>1</sub> and y<sub>2</sub> can be solutions of the differential equation   on the interval (0,  \infty ), where p(t) and q(t) are continuous on (0,  \infty ). B) The Wronskian for this function pair is strictly positive on (0,  \infty ). C) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (0,  \infty ). D) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (0,  \infty ).  on the interval (0, \infty ).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
30
Consider the pair of functions y1 = t and y2 = 3t2.
Which of these statements are true? Select all that apply.

A) W[y1 , y2](t) > 0 for all values of t in the interval (-2, 2).
B) W[y1 , y1](t) = 3t2
C) The pair y1 and y2 constitutes a fundamental set of solutions to some second-order differential equation of the form <strong>Consider the pair of functions y<sub>1</sub> = t and y<sub>2</sub> = 3t<sup>2</sup>. Which of these statements are true? Select all that apply.</strong> A) W[y<sub>1</sub> , y<sub>2</sub>](t) > 0 for all values of t in the interval (-2, 2). B) W[y<sub>1</sub> , y<sub>1</sub>](t) = 3t<sup>2</sup> C) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (-2, 2). D) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (-2, 2). E) Since there exists a value of t<sub>0</sub> in the interval (-2, 2) for which W[y<sub>1</sub> ,y<sub>2</sub> ](t) = 0, there must exist a differential equation of the form   for which the pair y<sub>1</sub> and y<sub>2</sub> constitute a fundamental set of solutions on the interval (-2, 2). on the interval (-2, 2).
D) Abel's theorem implies that y1 and y2 cannot both be solutions of any differential equation of the form <strong>Consider the pair of functions y<sub>1</sub> = t and y<sub>2</sub> = 3t<sup>2</sup>. Which of these statements are true? Select all that apply.</strong> A) W[y<sub>1</sub> , y<sub>2</sub>](t) > 0 for all values of t in the interval (-2, 2). B) W[y<sub>1</sub> , y<sub>1</sub>](t) = 3t<sup>2</sup> C) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (-2, 2). D) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (-2, 2). E) Since there exists a value of t<sub>0</sub> in the interval (-2, 2) for which W[y<sub>1</sub> ,y<sub>2</sub> ](t) = 0, there must exist a differential equation of the form   for which the pair y<sub>1</sub> and y<sub>2</sub> constitute a fundamental set of solutions on the interval (-2, 2). on the interval (-2, 2).
E) Since there exists a value of t0 in the interval (-2, 2) for which W[y1 ,y2 ](t) = 0, there must exist a differential equation of the form <strong>Consider the pair of functions y<sub>1</sub> = t and y<sub>2</sub> = 3t<sup>2</sup>. Which of these statements are true? Select all that apply.</strong> A) W[y<sub>1</sub> , y<sub>2</sub>](t) > 0 for all values of t in the interval (-2, 2). B) W[y<sub>1</sub> , y<sub>1</sub>](t) = 3t<sup>2</sup> C) The pair y<sub>1</sub> and y<sub>2</sub> constitutes a fundamental set of solutions to some second-order differential equation of the form   on the interval (-2, 2). D) Abel's theorem implies that y<sub>1</sub> and y<sub>2</sub> cannot both be solutions of any differential equation of the form   on the interval (-2, 2). E) Since there exists a value of t<sub>0</sub> in the interval (-2, 2) for which W[y<sub>1</sub> ,y<sub>2</sub> ](t) = 0, there must exist a differential equation of the form   for which the pair y<sub>1</sub> and y<sub>2</sub> constitute a fundamental set of solutions on the interval (-2, 2). for which the pair y1 and y2 constitute a fundamental set of solutions on the interval (-2, 2).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
31
Which of these is a fundamental set of solutions for the differential equation  <strong>Which of these is a fundamental set of solutions for the differential equation   Select all that apply.</strong> A)   y_{1}=\cos (10 t)   and   y_{2}=\sin (10 t)   B)   y_{3}=7 \cos (10 t)-20 \sin (10 t)   and   y_{4}=10 \cos (10 t)-14 \sin (10 t)   C)   y_{5}=e^{-10 t}   and   y_{6}=e^{10 t}   D)   y_{7}=e^{10 t} \sin (10 t)   and   y_{8}=e^{10 t} \cos (10 t)   E)   y_{9}=7 \sin (10 t)   and   y_{10}=7 \sin (10 t)-8 \cos (10 t)
Select all that apply.

A) y1=cos(10t) y_{1}=\cos (10 t) and y2=sin(10t) y_{2}=\sin (10 t)
B) y3=7cos(10t)20sin(10t) y_{3}=7 \cos (10 t)-20 \sin (10 t) and y4=10cos(10t)14sin(10t) y_{4}=10 \cos (10 t)-14 \sin (10 t)
C) y5=e10t y_{5}=e^{-10 t} and y6=e10t y_{6}=e^{10 t}
D) y7=e10tsin(10t) y_{7}=e^{10 t} \sin (10 t) and y8=e10tcos(10t) y_{8}=e^{10 t} \cos (10 t)
E) y9=7sin(10t) y_{9}=7 \sin (10 t) and y10=7sin(10t)8cos(10t) y_{10}=7 \sin (10 t)-8 \cos (10 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
32
The pair of functions The pair of functions   forms a fundamental set of solutions for the differential equation
forms a fundamental set of solutions for the differential equation The pair of functions   forms a fundamental set of solutions for the differential equation
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
33
What is the characteristic equation for the second-order homogeneous differential equation  <strong>What is the characteristic equation for the second-order homogeneous differential equation   + 36y=0?</strong> A)   (r-6)(r+6)=0   B)   r^{2}+6=0   C)   r^{2}+36=0   D)   r^{2}+36 r=0    + 36y=0?

A) (r6)(r+6)=0 (r-6)(r+6)=0
B) r2+6=0 r^{2}+6=0
C) r2+36=0 r^{2}+36=0
D) r2+36r=0 r^{2}+36 r=0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
34
For which of these differential equations is the characteristic equation given by  <strong>For which of these differential equations is the characteristic equation given by   </strong> A)   y^{\prime \prime}+50=0   B)   y^{\prime \prime}+50 y=0   C)   y^{\prime \prime}-2 y^{\prime}+50=0   D)   y^{\prime \prime}-2 y^{\prime}+50 y=0   E)   \left(y^{\prime}-(1-7 i)\right)\left(y^{\prime}-(1+7 i)\right)=0   F)   \left(y^{\prime}-(1-7 i) y\right)\left(y^{\prime}-(1+7 i) y\right)=0

