Deck 7: Feedback

ملء الشاشة (f)
exit full mode
سؤال
An amplifier with an open-loop gain of 1000 V/V1000 \mathrm{~V} / \mathrm{V} is connected in a feedback loop with the result that the closed-loop gain obtained is 10 V/V10 \mathrm{~V} / \mathrm{V} .
(a) Find the value of the amount of feedback, the loop gain, and the feedback factor.
(b) If the open-loop gain varies by ±10%\pm 10 \% , what is the corresponding variation of the closedloop gain?
(c) If the open-loop amplifier has 3-dB frequencies fL=1kHzf_{L}=1 \mathrm{kHz} and fH=100kHzf_{H}=100 \mathrm{kHz} , and the gain rolls off at the low and high frequency ends with a slope of 20 dB/decade20 \mathrm{~dB} / \mathrm{decade} , find the 3dB3-\mathrm{dB} frequencies of the closed-loop gain and sketch the Bode magnitude plot of both the open-loop and closed-loop gains (on the same axes).
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
    Figure 11.2.1 The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain  \mu=10^{3} , input resistance  R_{i d}=100 \mathrm{k} \Omega , and output resistance  r_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source  V_{S}  having a source resistance  R_{S}=10 \mathrm{k} \Omega , and a load resistance  R_{L}=   1 \mathrm{k} \Omega  is connected to the output terminal. (a) If it is required to obtain a closed-loop gain  A_{f} \equiv V_{o} / V_{S}  that is ideally  10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor  \beta  ? If  R_{1}=1 \mathrm{k} \Omega , what value must  R_{2}  have? (b) Give the complete  A  circuit and use it to determine  A, R_{i} , and  R_{o} . (c) Find the actual value of  A_{f}  realized. (d) Find the input resistance  R_{\text {in }}  of the feedback amplifier. (e) Find the output resistance  R_{\text {out }}  of the feedback amplifier. (f) If, due to temperature variation, the gain  \mu  changes by  10 \% , what percentage change do you expect  A_{f}  to have? (g) If the high-frequency response of the amplifier  \mu  is characterized by a drop of  20 \mathrm{~dB} /  decade with a 3-dB frequency of  10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain  A_{f}  to be? At what frequency will the magnitude of  A_{f}  become unity?<div style=padding-top: 35px>

Figure 11.2.1
The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain μ=103\mu=10^{3} , input resistance Rid=100kΩR_{i d}=100 \mathrm{k} \Omega , and output resistance ro=1kΩr_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source VSV_{S} having a source resistance RS=10kΩR_{S}=10 \mathrm{k} \Omega , and a load resistance RL=R_{L}= 1kΩ1 \mathrm{k} \Omega is connected to the output terminal.
(a) If it is required to obtain a closed-loop gain AfVo/VSA_{f} \equiv V_{o} / V_{S} that is ideally 10 V/V10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor β\beta ? If R1=1kΩR_{1}=1 \mathrm{k} \Omega , what value must R2R_{2} have?
(b) Give the complete AA circuit and use it to determine A,RiA, R_{i} , and RoR_{o} .
(c) Find the actual value of AfA_{f} realized.
(d) Find the input resistance Rin R_{\text {in }} of the feedback amplifier.
(e) Find the output resistance Rout R_{\text {out }} of the feedback amplifier.
(f) If, due to temperature variation, the gain μ\mu changes by 10%10 \% , what percentage change do you expect AfA_{f} to have?
(g) If the high-frequency response of the amplifier μ\mu is characterized by a drop of 20 dB/20 \mathrm{~dB} / decade with a 3-dB frequency of 10kHz10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain AfA_{f} to be? At what frequency will the magnitude of AfA_{f} become unity?
سؤال
    The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source  V_{S}  together with the resistance  R_{1}  to its Norton's equivalent circuit composed of current source  I_{S}=   V_{S} / R_{1}  together with a parallel resistance equal to  R_{1} . The amplifier  \mu  has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which  \mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega ,  r_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and  R_{2}=100 \mathrm{k} \Omega . (a) Find the  A  circuit and derive expressions for  A \equiv V_{o} / I_{S}, R_{i} , and  R_{o} . Evaluate these expressions to determine  A, R_{i} , and  R_{o} . (b) Find the  \beta  circuit and derive an expression for  \beta . Find the value of  \beta . (c) Find an expression for  A \beta  and its value. (d) Find the value of the amount of feedback. (e) Find the closed-loop gain and hence  V_{o} / V_{S} . (f) Find the value of  R_{\text {in }} . (g) Find the value of  R_{\text {out }} . (h) If  \mu  changes by  -10 \% , what is the resulting change in  V_{o} / V_{S}  ?<div style=padding-top: 35px>

The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source VSV_{S} together with the resistance R1R_{1} to its Norton's equivalent circuit composed of current source IS=I_{S}= VS/R1V_{S} / R_{1} together with a parallel resistance equal to R1R_{1} . The amplifier μ\mu has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which μ=103 V/V,Rid=1MΩ\mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega , ro=100Ω,R1=1kΩr_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and R2=100kΩR_{2}=100 \mathrm{k} \Omega .
(a) Find the AA circuit and derive expressions for AVo/IS,RiA \equiv V_{o} / I_{S}, R_{i} , and RoR_{o} . Evaluate these expressions to determine A,RiA, R_{i} , and RoR_{o} .
(b) Find the β\beta circuit and derive an expression for β\beta . Find the value of β\beta .
(c) Find an expression for AβA \beta and its value.
(d) Find the value of the amount of feedback.
(e) Find the closed-loop gain and hence Vo/VSV_{o} / V_{S} .
(f) Find the value of Rin R_{\text {in }} .
(g) Find the value of Rout R_{\text {out }} .
(h) If μ\mu changes by 10%-10 \% , what is the resulting change in Vo/VSV_{o} / V_{S} ?
سؤال
    Figure 11.4.1 The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network  \left(R_{1}, R_{2}\right)  to sample the output voltage  V_{o} . Though the bias details are not shown, it is known that each of  Q_{1} ,  Q_{2} , and  Q_{3}  is operating at a  g_{m}  of  2 \mathrm{~mA} / \mathrm{V}  and that their  r_{o}  's are very large. (a) Give the  \beta  circuit and find the value of  \beta . (b) What do you estimate the approximate value of the closed-loop gain  A_{f}=V_{o} / V_{S}  to be? (c) Give the  A  circuit and calculate the value of  A . (d) Use the results of (a) and (c) to determine  A_{f}  and compare the result to the value obtained in (b). (e) Find the output resistance  R_{O}  of the  A  circuit. (f) Find the output resistance  R_{\text {out }}  of the closedloop amplifier. (g) If the open-loop gain  A  is found to have a dominant high-frequency pole at  1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain  A_{f}  to be? (h) If for some reason  g_{m}  of  Q_{2}  decreases by  20 \% , what is the corresponding percentage decrease in  A_{f}  ?<div style=padding-top: 35px>

Figure 11.4.1
The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network (R1,R2)\left(R_{1}, R_{2}\right) to sample the output voltage VoV_{o} . Though the bias details are not shown, it is known that each of Q1Q_{1} , Q2Q_{2} , and Q3Q_{3} is operating at a gmg_{m} of 2 mA/V2 \mathrm{~mA} / \mathrm{V} and that their ror_{o} 's are very large.
(a) Give the β\beta circuit and find the value of β\beta .
(b) What do you estimate the approximate value of the closed-loop gain Af=Vo/VSA_{f}=V_{o} / V_{S} to be?
(c) Give the AA circuit and calculate the value of AA .
(d) Use the results of (a) and (c) to determine AfA_{f} and compare the result to the value obtained in (b).
(e) Find the output resistance ROR_{O} of the AA circuit.
(f) Find the output resistance Rout R_{\text {out }} of the closedloop amplifier.
(g) If the open-loop gain AA is found to have a dominant high-frequency pole at 1MHz1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain AfA_{f} to be?
(h) If for some reason gmg_{m} of Q2Q_{2} decreases by 20%20 \% , what is the corresponding percentage decrease in AfA_{f} ?
سؤال
The feedback voltage amplifier in Fig. 11.5.1
 The feedback voltage amplifier in Fig. 11.5.1   Figure 11.5.1 utilizes the series-shunt feedback topology with the feedback network composed of  R_{1}  and  R_{2} . The following component values are given:  R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}=   11 \mathrm{k} \Omega , and  R_{5}=300 \Omega . The BJTs have  \beta=100 ,  \left|V_{B E}\right|=0.7 \mathrm{~V} , and  r_{o}=\infty . The capacitors  C_{1}, C_{2} ,  C_{3} , and  C_{4}  are very large. (a) Find values for  R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and  R_{C 2}  so as to establish the following de conditions:  V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}=   I_{E 2}=1 \mathrm{~mA} , and  I=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper. (b) Supply the  A  circuit and find the values of  A ,  R_{i} , and  R_{O} . (c) Supply the  \beta  circuit and find the value of  \beta . (d) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} , the input resistance  R_{\mathrm{in}} , and the output resistance  R_{\text {out. }} <div style=padding-top: 35px>
Figure 11.5.1
utilizes the series-shunt feedback topology with the feedback network composed of R1R_{1} and R2R_{2} . The following component values are given: RS=5kΩ,R1=1kΩ,R2=R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}= 11kΩ11 \mathrm{k} \Omega , and R5=300ΩR_{5}=300 \Omega . The BJTs have β=100\beta=100 , VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} , and ro=r_{o}=\infty . The capacitors C1,C2C_{1}, C_{2} , C3C_{3} , and C4C_{4} are very large.
(a) Find values for RB1,RB2,R3,RC1,R4R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and RC2R_{C 2} so as to establish the following de conditions: VB1=+4 V,VC1=+6 V,VC2=+4 V,IE1=V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}= IE2=1 mAI_{E 2}=1 \mathrm{~mA} , and I=0.1 mAI=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper.
(b) Supply the AA circuit and find the values of AA , RiR_{i} , and ROR_{O} .
(c) Supply the β\beta circuit and find the value of β\beta .
(d) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} , the input resistance RinR_{\mathrm{in}} , and the output resistance Rout. R_{\text {out. }}
سؤال
Figure 11.6.1 (refer to Figure below)
 Figure 11.6.1 (refer to Figure below)    Figure 11.6.1 shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:  A_{1}  has a differential input resistance of  82 \mathrm{k} \Omega , an open-circuit differential voltage gain of  20 \mathrm{~V} / \mathrm{V} , and an output resistance of  3.2 \mathrm{k} \Omega .  A_{2}  has an input resistance of  5 \mathrm{k} \Omega , a shortcircuit tranconductance of  20 \mathrm{~mA} / \mathrm{V} , and an output resistance of  20 \mathrm{k} \Omega .  A_{3}  has an input resistance of  20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of  1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source having  R_{S}=9 \mathrm{k} \Omega  and is connected to a load  R_{L}=1 \mathrm{k} \Omega . The feedback network has  R_{1}=10 \mathrm{k} \Omega  and  R_{2}=90 \mathrm{k} \Omega . (a) Give the  A  circuit and find the value of  A . (b) Find  \beta  and the amount of feedback. (c) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} . (d) Find the input resistance  R_{\text {in }} . (e) Find the output resistance  R_{\text {out }} . (f) If the high-frequency response of the openloop gain  A  is dominated by a pole at  1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain? (g) If for some reason the gain of  A_{1}  drops to half its nominal value, what is the percentage change in  A_{f}  ?<div style=padding-top: 35px>

Figure 11.6.1
shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:
A1A_{1} has a differential input resistance of 82kΩ82 \mathrm{k} \Omega , an open-circuit differential voltage gain of 20 V/V20 \mathrm{~V} / \mathrm{V} , and an output resistance of 3.2kΩ3.2 \mathrm{k} \Omega .
A2A_{2} has an input resistance of 5kΩ5 \mathrm{k} \Omega , a shortcircuit tranconductance of 20 mA/V20 \mathrm{~mA} / \mathrm{V} , and an output resistance of 20kΩ20 \mathrm{k} \Omega . A3A_{3} has an input resistance of 20kΩ20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of 1kΩ1 \mathrm{k} \Omega .
The feedback amplifier is fed with a signal source having RS=9kΩR_{S}=9 \mathrm{k} \Omega and is connected to a load RL=1kΩR_{L}=1 \mathrm{k} \Omega . The feedback network has R1=10kΩR_{1}=10 \mathrm{k} \Omega and R2=90kΩR_{2}=90 \mathrm{k} \Omega .
(a) Give the AA circuit and find the value of AA .
(b) Find β\beta and the amount of feedback.
(c) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} .
(d) Find the input resistance Rin R_{\text {in }} .
(e) Find the output resistance Rout R_{\text {out }} .
(f) If the high-frequency response of the openloop gain AA is dominated by a pole at 1kHz1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain?
(g) If for some reason the gain of A1A_{1} drops to half its nominal value, what is the percentage change in AfA_{f} ?
سؤال
In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors CC1C_{C 1} and CC2C_{C 2} are very large and thus act as perfect short circuits at
 In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors  C_{C 1}  and  C_{C 2}  are very large and thus act as perfect short circuits at    Figure 11.7.1 the frequencies of interest. Transistors  Q_{1}, Q_{2} , and  Q_{3}  are identical and are operating at identical dc bias conditions so that each has  g_{m}=5 \mathrm{~mA} / \mathrm{V}  and  r_{o}=10 \mathrm{k} \Omega . (a) Replacing the signal source  V_{S}  and  R_{S}  with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology. (b) Give the  \beta  circuit and determine the value of  \beta . (c) Give the ideal value of the closed-loop gain and hence of the voltage gain  V_{o} / V_{S} . (d) Provide the  A  circuit and determine the values of  A, R_{i} , and  R_{o} . (e) Find the values of  A_{f}, R_{i f} , and  R_{o f} . (f) Find the actual value of voltage gain  V_{o} / V_{S}  realized and compare to the approximate value found in (c). (g) Find the value of  R_{\text {in }} , (h) Find the value of  R_{\text {out }} . (i) If  V_{s}  is  100 \mathrm{mV} , find the magnitudes of the signals at the gates of  Q_{1}, Q_{2} , and  Q_{3}  and at the output (i.e.,  V_{o}  ).<div style=padding-top: 35px>