A) y+50=0 y^{\prime \prime}+50=0
B) y+50y=0 y^{\prime \prime}+50 y=0
C) y2y+50=0 y^{\prime \prime}-2 y^{\prime}+50=0
D) y2y+50y=0 y^{\prime \prime}-2 y^{\prime}+50 y=0
E) (y(17i))(y(1+7i))=0 \left(y^{\prime}-(1-7 i)\right)\left(y^{\prime}-(1+7 i)\right)=0
F) (y(17i)y)(y(1+7i)y)=0 \left(y^{\prime}-(1-7 i) y\right)\left(y^{\prime}-(1+7 i) y\right)=0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
35
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   Select all that apply.</strong> A)   y_{1}=2 \sin \left(\frac{6}{7} t\right)   B)   y_{2}=C\left(\cos \frac{6}{7} t+\sin \frac{6}{7} t\right)  , where   C   is any real constant C)   y_{3}=-2 \cos \left(\frac{7}{6} t\right)   D)   y_{4}=e^{\frac{6}{7} t}   E)   y_{5}=C_{1} e^{\frac{6}{7} t}+C_{2} e^{-\frac{6}{7} t}   where   C_{1}   and   C_{2}   are any real constants F)   y_{6}=5 e^{\frac{7}{6} t}+7 e^{-\frac{7}{6} t}   G)   y_{7}=\sin \left(\frac{6}{7} t\right)+C  , where   C   is any real constant
Select all that apply.

A) y1=2sin(67t) y_{1}=2 \sin \left(\frac{6}{7} t\right)
B) y2=C(cos67t+sin67t) y_{2}=C\left(\cos \frac{6}{7} t+\sin \frac{6}{7} t\right) , where C C is any real constant
C) y3=2cos(76t) y_{3}=-2 \cos \left(\frac{7}{6} t\right)
D) y4=e67t y_{4}=e^{\frac{6}{7} t}
E) y5=C1e67t+C2e67t y_{5}=C_{1} e^{\frac{6}{7} t}+C_{2} e^{-\frac{6}{7} t} where C1 C_{1} and C2 C_{2} are any real constants
F) y6=5e76t+7e76t y_{6}=5 e^{\frac{7}{6} t}+7 e^{-\frac{7}{6} t}
G) y7=sin(67t)+C y_{7}=\sin \left(\frac{6}{7} t\right)+C , where C C is any real constant
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
36
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   Select all that apply.</strong> A)   y_{1}=-\frac{1}{2} \pi \sin (3 t)   B)   y_{2}=e^{6 t} \cos (3 t)   C)   y_{3}=2 e^{6 t}   D)   y_{4}=5 e^{6 t}(\sin (3 t)+\cos (3 t))   E)   y_{5}=C e^{-6 t} \cos (3 t)  , where   C   is any real constant F)   y_{6}=e^{-6 t} \cos (3 t)
Select all that apply.

A) y1=12πsin(3t) y_{1}=-\frac{1}{2} \pi \sin (3 t)
B) y2=e6tcos(3t) y_{2}=e^{6 t} \cos (3 t)
C) y3=2e6t y_{3}=2 e^{6 t}
D) y4=5e6t(sin(3t)+cos(3t)) y_{4}=5 e^{6 t}(\sin (3 t)+\cos (3 t))
E) y5=Ce6tcos(3t) y_{5}=C e^{-6 t} \cos (3 t) , where C C is any real constant
F) y6=e6tcos(3t) y_{6}=e^{-6 t} \cos (3 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
37
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=C\left(\cos \frac{t}{3}+\sin \frac{t}{3}\right)   B)   y=C_{1} \cos (3 t)+C_{2} \sin (3 t)   C)   y=C(\cos (3 t)+\sin (3 t))   D)   y=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right)   E)   y=\cos \left(\frac{t}{3}\right)+\sin \left(\frac{t}{3}\right)+C t   F)   y=\cos (3 t)+\sin (3 t)+C
are arbitrary real constants.

A) y=C(cost3+sint3) y=C\left(\cos \frac{t}{3}+\sin \frac{t}{3}\right)
B) y=C1cos(3t)+C2sin(3t) y=C_{1} \cos (3 t)+C_{2} \sin (3 t)
C) y=C(cos(3t)+sin(3t)) y=C(\cos (3 t)+\sin (3 t))
D) y=C1cos(t3)+C2sin(t3) y=C_{1} \cos \left(\frac{t}{3}\right)+C_{2} \sin \left(\frac{t}{3}\right)
E) y=cos(t3)+sin(t3)+Ct y=\cos \left(\frac{t}{3}\right)+\sin \left(\frac{t}{3}\right)+C t
F) y=cos(3t)+sin(3t)+C y=\cos (3 t)+\sin (3 t)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
38
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   are arbitrary real constants.</strong> A)   y=C_{1} e^{4 t} \sin (6 t)+C_{2} e^{4 t} \cos (6 t)   B)   y=e^{-4 t}\left(C_{1} \sin (6 t)+C_{2} \cos (6 t)\right)   C)   y=C_{1} e^{4 t} \cos (6 t)+C_{2} e^{4 t} \sin (6 t)+C   D)   y=e^{6 t}(\sin (4 t)+\cos (6 t))+C   E)   y=C_{1} e^{-4 t} \sin (6 t)+C_{2} e^{-4 t} \cos (6 t)+C
are arbitrary real constants.

A) y=C1e4tsin(6t)+C2e4tcos(6t) y=C_{1} e^{4 t} \sin (6 t)+C_{2} e^{4 t} \cos (6 t)
B) y=e4t(C1sin(6t)+C2cos(6t)) y=e^{-4 t}\left(C_{1} \sin (6 t)+C_{2} \cos (6 t)\right)
C) y=C1e4tcos(6t)+C2e4tsin(6t)+C y=C_{1} e^{4 t} \cos (6 t)+C_{2} e^{4 t} \sin (6 t)+C
D) y=e6t(sin(4t)+cos(6t))+C y=e^{6 t}(\sin (4 t)+\cos (6 t))+C
E) y=C1e4tsin(6t)+C2e4tcos(6t)+C y=C_{1} e^{-4 t} \sin (6 t)+C_{2} e^{-4 t} \cos (6 t)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
39
What is the solution of this initial value problem:  <strong>What is the solution of this initial value problem:   </strong> A)   y=3 \cos (11 t)+\frac{10}{11} \sin (11 t)   B)   y=\cos (11 t)+\sin (11 t)   C)   y=3 \sin (11 t)+10 \cos (11 t)   D)   y=10 e^{-11 t}+3 e^{-11 t}   E)   y=3 e^{121 t}+\frac{10}{11} e^{-121 t}