Figure 11.7.1
the frequencies of interest. Transistors Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} are identical and are operating at identical dc bias conditions so that each has gm=5 mA/Vg_{m}=5 \mathrm{~mA} / \mathrm{V} and ro=10kΩr_{o}=10 \mathrm{k} \Omega .
(a) Replacing the signal source VSV_{S} and RSR_{S} with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology.
(b) Give the β\beta circuit and determine the value of β\beta .
(c) Give the ideal value of the closed-loop gain and hence of the voltage gain Vo/VSV_{o} / V_{S} .
(d) Provide the AA circuit and determine the values of A,RiA, R_{i} , and RoR_{o} .
(e) Find the values of Af,RifA_{f}, R_{i f} , and RofR_{o f} .
(f) Find the actual value of voltage gain Vo/VSV_{o} / V_{S} realized and compare to the approximate value found in (c).
(g) Find the value of Rin R_{\text {in }} ,
(h) Find the value of Rout R_{\text {out }} .
(i) If VsV_{s} is 100mV100 \mathrm{mV} , find the magnitudes of the signals at the gates of Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} and at the output (i.e., VoV_{o} ).
سؤال
    Figure 11.8.1 Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider  \left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage  \left|V_{O V}\right|=0.2 \mathrm{~V}  and has an Early voltage  \left|V_{A}\right|=20 \mathrm{~V} . (a) Find expressions for  \beta  and for the ideal value of the closed-loop gain  V_{o} / V_{s} . Hence, find the value of  \beta  and the ideal value of  V_{o} / V_{S} . (b) Give the  A  circuit and expressions for  A  and  R_{O} . Hence, find the values of the open-loop gain  A  and the open-loop output resistances  R_{O} . (c) Find the value of the closed-loop gain  A_{f} \equiv   V_{o} / V_{S} . Compare to the ideal value found in (a). (d) Find the value of the output resistance  R_{\text {out }} .<div style=padding-top: 35px>

Figure 11.8.1
Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider (R1,R2)\left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} and has an Early voltage VA=20 V\left|V_{A}\right|=20 \mathrm{~V} .
(a) Find expressions for β\beta and for the ideal value of the closed-loop gain Vo/VsV_{o} / V_{s} . Hence, find the value of β\beta and the ideal value of Vo/VSV_{o} / V_{S} .
(b) Give the AA circuit and expressions for AA and ROR_{O} . Hence, find the values of the open-loop gain AA and the open-loop output resistances ROR_{O} .
(c) Find the value of the closed-loop gain AfA_{f} \equiv Vo/VSV_{o} / V_{S} . Compare to the ideal value found in (a).
(d) Find the value of the output resistance Rout R_{\text {out }} .
سؤال
    Figure 11.9.1 An op amp has a dc gain of  100 \mathrm{~dB}  and three real-axis poles with frequencies  f_{P 1}=10^{4} \mathrm{~Hz} ,  f_{P 2}=10^{5} \mathrm{~Hz} , and  f_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where  C_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and  C_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at  f_{P 1}  and that the output circuit is responsible for the pole at  f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity. (a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from  0.1 \mathrm{~Hz}  to  10^{7} \mathrm{~Hz} . (b) If the frequency compensation is achieved by connecting a capacitor  C_{C}  in parallel with  C_{1} , find the required value of  C_{C}  and sketch the modified gain response on your Bode plot. (c) If the frequency compensation is achieved by placing a capacitor  C_{f}  in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of  C_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.<div style=padding-top: 35px>