A) y=3cos(11t)+1011sin(11t) y=3 \cos (11 t)+\frac{10}{11} \sin (11 t)
B) y=cos(11t)+sin(11t) y=\cos (11 t)+\sin (11 t)
C) y=3sin(11t)+10cos(11t) y=3 \sin (11 t)+10 \cos (11 t)
D) y=10e11t+3e11t y=10 e^{-11 t}+3 e^{-11 t}
E) y=3e121t+1011e121t y=3 e^{121 t}+\frac{10}{11} e^{-121 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
40
What is the solution of this initial value problem:
 <strong>What is the solution of this initial value problem:  </strong> A)   y=e^{3 t}\left[3 \cos (7 t)-\frac{4}{7} \sin (7 t)\right]   B)   y=e^{-3 t}(3 \cos (7 t)+2 \sin (7 t))   C)   y=e^{7 t}\left(3 \cos (3 t)+\frac{14}{3} \sin (3 t)\right)   D)   y=e^{-7 t}\left[3 \cos (3 t)-\frac{4}{3} \sin (3 t)\right]

A) y=e3t[3cos(7t)47sin(7t)] y=e^{3 t}\left[3 \cos (7 t)-\frac{4}{7} \sin (7 t)\right]
B) y=e3t(3cos(7t)+2sin(7t)) y=e^{-3 t}(3 \cos (7 t)+2 \sin (7 t))
C) y=e7t(3cos(3t)+143sin(3t)) y=e^{7 t}\left(3 \cos (3 t)+\frac{14}{3} \sin (3 t)\right)
D) y=e7t[3cos(3t)43sin(3t)] y=e^{-7 t}\left[3 \cos (3 t)-\frac{4}{3} \sin (3 t)\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
41
Consider the initial value problem:
 <strong>Consider the initial value problem:   What is the solution of this initial value problem?</strong> A)   y=2 \sin \left(\frac{t}{6}\right)+12 \cos \left(\frac{t}{6}\right)   B)   y=-12 \cos \left(\frac{t}{6}\right)-2 \sin \left(\frac{t}{6}\right)   C)   y=2 \cos (6 t)-2 \sin (6 t)   D)   y=-2 \cos (6 t)-2 \sin (6 t)
What is the solution of this initial value problem?

A) y=2sin(t6)+12cos(t6) y=2 \sin \left(\frac{t}{6}\right)+12 \cos \left(\frac{t}{6}\right)
B) y=12cos(t6)2sin(t6) y=-12 \cos \left(\frac{t}{6}\right)-2 \sin \left(\frac{t}{6}\right)
C) y=2cos(6t)2sin(6t) y=2 \cos (6 t)-2 \sin (6 t)
D) y=2cos(6t)2sin(6t) y=-2 \cos (6 t)-2 \sin (6 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
42
Consider the initial value problem:
 <strong>Consider the initial value problem:   Which of the following is an accurate description of the long-term behavior of the solution?</strong> A) y(t) decreases to 0 as t \rightarrow   \infty . B) y(t) is periodic with period 20 \pi . C) y(t) oscillates toward 0 as t  \rightarrow   \infty . D) y(t) becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty .
Which of the following is an accurate description of the long-term behavior of the solution?

A) y(t) decreases to 0 as t \rightarrow \infty .
B) y(t) is periodic with period 20 π\pi .
C) y(t) oscillates toward 0 as t \rightarrow \infty .
D) y(t) becomes unbounded in both the positive and negative y-directions as t \rightarrow \infty .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
43
Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem
 <strong>Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem   For any choice of \alpha and  \beta  satisfying  </strong> A) y is periodic with period    \pi . B) y is periodic with period 2  \pi . C) y becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . D) y oscillates toward 0 as t  \rightarrow   \infty . E) y increases toward + \infty  if  \beta  > 0, and decreases toward - \infty  if \beta  < 0.
For any choice of α\alpha and β\beta satisfying  <strong>Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem   For any choice of \alpha and  \beta  satisfying  </strong> A) y is periodic with period    \pi . B) y is periodic with period 2  \pi . C) y becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . D) y oscillates toward 0 as t  \rightarrow   \infty . E) y increases toward + \infty  if  \beta  > 0, and decreases toward - \infty  if \beta  < 0.

A) y is periodic with period  <strong>Which of the following is an accurate description of the long-term behavior of the solution of the initial value problem   For any choice of \alpha and  \beta  satisfying  </strong> A) y is periodic with period    \pi . B) y is periodic with period 2  \pi . C) y becomes unbounded in both the positive and negative y-directions as t  \rightarrow   \infty . D) y oscillates toward 0 as t  \rightarrow   \infty . E) y increases toward + \infty  if  \beta  > 0, and decreases toward - \infty  if \beta  < 0.  π\pi .
B) y is periodic with period 2 π\pi .
C) y becomes unbounded in both the positive and negative y-directions as t \rightarrow \infty .
D) y oscillates toward 0 as t \rightarrow \infty .
E) y increases toward + \infty if β\beta > 0, and decreases toward - \infty if β\beta < 0.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
44
Which of the following are solutions to the homogeneous second-order Cauchy Euler differential equation  <strong>Which of the following are solutions to the homogeneous second-order Cauchy Euler differential equation    . Select all that apply.</strong> A)   y=t^{12}+t   B)   y=\mathrm{Cr}^{-12}  , where   \mathrm{C}   is any real constant C)   y=16 t   D)   y=C\left(\frac{1}{t^{12}}+t\right)  , where   C   is any real constant E)   y=-9 r^{12}+C  , where   C   is any real constant F)   y=C_{1} t^{12}+C_{2} t+C  , where   C_{3} C_{1}  , and   C_{2}   are arbitrary real constants  . Select all that apply.

A) y=t12+t y=t^{12}+t
B) y=Cr12 y=\mathrm{Cr}^{-12} , where C \mathrm{C} is any real constant
C) y=16t y=16 t
D) y=C(1t12+t) y=C\left(\frac{1}{t^{12}}+t\right) , where C C is any real constant
E) y=9r12+C y=-9 r^{12}+C , where C C is any real constant
F) y=C1t12+C2t+C y=C_{1} t^{12}+C_{2} t+C , where C3C1 C_{3} C_{1} , and C2 C_{2} are arbitrary real constants
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
45
Consider the homogeneous second-order Cauchy Euler differential equation
 <strong>Consider the homogeneous second-order Cauchy Euler differential equation   What is the general solution of this differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y=C_{1} t^{10}+C_{2} t^{6}   B)   y=C_{1} t^{10}+C_{2} t^{6}  . C)   y=C_{1} r^{10 t}+C_{2} t^{6 t}   D)   y=C_{1} t^{10 t}+C_{2} f^{6 t}  . E)   y=C_{1} t^{-5}+C_{2} t^{-6}
What is the general solution of this differential equation? Here, C1 and C2 are arbitrary real constants.