Figure 11.9.1
An op amp has a dc gain of 100 dB100 \mathrm{~dB} and three real-axis poles with frequencies fP1=104 Hzf_{P 1}=10^{4} \mathrm{~Hz} , fP2=105 Hzf_{P 2}=10^{5} \mathrm{~Hz} , and fP3=106 Hzf_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where C1=100pF,gm=20 mA/VC_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and C2=10pFC_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at fP1f_{P 1} and that the output circuit is responsible for the pole at fP2f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity.
(a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from 0.1 Hz0.1 \mathrm{~Hz} to 107 Hz10^{7} \mathrm{~Hz} .
(b) If the frequency compensation is achieved by connecting a capacitor CCC_{C} in parallel with C1C_{1} , find the required value of CCC_{C} and sketch the modified gain response on your Bode plot.
(c) If the frequency compensation is achieved by placing a capacitor CfC_{f} in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of CfC_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/9
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 7: Feedback
1
An amplifier with an open-loop gain of 1000 V/V1000 \mathrm{~V} / \mathrm{V} is connected in a feedback loop with the result that the closed-loop gain obtained is 10 V/V10 \mathrm{~V} / \mathrm{V} .
(a) Find the value of the amount of feedback, the loop gain, and the feedback factor.
(b) If the open-loop gain varies by ±10%\pm 10 \% , what is the corresponding variation of the closedloop gain?
(c) If the open-loop amplifier has 3-dB frequencies fL=1kHzf_{L}=1 \mathrm{kHz} and fH=100kHzf_{H}=100 \mathrm{kHz} , and the gain rolls off at the low and high frequency ends with a slope of 20 dB/decade20 \mathrm{~dB} / \mathrm{decade} , find the 3dB3-\mathrm{dB} frequencies of the closed-loop gain and sketch the Bode magnitude plot of both the open-loop and closed-loop gains (on the same axes).
A=1000 V/V,Af=10 V/VA=1000 \mathrm{~V} / \mathrm{V}, \quad A_{f}=10 \mathrm{~V} / \mathrm{V}
(a)
Af=A1+Aβ10=10001+Aβ\begin{aligned}A_{f} & =\frac{A}{1+A \beta} \\10 & =\frac{1000}{1+A \beta}\end{aligned}
Thus,
Amount of feedback 1+Aβ=100\equiv 1+A \beta=100
 Loop gain Aβ=99\text { Loop gain } \equiv A \beta=99
Feedback factor β=991000=0.099 V/V\equiv \beta=\frac{99}{1000}=0.099 \mathrm{~V} / \mathrm{V}
(b)
ΔAfAf=A/A1+Aβ=±10%100=±0.1%\begin{aligned}\frac{\Delta A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\& =\frac{ \pm 10 \%}{100}= \pm 0.1 \%\end{aligned}
(c)
fL=1kHz,fH=100kHzfLf=fL1+Aβ=1000100=10 HzfHf=(1+Aβ)fH=100×100=10MHz\begin{aligned}f_{L} & =1 \mathrm{kHz}, \quad f_{H}=100 \mathrm{kHz} \\f_{L f} & =\frac{f_{L}}{1+A \beta}=\frac{1000}{100}=10 \mathrm{~Hz} \\f_{H f} & =(1+A \beta) f_{H}=100 \times 100=10 \mathrm{MHz}\end{aligned}
A=1000 \mathrm{~V} / \mathrm{V}, \quad A_{f}=10 \mathrm{~V} / \mathrm{V}  (a)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ 10 & =\frac{1000}{1+A \beta} \end{aligned}  Thus, Amount of feedback  \equiv 1+A \beta=100   \text { Loop gain } \equiv A \beta=99  Feedback factor  \equiv \beta=\frac{99}{1000}=0.099 \mathrm{~V} / \mathrm{V}  (b)  \begin{aligned} \frac{\Delta A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{ \pm 10 \%}{100}= \pm 0.1 \% \end{aligned}  (c)  \begin{aligned} f_{L} & =1 \mathrm{kHz}, \quad f_{H}=100 \mathrm{kHz} \\ f_{L f} & =\frac{f_{L}}{1+A \beta}=\frac{1000}{100}=10 \mathrm{~Hz} \\ f_{H f} & =(1+A \beta) f_{H}=100 \times 100=10 \mathrm{MHz} \end{aligned}     Figure 11.1.1 Sketches of the Bode plots for  |A|  and  \left|A_{f}\right|  are shown in Fig. 11.1.1.

Figure 11.1.1
Sketches of the Bode plots for A|A| and Af\left|A_{f}\right| are shown in Fig. 11.1.1.
2
    Figure 11.2.1 The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain  \mu=10^{3} , input resistance  R_{i d}=100 \mathrm{k} \Omega , and output resistance  r_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source  V_{S}  having a source resistance  R_{S}=10 \mathrm{k} \Omega , and a load resistance  R_{L}=   1 \mathrm{k} \Omega  is connected to the output terminal. (a) If it is required to obtain a closed-loop gain  A_{f} \equiv V_{o} / V_{S}  that is ideally  10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor  \beta  ? If  R_{1}=1 \mathrm{k} \Omega , what value must  R_{2}  have? (b) Give the complete  A  circuit and use it to determine  A, R_{i} , and  R_{o} . (c) Find the actual value of  A_{f}  realized. (d) Find the input resistance  R_{\text {in }}  of the feedback amplifier. (e) Find the output resistance  R_{\text {out }}  of the feedback amplifier. (f) If, due to temperature variation, the gain  \mu  changes by  10 \% , what percentage change do you expect  A_{f}  to have? (g) If the high-frequency response of the amplifier  \mu  is characterized by a drop of  20 \mathrm{~dB} /  decade with a 3-dB frequency of  10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain  A_{f}  to be? At what frequency will the magnitude of  A_{f}  become unity?

Figure 11.2.1
The series-shunt feedback amplifier shown in Fig. 11.2.1 utilizes a differential amplifier with a gain μ=103\mu=10^{3} , input resistance Rid=100kΩR_{i d}=100 \mathrm{k} \Omega , and output resistance ro=1kΩr_{o}=1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source VSV_{S} having a source resistance RS=10kΩR_{S}=10 \mathrm{k} \Omega , and a load resistance RL=R_{L}= 1kΩ1 \mathrm{k} \Omega is connected to the output terminal.
(a) If it is required to obtain a closed-loop gain AfVo/VSA_{f} \equiv V_{o} / V_{S} that is ideally 10 V/V10 \mathrm{~V} / \mathrm{V} , what is the required feedback factor β\beta ? If R1=1kΩR_{1}=1 \mathrm{k} \Omega , what value must R2R_{2} have?
(b) Give the complete AA circuit and use it to determine A,RiA, R_{i} , and RoR_{o} .
(c) Find the actual value of AfA_{f} realized.
(d) Find the input resistance Rin R_{\text {in }} of the feedback amplifier.
(e) Find the output resistance Rout R_{\text {out }} of the feedback amplifier.
(f) If, due to temperature variation, the gain μ\mu changes by 10%10 \% , what percentage change do you expect AfA_{f} to have?
(g) If the high-frequency response of the amplifier μ\mu is characterized by a drop of 20 dB/20 \mathrm{~dB} / decade with a 3-dB frequency of 10kHz10 \mathrm{kHz} , what do you expect the 3-dB frequency of the gain AfA_{f} to be? At what frequency will the magnitude of AfA_{f} become unity?
    Figure 11.2.1 (a) For  A_{f}  to be ideally  10 \mathrm{~V} / \mathrm{V} ,  \beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}     Figure 11.2.2 From the feedback network shown in Fig. 11.2.2,  \begin{aligned} \beta & =\frac{R_{1}}{R_{1}+R_{2}} \\ 0.1 & =\frac{1}{1+R_{2}} \\ \Rightarrow R_{2} & =9 \mathrm{k} \Omega \end{aligned}  (b) The  A  circuit is shown in Fig. 11.2.3 (refer to Figure below).   Figure 11.2.3  \begin{aligned} A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\ & =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\ & =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\ & =429.4 \mathrm{~V} / \mathrm{V} \\ R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\ & =10+100+(1 \| 9) \\ & =110.9 \mathrm{k} \Omega \\ R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\ & =1\|(1+9)\| 1 \\ & =476.2 \Omega \end{aligned}  (c)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ & =\frac{429.4}{1+429.4 \times 0.1} \\ & =9.77 \mathrm{~V} / \mathrm{V} \end{aligned}  (d)  \begin{aligned} R_{i f} & =(1+A \beta) R_{i} \\ & =(1+429.4 \times 0.1) \times 110.9 \\ & =4.873 \mathrm{M} \Omega \\ R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\ & =4.863 \mathrm{M} \Omega \end{aligned}  (e)  \begin{aligned} R_{o f} & =\frac{R_{o}}{1+A \beta} \\ & =\frac{476.2}{43.94}=10.84 \Omega \end{aligned}  Since  \begin{aligned} \frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\ \Rightarrow R_{\mathrm{out}} & =10.96 \Omega \end{aligned}  (f)  \begin{aligned} \frac{\triangle \mu}{\mu} & =10 \% \\ \Rightarrow \frac{\triangle A}{A} & =10 \% \\ \Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{10}{43.94}=0.23 \% \end{aligned}  (g)  \begin{aligned} f_{H f} & =(1+A \beta) f_{H} \\ & =43.94 \times 10 \\ & =439.4 \mathrm{kHz} \end{aligned}   \left|A_{f}\right|  reaches unity at  \begin{aligned} f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\ & =4.29 \mathrm{MHz} \end{aligned}

Figure 11.2.1
(a) For AfA_{f} to be ideally 10 V/V10 \mathrm{~V} / \mathrm{V} ,
β=1Af=0.1 V/V\beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}
    Figure 11.2.1 (a) For  A_{f}  to be ideally  10 \mathrm{~V} / \mathrm{V} ,  \beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}     Figure 11.2.2 From the feedback network shown in Fig. 11.2.2,  \begin{aligned} \beta & =\frac{R_{1}}{R_{1}+R_{2}} \\ 0.1 & =\frac{1}{1+R_{2}} \\ \Rightarrow R_{2} & =9 \mathrm{k} \Omega \end{aligned}  (b) The  A  circuit is shown in Fig. 11.2.3 (refer to Figure below).   Figure 11.2.3  \begin{aligned} A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\ & =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\ & =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\ & =429.4 \mathrm{~V} / \mathrm{V} \\ R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\ & =10+100+(1 \| 9) \\ & =110.9 \mathrm{k} \Omega \\ R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\ & =1\|(1+9)\| 1 \\ & =476.2 \Omega \end{aligned}  (c)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ & =\frac{429.4}{1+429.4 \times 0.1} \\ & =9.77 \mathrm{~V} / \mathrm{V} \end{aligned}  (d)  \begin{aligned} R_{i f} & =(1+A \beta) R_{i} \\ & =(1+429.4 \times 0.1) \times 110.9 \\ & =4.873 \mathrm{M} \Omega \\ R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\ & =4.863 \mathrm{M} \Omega \end{aligned}  (e)  \begin{aligned} R_{o f} & =\frac{R_{o}}{1+A \beta} \\ & =\frac{476.2}{43.94}=10.84 \Omega \end{aligned}  Since  \begin{aligned} \frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\ \Rightarrow R_{\mathrm{out}} & =10.96 \Omega \end{aligned}  (f)  \begin{aligned} \frac{\triangle \mu}{\mu} & =10 \% \\ \Rightarrow \frac{\triangle A}{A} & =10 \% \\ \Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{10}{43.94}=0.23 \% \end{aligned}  (g)  \begin{aligned} f_{H f} & =(1+A \beta) f_{H} \\ & =43.94 \times 10 \\ & =439.4 \mathrm{kHz} \end{aligned}   \left|A_{f}\right|  reaches unity at  \begin{aligned} f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\ & =4.29 \mathrm{MHz} \end{aligned}