A) y=C1t10+C2t6 y=C_{1} t^{10}+C_{2} t^{6}
B) y=C1t10+C2t6 y=C_{1} t^{10}+C_{2} t^{6} .
C) y=C1r10t+C2t6t y=C_{1} r^{10 t}+C_{2} t^{6 t}
D) y=C1t10t+C2f6t y=C_{1} t^{10 t}+C_{2} f^{6 t} .
E) y=C1t5+C2t6 y=C_{1} t^{-5}+C_{2} t^{-6}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
46
Consider the homogeneous second-order Cauchy Euler differential equation
Consider the homogeneous second-order Cauchy Euler differential equation   What is the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4?
What is the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α, Consider the homogeneous second-order Cauchy Euler differential equation   What is the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4? (1) = 4?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
47
Consider the homogeneous second-order Cauchy Euler differential equation
Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 6 tend to 0 as t → ∞? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.
For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α, Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 6 tend to 0 as t → ∞? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'. (1) = 6 tend to 0 as t → ∞? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
48
Consider the homogeneous second-order Cauchy Euler differential equation
Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4 remain bounded as   ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.
For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α, Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4 remain bounded as   ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'. (1) = 4 remain bounded as Consider the homogeneous second-order Cauchy Euler differential equation   For what value α does the solution of the initial value problem comprised of this differential equation and the initial conditions y(1) = α,   (1) = 4 remain bounded as   ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'. ? Enter your answer as a simplified fraction. If there is no such value of α, enter 'none'.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
49
For what value(s) of α\alpha is y =  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and    a solution of the second-order homogeneous differential equation  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and

A)  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and
B) 0 and  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and
C) 0 and -  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and
D) -  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and
E) -  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and    and  <strong>For what value(s) of  \alpha  is y =   a solution of the second-order homogeneous differential equation  </strong> A)   B) 0 and   C) 0 and -   D) -   E) -   and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
50
Which of the following are solutions to the homogeneous second-order differential equation  <strong>Which of the following are solutions to the homogeneous second-order differential equation   ? Select all that apply.</strong> A)   y_{1}=e^{-\frac{3}{2} t}+e^{\frac{3}{2} t}   B)   y_{2}=-6 t e^{\frac{3}{2} t}+8   C)   y_{3}=C_{1} e^{-\frac{3}{2} t}+C_{2} t e^{-\frac{3}{2} t}  , where   C_{1}   and   C_{2}   are arbitrary real constants D)   y_{4}=8 e^{\frac{3}{2} t}   E)   y_{5}=C e^{\frac{3}{2} t}+10 t e^{\frac{3}{2} t}   F)   y_{6}=2 e^{\frac{3}{2} t}+8 t e^{\frac{3}{2} t}+8  42_00  ?
Select all that apply.

A) y1=e32t+e32t y_{1}=e^{-\frac{3}{2} t}+e^{\frac{3}{2} t}
B) y2=6te32t+8 y_{2}=-6 t e^{\frac{3}{2} t}+8
C) y3=C1e32t+C2te32t y_{3}=C_{1} e^{-\frac{3}{2} t}+C_{2} t e^{-\frac{3}{2} t} , where C1 C_{1} and C2 C_{2} are arbitrary real constants
D) y4=8e32t y_{4}=8 e^{\frac{3}{2} t}
E) y5=Ce32t+10te32t y_{5}=C e^{\frac{3}{2} t}+10 t e^{\frac{3}{2} t}
F) y6=2e32t+8te32t+8 y_{6}=2 e^{\frac{3}{2} t}+8 t e^{\frac{3}{2} t}+8 42_00
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
51
Which of the following is the general solution of the homogeneous second-order differential equation  <strong>Which of the following is the general solution of the homogeneous second-order differential equation   arbitrary real constants.</strong> A)   y=C_{1} e^{-\frac{3}{4} t}+C_{2} t e^{-\frac{3}{4} t}   B)   y=C_{1} e^{-\frac{3}{4} t}+C_{2} e^{\frac{3}{4} t}   C)   y=C_{1} e^{\frac{3}{4} t}+C_{2} t e^{\frac{3}{4} t}   D)   y=C_{1} e^{-\frac{4}{3} t}+C_{2} t e^{-\frac{4}{3} t}   E)   y=C_{1} t e^{-\frac{3}{4} t}+C_{2}
arbitrary real constants.

A) y=C1e34t+C2te34t y=C_{1} e^{-\frac{3}{4} t}+C_{2} t e^{-\frac{3}{4} t}
B) y=C1e34t+C2e34t y=C_{1} e^{-\frac{3}{4} t}+C_{2} e^{\frac{3}{4} t}
C) y=C1e34t+C2te34t y=C_{1} e^{\frac{3}{4} t}+C_{2} t e^{\frac{3}{4} t}
D) y=C1e43t+C2te43t y=C_{1} e^{-\frac{4}{3} t}+C_{2} t e^{-\frac{4}{3} t}
E) y=C1te34t+C2 y=C_{1} t e^{-\frac{3}{4} t}+C_{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
52
What is the solution of this initial value problem:
What is the solution of this initial value problem:
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
53
Consider this initial value problem:
 <strong>Consider this initial value problem:   What is the solution of this initial value problem?</strong> A)   y=\frac{14}{9} e^{-\frac{9}{2} t}+2 e^{\frac{9}{2} t}   B)   y=\frac{22}{9} e^{-\frac{9}{2} t}-14 e^{-\frac{9}{2} t}   C)   y=e^{\frac{9}{2} t}(2-14 t)   D)   y=e^{-\frac{9}{2} t}(2+4 t)
What is the solution of this initial value problem?

A) y=149e92t+2e92t y=\frac{14}{9} e^{-\frac{9}{2} t}+2 e^{\frac{9}{2} t}
B) y=229e92t14e92t y=\frac{22}{9} e^{-\frac{9}{2} t}-14 e^{-\frac{9}{2} t}
C) y=e92t(214t) y=e^{\frac{9}{2} t}(2-14 t)
D) y=e92t(2+4t) y=e^{-\frac{9}{2} t}(2+4 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
54
Consider this initial value problem:
 <strong>Consider this initial value problem:   Which of the following is an accurate description of the long-term behavior of the solution?</strong> A) y(t) tends to 0 as t  \rightarrow   \infty . B) y(t) is strictly increasing and approaches  \infty  as t  \rightarrow   \infty . C) y(t) is strictly decreasing and approaches - \infty  as t  \rightarrow   \infty . D) y(t) becomes unbounded in both the positive and negative y-direction as t  \rightarrow   \infty .
Which of the following is an accurate description of the long-term behavior of the solution?

A) y(t) tends to 0 as t \rightarrow \infty .
B) y(t) is strictly increasing and approaches \infty as t \rightarrow \infty .
C) y(t) is strictly decreasing and approaches - \infty as t \rightarrow \infty .
D) y(t) becomes unbounded in both the positive and negative y-direction as t \rightarrow \infty .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
55
Consider this initial value problem:
 <strong>Consider this initial value problem:   For what values of  \alpha  does the solution tend to 0 as t  \rightarrow   \infty ?</strong> A) all real numbers B) all nonzero real numbers C) all positive real numbers D) all negative real numbers
For what values of α\alpha does the solution tend to 0 as t \rightarrow \infty ?