Figure 11.2.2
From the feedback network shown in Fig. 11.2.2,
β=R1R1+R20.1=11+R2R2=9kΩ\begin{aligned}\beta & =\frac{R_{1}}{R_{1}+R_{2}} \\0.1 & =\frac{1}{1+R_{2}} \\\Rightarrow R_{2} & =9 \mathrm{k} \Omega\end{aligned}
(b) The AA circuit is shown in Fig. 11.2.3 (refer to Figure below).
    Figure 11.2.1 (a) For  A_{f}  to be ideally  10 \mathrm{~V} / \mathrm{V} ,  \beta=\frac{1}{A_{f}}=0.1 \mathrm{~V} / \mathrm{V}     Figure 11.2.2 From the feedback network shown in Fig. 11.2.2,  \begin{aligned} \beta & =\frac{R_{1}}{R_{1}+R_{2}} \\ 0.1 & =\frac{1}{1+R_{2}} \\ \Rightarrow R_{2} & =9 \mathrm{k} \Omega \end{aligned}  (b) The  A  circuit is shown in Fig. 11.2.3 (refer to Figure below).   Figure 11.2.3  \begin{aligned} A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\ & =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\ & =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\ & =429.4 \mathrm{~V} / \mathrm{V} \\ R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\ & =10+100+(1 \| 9) \\ & =110.9 \mathrm{k} \Omega \\ R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\ & =1\|(1+9)\| 1 \\ & =476.2 \Omega \end{aligned}  (c)  \begin{aligned} A_{f} & =\frac{A}{1+A \beta} \\ & =\frac{429.4}{1+429.4 \times 0.1} \\ & =9.77 \mathrm{~V} / \mathrm{V} \end{aligned}  (d)  \begin{aligned} R_{i f} & =(1+A \beta) R_{i} \\ & =(1+429.4 \times 0.1) \times 110.9 \\ & =4.873 \mathrm{M} \Omega \\ R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\ & =4.863 \mathrm{M} \Omega \end{aligned}  (e)  \begin{aligned} R_{o f} & =\frac{R_{o}}{1+A \beta} \\ & =\frac{476.2}{43.94}=10.84 \Omega \end{aligned}  Since  \begin{aligned} \frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\ \Rightarrow R_{\mathrm{out}} & =10.96 \Omega \end{aligned}  (f)  \begin{aligned} \frac{\triangle \mu}{\mu} & =10 \% \\ \Rightarrow \frac{\triangle A}{A} & =10 \% \\ \Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\ & =\frac{10}{43.94}=0.23 \% \end{aligned}  (g)  \begin{aligned} f_{H f} & =(1+A \beta) f_{H} \\ & =43.94 \times 10 \\ & =439.4 \mathrm{kHz} \end{aligned}   \left|A_{f}\right|  reaches unity at  \begin{aligned} f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\ & =4.29 \mathrm{MHz} \end{aligned} Figure 11.2.3
A=VoVi=V1ViVoV1=RidRS+Rid+(R1R2)μRL(R1+R2)[RL(R1+R2)]+ro=10010+100+(19)×103×1(1+9)[1(1+9)]+1=429.4 V/VRi=RS+Rid+(R1R2)=10+100+(19)=110.9kΩRO=RL(R1+R2)ro=1(1+9)1=476.2Ω\begin{aligned}A & =\frac{V_{o}}{V_{i}}=\frac{V_{1}}{V_{i}} \frac{V_{o}}{V_{1}} \\& =\frac{R_{i d}}{R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right)} \mu \frac{R_{L} \|\left(R_{1}+R_{2}\right)}{\left[R_{L} \|\left(R_{1}+R_{2}\right)\right]+r_{o}} \\& =\frac{100}{10+100+(1 \| 9)} \times 10^{3} \times \frac{1 \|(1+9)}{[1 \|(1+9)]+1} \\& =429.4 \mathrm{~V} / \mathrm{V} \\R_{i} & =R_{S}+R_{i d}+\left(R_{1} \| R_{2}\right) \\& =10+100+(1 \| 9) \\& =110.9 \mathrm{k} \Omega \\R_{O} & =R_{L}\left\|\left(R_{1}+R_{2}\right)\right\| r_{o} \\& =1\|(1+9)\| 1 \\& =476.2 \Omega\end{aligned}
(c)
Af=A1+Aβ=429.41+429.4×0.1=9.77 V/V\begin{aligned}A_{f} & =\frac{A}{1+A \beta} \\& =\frac{429.4}{1+429.4 \times 0.1} \\& =9.77 \mathrm{~V} / \mathrm{V}\end{aligned}
(d)
Rif=(1+Aβ)Ri=(1+429.4×0.1)×110.9=4.873MΩRin =RifRS=487310=4.863MΩ\begin{aligned}R_{i f} & =(1+A \beta) R_{i} \\& =(1+429.4 \times 0.1) \times 110.9 \\& =4.873 \mathrm{M} \Omega \\R_{\text {in }} & =R_{i f}-R_{S}=4873-10 \\& =4.863 \mathrm{M} \Omega\end{aligned}
(e)
Rof=Ro1+Aβ=476.243.94=10.84Ω\begin{aligned}R_{o f} & =\frac{R_{o}}{1+A \beta} \\& =\frac{476.2}{43.94}=10.84 \Omega\end{aligned}
Since
1Rof =1RL+1RoutRout=10.96Ω\begin{aligned}\frac{1}{R_{\text {of }}} & =\frac{1}{R_{L}}+\frac{1}{R_{\mathrm{out}}} \\\Rightarrow R_{\mathrm{out}} & =10.96 \Omega\end{aligned}
(f)
μμ=10%AA=10%AfAf=A/A1+Aβ=1043.94=0.23%\begin{aligned}\frac{\triangle \mu}{\mu} & =10 \% \\\Rightarrow \frac{\triangle A}{A} & =10 \% \\\Rightarrow \frac{\triangle A_{f}}{A_{f}} & =\frac{\triangle A / A}{1+A \beta} \\& =\frac{10}{43.94}=0.23 \%\end{aligned}
(g)
fHf=(1+Aβ)fH=43.94×10=439.4kHz\begin{aligned}f_{H f} & =(1+A \beta) f_{H} \\& =43.94 \times 10 \\& =439.4 \mathrm{kHz}\end{aligned}
Af\left|A_{f}\right| reaches unity at
ft=Af×fHf=9.77×439.4=4.29MHz\begin{aligned}f_{t} & =\left|A_{f}\right| \times f_{H f}=9.77 \times 439.4 \\& =4.29 \mathrm{MHz}\end{aligned}
3
    The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source  V_{S}  together with the resistance  R_{1}  to its Norton's equivalent circuit composed of current source  I_{S}=   V_{S} / R_{1}  together with a parallel resistance equal to  R_{1} . The amplifier  \mu  has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which  \mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega ,  r_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and  R_{2}=100 \mathrm{k} \Omega . (a) Find the  A  circuit and derive expressions for  A \equiv V_{o} / I_{S}, R_{i} , and  R_{o} . Evaluate these expressions to determine  A, R_{i} , and  R_{o} . (b) Find the  \beta  circuit and derive an expression for  \beta . Find the value of  \beta . (c) Find an expression for  A \beta  and its value. (d) Find the value of the amount of feedback. (e) Find the closed-loop gain and hence  V_{o} / V_{S} . (f) Find the value of  R_{\text {in }} . (g) Find the value of  R_{\text {out }} . (h) If  \mu  changes by  -10 \% , what is the resulting change in  V_{o} / V_{S}  ?

The feedback amplifier shown in Fig. 11.3.1(a) employs the shunt-shunt feedback topology. To see this more clearly and to apply the feedback analysis method, convert the signal source VSV_{S} together with the resistance R1R_{1} to its Norton's equivalent circuit composed of current source IS=I_{S}= VS/R1V_{S} / R_{1} together with a parallel resistance equal to R1R_{1} . The amplifier μ\mu has the equivalent circuit shown in Fig. 11.3.1(b). We wish to investigate the case for which μ=103 V/V,Rid=1MΩ\mu=10^{3} \mathrm{~V} / \mathrm{V}, R_{i d}=1 \mathrm{M} \Omega , ro=100Ω,R1=1kΩr_{o}=100 \Omega, R_{1}=1 \mathrm{k} \Omega , and R2=100kΩR_{2}=100 \mathrm{k} \Omega .
(a) Find the AA circuit and derive expressions for AVo/IS,RiA \equiv V_{o} / I_{S}, R_{i} , and RoR_{o} . Evaluate these expressions to determine A,RiA, R_{i} , and RoR_{o} .
(b) Find the β\beta circuit and derive an expression for β\beta . Find the value of β\beta .
(c) Find an expression for AβA \beta and its value.
(d) Find the value of the amount of feedback.
(e) Find the closed-loop gain and hence Vo/VSV_{o} / V_{S} .
(f) Find the value of Rin R_{\text {in }} .
(g) Find the value of Rout R_{\text {out }} .
(h) If μ\mu changes by 10%-10 \% , what is the resulting change in Vo/VSV_{o} / V_{S} ?
    (a) Figure 11.3.2(a) shows the shunt-shunt feedback amplifier (transresistance amplifier) with  V_{S}  and  R_{1}  converted to the Norton form. The  \beta  circuit is shown in Fig. 11.3.2(b) and the  A  circuit is shown in Fig. 11.3.2(c). From the latter,  \begin{aligned} R_{i} & =R_{1}\left\|R_{2}\right\| R_{i d} \\ & =1\|100\| 1000=989.1 \Omega \\ V_{1} & =-I_{i} R_{i} \\ V_{o} & =\mu V_{1} \frac{R_{2}}{R_{2}+r_{o}} \end{aligned}  Thus,  \begin{aligned} A & \equiv \frac{V_{o}}{I_{i}}=-\mu R_{i} \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-10^{3} \times 0.9891 \times \frac{100}{100+0.1} \\ & =-988.1 \mathrm{k} \Omega \\ R_{O} & =R_{2} \| r_{o} \\ R_{O} & =100 \mathrm{k} \Omega \| 100 \Omega=99.9 \Omega \end{aligned}  (b) The  \beta  circuit is shown in Fig. 11.3.2(b).  \begin{aligned} & \beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{2}} \\ & \beta=-\frac{1}{100}=-0.01 \mathrm{~mA} / \mathrm{V} \end{aligned}  (c)  \begin{aligned} A \beta & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \times \frac{-1}{R_{2}} \\ A \beta & =\mu \frac{R_{1}\left\|R_{2}\right\| R_{i d}}{R_{2}+r_{o}} \\ & =10^{3} \times \frac{989.1 \Omega}{100.1 \mathrm{k} \Omega} \\ & =9.88 \end{aligned}  (d)  1+A \beta=10.88  (e)  \begin{gathered} A_{f} \equiv \frac{V_{o}}{I_{S}}=\frac{A}{1+A \beta}=-\frac{988.1 \mathrm{k} \Omega}{10.88}=-90.8 \mathrm{k} \Omega \\ \frac{V_{o}}{V_{S}}=\frac{V_{o}}{I_{S} R_{1}}=-\frac{90.8 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-90.8 \mathrm{~V} / \mathrm{V} \end{gathered}  (f)  R_{i f}=\frac{R_{i}}{1+A \beta}=\frac{989.1}{10.88}=90.9 \Omega  But,  \begin{aligned} \frac{1}{R_{\text {if }}} & =\frac{1}{R_{\text {in }}}+\frac{1}{R_{1}} \\ \Rightarrow R_{\text {in }} & =1 /\left(\frac{1}{90.9}-\frac{1}{1000}\right)=100 \Omega \end{aligned}  (g)  R_{\mathrm{out}}=R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{99.9}{10.88}=9.2 \Omega  (h)  \begin{aligned} & \frac{\triangle \mu}{\mu}=-10 \% \\ & \Rightarrow \frac{\triangle A}{A}=-10 \% \\ & \Rightarrow \frac{\triangle A_{f}}{A_{f}}=\frac{\triangle A / A}{1+A \beta}=-\frac{10}{10.88}=-0.92 \% \\ & \Rightarrow \text { Change in } \frac{V_{o}}{V_{S}} \text { is }-0.92 \% \end{aligned}     Figure 11.4.3

(a) Figure 11.3.2(a) shows the shunt-shunt feedback amplifier (transresistance amplifier) with VSV_{S} and R1R_{1} converted to the Norton form. The β\beta circuit is shown in Fig. 11.3.2(b) and the AA circuit is shown in Fig. 11.3.2(c). From the latter,
Ri=R1R2Rid=11001000=989.1ΩV1=IiRiVo=μV1R2R2+ro\begin{aligned}R_{i} & =R_{1}\left\|R_{2}\right\| R_{i d} \\& =1\|100\| 1000=989.1 \Omega \\V_{1} & =-I_{i} R_{i} \\V_{o} & =\mu V_{1} \frac{R_{2}}{R_{2}+r_{o}}\end{aligned}
Thus,
AVoIi=μRiR2R2+roA=μ(R1R2Rid)R2R2+roA=103×0.9891×100100+0.1=988.1kΩRO=R2roRO=100kΩ100Ω=99.9Ω\begin{aligned}A & \equiv \frac{V_{o}}{I_{i}}=-\mu R_{i} \frac{R_{2}}{R_{2}+r_{o}} \\A & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \\A & =-10^{3} \times 0.9891 \times \frac{100}{100+0.1} \\& =-988.1 \mathrm{k} \Omega \\R_{O} & =R_{2} \| r_{o} \\R_{O} & =100 \mathrm{k} \Omega \| 100 \Omega=99.9 \Omega\end{aligned}
(b) The β\beta circuit is shown in Fig. 11.3.2(b).
βIfVo=1R2β=1100=0.01 mA/V\begin{aligned}& \beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{2}} \\& \beta=-\frac{1}{100}=-0.01 \mathrm{~mA} / \mathrm{V}\end{aligned}
(c)
Aβ=μ(R1R2Rid)R2R2+ro×1R2Aβ=μR1R2RidR2+ro=103×989.1Ω100.1kΩ=9.88\begin{aligned}A \beta & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \times \frac{-1}{R_{2}} \\A \beta & =\mu \frac{R_{1}\left\|R_{2}\right\| R_{i d}}{R_{2}+r_{o}} \\& =10^{3} \times \frac{989.1 \Omega}{100.1 \mathrm{k} \Omega} \\& =9.88\end{aligned}
(d)
1+Aβ=10.881+A \beta=10.88
(e)
AfVoIS=A1+Aβ=988.1kΩ10.88=90.8kΩVoVS=VoISR1=90.8kΩ1kΩ=90.8 V/V\begin{gathered}A_{f} \equiv \frac{V_{o}}{I_{S}}=\frac{A}{1+A \beta}=-\frac{988.1 \mathrm{k} \Omega}{10.88}=-90.8 \mathrm{k} \Omega \\\frac{V_{o}}{V_{S}}=\frac{V_{o}}{I_{S} R_{1}}=-\frac{90.8 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-90.8 \mathrm{~V} / \mathrm{V}\end{gathered}
(f)
Rif=Ri1+Aβ=989.110.88=90.9ΩR_{i f}=\frac{R_{i}}{1+A \beta}=\frac{989.1}{10.88}=90.9 \Omega
But,
1Rif =1Rin +1R1Rin =1/(190.911000)=100Ω\begin{aligned}\frac{1}{R_{\text {if }}} & =\frac{1}{R_{\text {in }}}+\frac{1}{R_{1}} \\\Rightarrow R_{\text {in }} & =1 /\left(\frac{1}{90.9}-\frac{1}{1000}\right)=100 \Omega\end{aligned}
(g)
Rout=Rof=Ro1+Aβ=99.910.88=9.2ΩR_{\mathrm{out}}=R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{99.9}{10.88}=9.2 \Omega
(h)
μμ=10%AA=10%AfAf=A/A1+Aβ=1010.88=0.92% Change in VoVS is 0.92%\begin{aligned}& \frac{\triangle \mu}{\mu}=-10 \% \\& \Rightarrow \frac{\triangle A}{A}=-10 \% \\& \Rightarrow \frac{\triangle A_{f}}{A_{f}}=\frac{\triangle A / A}{1+A \beta}=-\frac{10}{10.88}=-0.92 \% \\& \Rightarrow \text { Change in } \frac{V_{o}}{V_{S}} \text { is }-0.92 \%\end{aligned}
    (a) Figure 11.3.2(a) shows the shunt-shunt feedback amplifier (transresistance amplifier) with  V_{S}  and  R_{1}  converted to the Norton form. The  \beta  circuit is shown in Fig. 11.3.2(b) and the  A  circuit is shown in Fig. 11.3.2(c). From the latter,  \begin{aligned} R_{i} & =R_{1}\left\|R_{2}\right\| R_{i d} \\ & =1\|100\| 1000=989.1 \Omega \\ V_{1} & =-I_{i} R_{i} \\ V_{o} & =\mu V_{1} \frac{R_{2}}{R_{2}+r_{o}} \end{aligned}  Thus,  \begin{aligned} A & \equiv \frac{V_{o}}{I_{i}}=-\mu R_{i} \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \\ A & =-10^{3} \times 0.9891 \times \frac{100}{100+0.1} \\ & =-988.1 \mathrm{k} \Omega \\ R_{O} & =R_{2} \| r_{o} \\ R_{O} & =100 \mathrm{k} \Omega \| 100 \Omega=99.9 \Omega \end{aligned}  (b) The  \beta  circuit is shown in Fig. 11.3.2(b).  \begin{aligned} & \beta \equiv \frac{I_{f}}{V_{o}}=-\frac{1}{R_{2}} \\ & \beta=-\frac{1}{100}=-0.01 \mathrm{~mA} / \mathrm{V} \end{aligned}  (c)  \begin{aligned} A \beta & =-\mu\left(R_{1}\left\|R_{2}\right\| R_{i d}\right) \frac{R_{2}}{R_{2}+r_{o}} \times \frac{-1}{R_{2}} \\ A \beta & =\mu \frac{R_{1}\left\|R_{2}\right\| R_{i d}}{R_{2}+r_{o}} \\ & =10^{3} \times \frac{989.1 \Omega}{100.1 \mathrm{k} \Omega} \\ & =9.88 \end{aligned}  (d)  1+A \beta=10.88  (e)  \begin{gathered} A_{f} \equiv \frac{V_{o}}{I_{S}}=\frac{A}{1+A \beta}=-\frac{988.1 \mathrm{k} \Omega}{10.88}=-90.8 \mathrm{k} \Omega \\ \frac{V_{o}}{V_{S}}=\frac{V_{o}}{I_{S} R_{1}}=-\frac{90.8 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=-90.8 \mathrm{~V} / \mathrm{V} \end{gathered}  (f)  R_{i f}=\frac{R_{i}}{1+A \beta}=\frac{989.1}{10.88}=90.9 \Omega  But,  \begin{aligned} \frac{1}{R_{\text {if }}} & =\frac{1}{R_{\text {in }}}+\frac{1}{R_{1}} \\ \Rightarrow R_{\text {in }} & =1 /\left(\frac{1}{90.9}-\frac{1}{1000}\right)=100 \Omega \end{aligned}  (g)  R_{\mathrm{out}}=R_{o f}=\frac{R_{o}}{1+A \beta}=\frac{99.9}{10.88}=9.2 \Omega  (h)  \begin{aligned} & \frac{\triangle \mu}{\mu}=-10 \% \\ & \Rightarrow \frac{\triangle A}{A}=-10 \% \\ & \Rightarrow \frac{\triangle A_{f}}{A_{f}}=\frac{\triangle A / A}{1+A \beta}=-\frac{10}{10.88}=-0.92 \% \\ & \Rightarrow \text { Change in } \frac{V_{o}}{V_{S}} \text { is }-0.92 \% \end{aligned}     Figure 11.4.3