A) all real numbers
B) all nonzero real numbers
C) all positive real numbers
D) all negative real numbers
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
56
Use the method of reduction of order to find a second solution of the differential equation Use the method of reduction of order to find a second solution of the differential equation   using the fact that y<sub>1</sub> = t<sup>-1</sup> is a solution. is a solution. using the fact that y1 = t-1 is a solution. is a solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
57
Use the method of reduction of order to find a second solution of the differential equation , Use the method of reduction of order to find a second solution of the differential equation ,   using the fact that y<sub>1</sub> = t is a solution. using the fact that y1 = t is a solution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
58
What is the general solution of the homogeneous second-order Cauchy Euler differential equation  <strong>What is the general solution of the homogeneous second-order Cauchy Euler differential equation   are arbitrary real constants.</strong> A)   y=C_{1} t^{-6}+C_{2} t^{6}   B)   y=C_{1}(t \ln t)^{-6}+C_{2}(t \ln t)^{6}   C)   y=t^{-6}\left(C_{1}+C_{2} \ln t\right)   D)   y=C_{1} t^{-6}+C_{2}(t \ln t)^{-6}    are arbitrary real constants.

A) y=C1t6+C2t6 y=C_{1} t^{-6}+C_{2} t^{6}
B) y=C1(tlnt)6+C2(tlnt)6 y=C_{1}(t \ln t)^{-6}+C_{2}(t \ln t)^{6}
C) y=t6(C1+C2lnt) y=t^{-6}\left(C_{1}+C_{2} \ln t\right)
D) y=C1t6+C2(tlnt)6 y=C_{1} t^{-6}+C_{2}(t \ln t)^{-6}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
59
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{-3 t}+C_{2} e^{7 t}   B)   y(t)=C_{1} e^{-3 t}+C_{2} t e^{-3 t}   C)   y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}   D)   y(t)=C_{1} e^{3 t}+C_{2} e^{-7 t}   E)   y(t)=C_{1} e^{-7 t}+C_{2} t e^{-7 t}
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e3t+C2e7t y(t)=C_{1} e^{-3 t}+C_{2} e^{7 t}
B) y(t)=C1e3t+C2te3t y(t)=C_{1} e^{-3 t}+C_{2} t e^{-3 t}
C) y(t)=C1e3t+C2te3t y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}
D) y(t)=C1e3t+C2e7t y(t)=C_{1} e^{3 t}+C_{2} e^{-7 t}
E) y(t)=C1e7t+C2te7t y(t)=C_{1} e^{-7 t}+C_{2} t e^{-7 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
60
Consider this second-order nonhomogeneous differential equation:
 <strong>  Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=\left(e^{-6 t}+e^{-2 t}\right) \cdot(A t+B)   B)   Y(t)=A t+B   C)   Y(t)=A t   D)   Y(t)=A t+e^{-6 t}+e^{-2 t}
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=(e6t+e2t)(At+B) Y(t)=\left(e^{-6 t}+e^{-2 t}\right) \cdot(A t+B)
B) Y(t)=At+B Y(t)=A t+B
C) Y(t)=At Y(t)=A t
D) Y(t)=At+e6t+e2t Y(t)=A t+e^{-6 t}+e^{-2 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
61
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=e^{2 t}+e^{5 t}+C_{1}   B)   y(t)=C_{1}\left(e^{2 t}+e^{-5 t}\right)+C_{2}   C)   y(t)=C_{1} e^{-2 t}+C_{2} e^{-5 t}   D)   y(t)=C_{1} e^{-2 t}+C_{2} e^{5 t}   E)   y(t)=C_{1}\left(e^{-2 t}+e^{-5 t}\right)+C_{2}
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=e2t+e5t+C1 y(t)=e^{2 t}+e^{5 t}+C_{1}
B) y(t)=C1(e2t+e5t)+C2 y(t)=C_{1}\left(e^{2 t}+e^{-5 t}\right)+C_{2}
C) y(t)=C1e2t+C2e5t y(t)=C_{1} e^{-2 t}+C_{2} e^{-5 t}
D) y(t)=C1e2t+C2e5t y(t)=C_{1} e^{-2 t}+C_{2} e^{5 t}
E) y(t)=C1(e2t+e5t)+C2 y(t)=C_{1}\left(e^{-2 t}+e^{-5 t}\right)+C_{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
62
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A e^{-3 t}   B)   Y(t)=e^{A t}   C)   Y(t)=A e^{B t}   D)   Y(t)=A+e^{-3 t}   E)   Y(t)=A e^{-3 t}+B
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Ae3t Y(t)=A e^{-3 t}
B) Y(t)=eAt Y(t)=e^{A t}
C) Y(t)=AeBt Y(t)=A e^{B t}
D) Y(t)=A+e3t Y(t)=A+e^{-3 t}
E) Y(t)=Ae3t+B Y(t)=A e^{-3 t}+B
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
63
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here,C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1}\left(e^{10 t}+e^{6 t}\right)+C_{2}   B)   y(t)=C_{1} e^{-10 t}+C_{2} e^{6 t}   C)   y(t)=C_{1} e^{-10 t}+C_{2} e^{-6 t}   D)   y(t)=C_{1} e^{10 t}+C_{2} e^{6 t}   E)   y(t)=C_{1} e^{-10 t}+C_{2}\left(e^{-6 t}+t\right)
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here,C1 and C2 are arbitrary real constants.

A) y(t)=C1(e10t+e6t)+C2 y(t)=C_{1}\left(e^{10 t}+e^{6 t}\right)+C_{2}
B) y(t)=C1e10t+C2e6t y(t)=C_{1} e^{-10 t}+C_{2} e^{6 t}
C) y(t)=C1e10t+C2e6t y(t)=C_{1} e^{-10 t}+C_{2} e^{-6 t}
D) y(t)=C1e10t+C2e6t y(t)=C_{1} e^{10 t}+C_{2} e^{6 t}
E) y(t)=C1e10t+C2(e6t+t) y(t)=C_{1} e^{-10 t}+C_{2}\left(e^{-6 t}+t\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
64
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A e^{8 t}\left[\sin \frac{\pi}{9} t+\cos \frac{\pi}{9} t\right]+B   B)   Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)+B   C)   Y(t)=e^{A t}(\sin (B t)+\cos (B t))   D)   Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)   E)   Y(t)=e^{8 t}\left(A \sin \frac{\pi}{9} t+B \cos \frac{\pi}{9} t\right)
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is to be used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Ae8t[sinπ9t+cosπ9t]+B Y(t)=A e^{8 t}\left[\sin \frac{\pi}{9} t+\cos \frac{\pi}{9} t\right]+B
B) Y(t)=Ae8tsin(π9t)+B Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)+B
C) Y(t)=eAt(sin(Bt)+cos(Bt)) Y(t)=e^{A t}(\sin (B t)+\cos (B t))
D) Y(t)=Ae8tsin(π9t) Y(t)=A e^{8 t} \sin \left(\frac{\pi}{9} t\right)
E) Y(t)=e8t(Asinπ9t+Bcosπ9t) Y(t)=e^{8 t}\left(A \sin \frac{\pi}{9} t+B \cos \frac{\pi}{9} t\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
65
Which of these is the general solution of the second-order nonhomogeneous differential equation  <strong>Which of these is the general solution of the second-order nonhomogeneous differential equation   and all capital letters are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{-\frac{9}{2} t}+C_{2} t e^{-\frac{9}{2} t}+\mathrm{A} t^{2}   B)   y(t)=e^{-\frac{9}{2} t}\left(A t^{2}+B t+C\right)+C_{1}   C)   y(t)=e^{\frac{9}{2} t}\left(t+C_{1}\right)+A t^{2}+B t+C   D)   y(t)=e^{-\frac{9}{2} t}\left(C_{1}+C_{2} t\right)+A t^{2}+B t+C   E)   y(t)=C_{1} e^{\frac{9}{2} t}+C_{2} t e^{\frac{9}{2} t}+A t^{2}+B t
and all capital letters are arbitrary real constants.

A) y(t)=C1e92t+C2te92t+At2 y(t)=C_{1} e^{-\frac{9}{2} t}+C_{2} t e^{-\frac{9}{2} t}+\mathrm{A} t^{2}
B) y(t)=e92t(At2+Bt+C)+C1 y(t)=e^{-\frac{9}{2} t}\left(A t^{2}+B t+C\right)+C_{1}
C) y(t)=e92t(t+C1)+At2+Bt+C y(t)=e^{\frac{9}{2} t}\left(t+C_{1}\right)+A t^{2}+B t+C
D) y(t)=e92t(C1+C2t)+At2+Bt+C y(t)=e^{-\frac{9}{2} t}\left(C_{1}+C_{2} t\right)+A t^{2}+B t+C
E) y(t)=C1e92t+C2te92t+At2+Bt y(t)=C_{1} e^{\frac{9}{2} t}+C_{2} t e^{\frac{9}{2} t}+A t^{2}+B t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
66
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=e^{\frac{2}{5} t}\left(C_{1}+C_{2} t\right)   B)   y(t)=C_{1} e^{\frac{2}{5} t}+C_{2} e^{-\frac{2}{5} t}   C)   y(t)=e^{\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}   D)   y(t)=e^{-\frac{2}{5} t}\left(C_{1}+C_{2} t\right)   E)   y(t)=e^{-\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=e25t(C1+C2t) y(t)=e^{\frac{2}{5} t}\left(C_{1}+C_{2} t\right)
B) y(t)=C1e25t+C2e25t y(t)=C_{1} e^{\frac{2}{5} t}+C_{2} e^{-\frac{2}{5} t}
C) y(t)=e25t(t+C1)+C2 y(t)=e^{\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}
D) y(t)=e25t(C1+C2t) y(t)=e^{-\frac{2}{5} t}\left(C_{1}+C_{2} t\right)
E) y(t)=e25t(t+C1)+C2 y(t)=e^{-\frac{2}{5} t}\left(t+C_{1}\right)+C_{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
67
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A e^{-6 t}+B e^{9 t}+C t e^{-3 t}+D   B)   Y(t)=(A+B t)\left(e^{-6 t}+e^{9 t}+t e^{-3 t}+C\right.   C)   Y(t)=A e^{-6 t}+B e^{9 t}+(C t+D) e^{-3 t}+E   D)   Y(t)=(A+B t) e^{-6 t}+(C+D t) e^{9 t}+(E+F t) e^{-3 t}+G
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Ae6t+Be9t+Cte3t+D Y(t)=A e^{-6 t}+B e^{9 t}+C t e^{-3 t}+D
B) Y(t)=(A+Bt)(e6t+e9t+te3t+C Y(t)=(A+B t)\left(e^{-6 t}+e^{9 t}+t e^{-3 t}+C\right.
C) Y(t)=Ae6t+Be9t+(Ct+D)e3t+E Y(t)=A e^{-6 t}+B e^{9 t}+(C t+D) e^{-3 t}+E
D) Y(t)=(A+Bt)e6t+(C+Dt)e9t+(E+Ft)e3t+G Y(t)=(A+B t) e^{-6 t}+(C+D t) e^{9 t}+(E+F t) e^{-3 t}+G
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
68
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} \sin (5 t)+C_{2} \cos (5 t)   B)   y(t)=C_{1} \sin (25 t)+C_{2} \cos (25 t)   C)   y(t)=C_{1}+C_{2} e^{-5 t}   D)   y(t)=C_{1} e^{-5 t}+C_{2} e^{5 t}
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1sin(5t)+C2cos(5t) y(t)=C_{1} \sin (5 t)+C_{2} \cos (5 t)
B) y(t)=C1sin(25t)+C2cos(25t) y(t)=C_{1} \sin (25 t)+C_{2} \cos (25 t)
C) y(t)=C1+C2e5t y(t)=C_{1}+C_{2} e^{-5 t}
D) y(t)=C1e5t+C2e5t y(t)=C_{1} e^{-5 t}+C_{2} e^{5 t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
69
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A t^{2}+B t+C+D e^{-\sqrt{3} t}   B)   Y(t)=\left(A t^{2}+B t\right) e^{-\sqrt{3} t}   C)   Y(t)=A t(B t+3) e^{-\sqrt{3} t}   D)   Y(t)=\left(A t^{2}+B t+C\right) e^{-\sqrt{3} t}
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=At2+Bt+C+De3t Y(t)=A t^{2}+B t+C+D e^{-\sqrt{3} t}
B) Y(t)=(At2+Bt)e3t Y(t)=\left(A t^{2}+B t\right) e^{-\sqrt{3} t}
C) Y(t)=At(Bt+3)e3t Y(t)=A t(B t+3) e^{-\sqrt{3} t}
D) Y(t)=(At2+Bt+C)e3t Y(t)=\left(A t^{2}+B t+C\right) e^{-\sqrt{3} t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
70
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{2 t}(\sin (4 t)+\cos (4 t))+C_{2}   B)   y(t)=C_{1} e^{4 t} \sin (2 t)+C_{2} e^{4 t} \cos (2 t)   C)   y(t)=C_{1} e^{4 t}(\sin (2 t)+\cos (2 t))+C_{2}   D)   y(t)=C_{1} e^{2 t} \sin (4 t)+C_{2} e^{2 t} \cos (4 t)
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e2t(sin(4t)+cos(4t))+C2 y(t)=C_{1} e^{2 t}(\sin (4 t)+\cos (4 t))+C_{2}
B) y(t)=C1e4tsin(2t)+C2e4tcos(2t) y(t)=C_{1} e^{4 t} \sin (2 t)+C_{2} e^{4 t} \cos (2 t)
C) y(t)=C1e4t(sin(2t)+cos(2t))+C2 y(t)=C_{1} e^{4 t}(\sin (2 t)+\cos (2 t))+C_{2}
D) y(t)=C1e2tsin(4t)+C2e2tcos(4t) y(t)=C_{1} e^{2 t} \sin (4 t)+C_{2} e^{2 t} \cos (4 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
71
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A t+B t^{4}   B)   Y(t)=\left(A t+B t^{4}\right) e^{4 t} \sin (2 t)+\left(C t+D t^{4}\right) e^{4 t} \cos (2 t)   C)   Y(t)=A t^{4}+B t^{3}+C t^{2}+D t+E   D)   Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{4 t}(\sin (2 t)+\cos (2 t))   E)   Y(t)=\left(A t^{4}+B t\right) e^{2 t} \sin (4 t)+\left(C t^{4}+D t\right) e^{2 t} \cos (4 t)   F)   Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{2 t}(\sin (4 t)+\cos (4 t))
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=At+Bt4 Y(t)=A t+B t^{4}
B) Y(t)=(At+Bt4)e4tsin(2t)+(Ct+Dt4)e4tcos(2t) Y(t)=\left(A t+B t^{4}\right) e^{4 t} \sin (2 t)+\left(C t+D t^{4}\right) e^{4 t} \cos (2 t)
C) Y(t)=At4+Bt3+Ct2+Dt+E Y(t)=A t^{4}+B t^{3}+C t^{2}+D t+E
D) Y(t)=(At4+Bt3+Ct2+Dt+E)e4t(sin(2t)+cos(2t)) Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{4 t}(\sin (2 t)+\cos (2 t))
E) Y(t)=(At4+Bt)e2tsin(4t)+(Ct4+Dt)e2tcos(4t) Y(t)=\left(A t^{4}+B t\right) e^{2 t} \sin (4 t)+\left(C t^{4}+D t\right) e^{2 t} \cos (4 t)
F) Y(t)=(At4+Bt3+Ct2+Dt+E)e2t(sin(4t)+cos(4t)) Y(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{2 t}(\sin (4 t)+\cos (4 t))
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
72
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{5 t}(\sin (-5 t)+\cos (-5 t))+C_{2}   B)   y(t)=C_{1} e^{-5 t} \sin (5 t)+C_{2} e^{-5 t} \cos (5 t)   C)   y(t)=C_{1} e^{5 t} \sin (-5 t)+C_{2} e^{5 t} \cos (-5 t)   D)   y(t)=C_{1} e^{-5 t}(\sin (5 t)+\cos (5 t))+C_{2}
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e5t(sin(5t)+cos(5t))+C2 y(t)=C_{1} e^{5 t}(\sin (-5 t)+\cos (-5 t))+C_{2}
B) y(t)=C1e5tsin(5t)+C2e5tcos(5t) y(t)=C_{1} e^{-5 t} \sin (5 t)+C_{2} e^{-5 t} \cos (5 t)
C) y(t)=C1e5tsin(5t)+C2e5tcos(5t) y(t)=C_{1} e^{5 t} \sin (-5 t)+C_{2} e^{5 t} \cos (-5 t)
D) y(t)=C1e5t(sin(5t)+cos(5t))+C2 y(t)=C_{1} e^{-5 t}(\sin (5 t)+\cos (5 t))+C_{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
73
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A   B)   Y(t)=A e^{-4 t} \sin (4 t)+B e^{-4 t} \cos (4 t)   C)   Y(t)=A e^{4 t} \sin (-4 t)+B e^{4 t} \cos (-4 t)   D)   Y(t)=A \sin (4 t)+B \cos (4 t)
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=A Y(t)=A
B) Y(t)=Ae4tsin(4t)+Be4tcos(4t) Y(t)=A e^{-4 t} \sin (4 t)+B e^{-4 t} \cos (4 t)
C) Y(t)=Ae4tsin(4t)+Be4tcos(4t) Y(t)=A e^{4 t} \sin (-4 t)+B e^{4 t} \cos (-4 t)
D) Y(t)=Asin(4t)+Bcos(4t) Y(t)=A \sin (4 t)+B \cos (4 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
74
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=e^{6 t}\left(C_{1} \sin (5 t)+C_{2} \cos (5 t)\right)   B)   y(t)=C_{1} e^{-\frac{6}{5} t}+C_{2} e^{\frac{6}{5} t}   C)   y(t)=C_{1} e^{-\frac{5}{6} t}+C_{2} e^{\frac{5}{6} t}   D)   y(t)=C_{1} \sin \left(\frac{5}{6} t\right)+C_{2} \cos \left(\frac{5}{6} t\right)   E)   y(t)=C_{1} \sin \left(\frac{6}{5} t\right)+C_{2} \cos \left(\frac{6}{5} t\right)
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=e6t(C1sin(5t)+C2cos(5t)) y(t)=e^{6 t}\left(C_{1} \sin (5 t)+C_{2} \cos (5 t)\right)
B) y(t)=C1e65t+C2e65t y(t)=C_{1} e^{-\frac{6}{5} t}+C_{2} e^{\frac{6}{5} t}
C) y(t)=C1e56t+C2e56t y(t)=C_{1} e^{-\frac{5}{6} t}+C_{2} e^{\frac{5}{6} t}
D) y(t)=C1sin(56t)+C2cos(56t) y(t)=C_{1} \sin \left(\frac{5}{6} t\right)+C_{2} \cos \left(\frac{5}{6} t\right)
E) y(t)=C1sin(65t)+C2cos(65t) y(t)=C_{1} \sin \left(\frac{6}{5} t\right)+C_{2} \cos \left(\frac{6}{5} t\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
75
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A t \cos (3 t)   B)   Y(t)=A t \cos (3 t)+B t \sin (3 t)   C)   Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)   D)   Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)   E)   Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Atcos(3t) Y(t)=A t \cos (3 t)
B) Y(t)=Atcos(3t)+Btsin(3t) Y(t)=A t \cos (3 t)+B t \sin (3 t)
C) Y(t)=(At+B)sin(3t)+(Ct+D)cos(3t) Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)
D) Y(t)=(At2+Bt+C)sin(3t)+(Dt2+Et+F)cos(3t) Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)
E) Y(t)=At2cos(3t)+Bt2sin(3t) Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
76
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants </strong> A)   Y(t)=A t \cos (3 t)   B)   Y(t)=A t \cos (3 t)+B t \sin (3 t)   C)   Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)   D)   Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)   E)   Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)
Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants

A) Y(t)=Atcos(3t) Y(t)=A t \cos (3 t)
B) Y(t)=Atcos(3t)+Btsin(3t) Y(t)=A t \cos (3 t)+B t \sin (3 t)
C) Y(t)=(At+B)sin(3t)+(Ct+D)cos(3t) Y(t)=(A t+B) \sin (3 t)+(C t+D) \cos (3 t)
D) Y(t)=(At2+Bt+C)sin(3t)+(Dt2+Et+F)cos(3t) Y(t)=\left(A t^{2}+B t+C\right) \sin (3 t)+\left(D t^{2}+E t+F\right) \cos (3 t)
E) Y(t)=At2cos(3t)+Bt2sin(3t) Y(t)=A t^{2} \cos (3 t)+B t^{2} \sin (3 t)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
77
Consider this second-order nonhomogeneous differential equation:
 <strong>Consider this second-order nonhomogeneous differential equation:   Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.</strong> A)   Y(t)=A \sin (5 t)+B e^{5 t}+C   B)   Y(t)=(A t+B) \sin (5 t)+C e^{5 t}+D   C)   Y(t)=e^{5 t}(A \sin (5 t)+B \cos (5 t)+C)+D   D)   Y(t)=A \sin (5 t)+B \cos (5 t)+C e^{5 t}+D   E)   Y(t)=(A t+B) \sin (5 t)+(C t+D) \cos (5 t)+E e^{5 t}+F
Which of these is a suitable form of a particular solution Y(t) of the nonhomogeneous differential equation if the method of undetermined coefficients is used? Here, all capital letters represent arbitrary real constants.

A) Y(t)=Asin(5t)+Be5t+C Y(t)=A \sin (5 t)+B e^{5 t}+C
B) Y(t)=(At+B)sin(5t)+Ce5t+D Y(t)=(A t+B) \sin (5 t)+C e^{5 t}+D
C) Y(t)=e5t(Asin(5t)+Bcos(5t)+C)+D Y(t)=e^{5 t}(A \sin (5 t)+B \cos (5 t)+C)+D
D) Y(t)=Asin(5t)+Bcos(5t)+Ce5t+D Y(t)=A \sin (5 t)+B \cos (5 t)+C e^{5 t}+D
E) Y(t)=(At+B)sin(5t)+(Ct+D)cos(5t)+Ee5t+F Y(t)=(A t+B) \sin (5 t)+(C t+D) \cos (5 t)+E e^{5 t}+F
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
78
Which of these is the general solution of the second-order nonhomogeneous differential equation  <strong>Which of these is the general solution of the second-order nonhomogeneous differential equation   and all capital letters are arbitrary real constants.</strong> A)   y(t)=C_{1}+C_{2} e^{-\frac{10}{11} t}+A e^{-\frac{10}{11} t}+(B t+C) e^{-\frac{10}{11} t}   B)   y(t)=C_{1}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{\frac{10}{11} t}+C e^{-\frac{10}{11} t}   C)   y(t)=C_{1} e^{-\frac{10}{11} t}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{-\frac{10}{11} t}+(C t+D) e^{\frac{10}{11} t}   D)   y(t)=C_{1}+C_{2} e^{-\frac{10}{\pi 1} t}+A e^{-\frac{10}{11} t}+B e^{\frac{10}{11} t}    and all capital letters are arbitrary real constants.

A) y(t)=C1+C2e1011t+Ae1011t+(Bt+C)e1011t y(t)=C_{1}+C_{2} e^{-\frac{10}{11} t}+A e^{-\frac{10}{11} t}+(B t+C) e^{-\frac{10}{11} t}
B) y(t)=C1+C2e1011t+(At+B)e1011t+Ce1011t y(t)=C_{1}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{\frac{10}{11} t}+C e^{-\frac{10}{11} t}
C) y(t)=C1e1011t+C2e1011t+(At+B)e1011t+(Ct+D)e1011t y(t)=C_{1} e^{-\frac{10}{11} t}+C_{2} e^{\frac{10}{11} t}+(A t+B) e^{-\frac{10}{11} t}+(C t+D) e^{\frac{10}{11} t}
D) y(t)=C1+C2e10π1t+Ae1011t+Be1011t y(t)=C_{1}+C_{2} e^{-\frac{10}{\pi 1} t}+A e^{-\frac{10}{11} t}+B e^{\frac{10}{11} t}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
79
Which of these is the general solution of the second-order nonhomogeneous differential equation  <strong>Which of these is the general solution of the second-order nonhomogeneous differential equation   , and all capital letters are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)   B)   y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)   C)   y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)   D)   y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)   E)   y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)    , and all capital letters are arbitrary real constants.

A) y(t)=C1et+C2tet+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)
B) y(t)=C1+C2t+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)
C) y(t)=C1+C2t+Asin(7t)+Bcos(5π2t) y(t)=C_{1}+C_{2} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)
D) y(t)=C1t+Asin(7t)+Bcos(5π2t) y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos \left(\frac{5 \pi}{2} t\right)
E) y(t)=C1t+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1} t+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
80
Consider this second-order nonhomogeneous differential equation:  <strong>Consider this second-order nonhomogeneous differential equation:   Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants.</strong> A)   y(t)=C_{1} e^{3 t}(\sin (4 t)+\cos (4 t))+C_{2}   B)   y(t)=C_{1} e^{4 t}\left(\sin (3 t)+C_{2} e^{4 t}(\cos (3 t)\right.   C)   y(t)=C_{1} e^{4 t}(\sin (3 t)+\cos (3 t))+C_{2}   D)   y(t)=C_{1} e^{3 t}\left(\sin (4 t)+C_{2} e^{3 t}(\cos (4 t)\right.    Which of the following is the form of the solution of the corresponding homogeneous differential equation? Here, C1 and C2 are arbitrary real constants.

A) y(t)=C1e3t(sin(4t)+cos(4t))+C2 y(t)=C_{1} e^{3 t}(\sin (4 t)+\cos (4 t))+C_{2}
B) y(t)=C1e4t(sin(3t)+C2e4t(cos(3t) y(t)=C_{1} e^{4 t}\left(\sin (3 t)+C_{2} e^{4 t}(\cos (3 t)\right.
C) y(t)=C1e4t(sin(3t)+cos(3t))+C2 y(t)=C_{1} e^{4 t}(\sin (3 t)+\cos (3 t))+C_{2}
D) y(t)=C1e3t(sin(4t)+C2e3t(cos(4t) y(t)=C_{1} e^{3 t}\left(\sin (4 t)+C_{2} e^{3 t}(\cos (4 t)\right.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 119 في هذه المجموعة.