Figure 11.4.3
4
    Figure 11.4.1 The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network  \left(R_{1}, R_{2}\right)  to sample the output voltage  V_{o} . Though the bias details are not shown, it is known that each of  Q_{1} ,  Q_{2} , and  Q_{3}  is operating at a  g_{m}  of  2 \mathrm{~mA} / \mathrm{V}  and that their  r_{o}  's are very large. (a) Give the  \beta  circuit and find the value of  \beta . (b) What do you estimate the approximate value of the closed-loop gain  A_{f}=V_{o} / V_{S}  to be? (c) Give the  A  circuit and calculate the value of  A . (d) Use the results of (a) and (c) to determine  A_{f}  and compare the result to the value obtained in (b). (e) Find the output resistance  R_{O}  of the  A  circuit. (f) Find the output resistance  R_{\text {out }}  of the closedloop amplifier. (g) If the open-loop gain  A  is found to have a dominant high-frequency pole at  1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain  A_{f}  to be? (h) If for some reason  g_{m}  of  Q_{2}  decreases by  20 \% , what is the corresponding percentage decrease in  A_{f}  ?

Figure 11.4.1
The series-shunt feedback amplifier shown in Fig. 11.4.1 uses a feedback network (R1,R2)\left(R_{1}, R_{2}\right) to sample the output voltage VoV_{o} . Though the bias details are not shown, it is known that each of Q1Q_{1} , Q2Q_{2} , and Q3Q_{3} is operating at a gmg_{m} of 2 mA/V2 \mathrm{~mA} / \mathrm{V} and that their ror_{o} 's are very large.
(a) Give the β\beta circuit and find the value of β\beta .
(b) What do you estimate the approximate value of the closed-loop gain Af=Vo/VSA_{f}=V_{o} / V_{S} to be?
(c) Give the AA circuit and calculate the value of AA .
(d) Use the results of (a) and (c) to determine AfA_{f} and compare the result to the value obtained in (b).
(e) Find the output resistance ROR_{O} of the AA circuit.
(f) Find the output resistance Rout R_{\text {out }} of the closedloop amplifier.
(g) If the open-loop gain AA is found to have a dominant high-frequency pole at 1MHz1 \mathrm{MHz} , what do you expect the upper 3-dB frequency of the closed-loop gain AfA_{f} to be?
(h) If for some reason gmg_{m} of Q2Q_{2} decreases by 20%20 \% , what is the corresponding percentage decrease in AfA_{f} ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.
فتح الحزمة
k this deck
5
The feedback voltage amplifier in Fig. 11.5.1
 The feedback voltage amplifier in Fig. 11.5.1   Figure 11.5.1 utilizes the series-shunt feedback topology with the feedback network composed of  R_{1}  and  R_{2} . The following component values are given:  R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}=   11 \mathrm{k} \Omega , and  R_{5}=300 \Omega . The BJTs have  \beta=100 ,  \left|V_{B E}\right|=0.7 \mathrm{~V} , and  r_{o}=\infty . The capacitors  C_{1}, C_{2} ,  C_{3} , and  C_{4}  are very large. (a) Find values for  R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and  R_{C 2}  so as to establish the following de conditions:  V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}=   I_{E 2}=1 \mathrm{~mA} , and  I=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper. (b) Supply the  A  circuit and find the values of  A ,  R_{i} , and  R_{O} . (c) Supply the  \beta  circuit and find the value of  \beta . (d) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} , the input resistance  R_{\mathrm{in}} , and the output resistance  R_{\text {out. }}
Figure 11.5.1
utilizes the series-shunt feedback topology with the feedback network composed of R1R_{1} and R2R_{2} . The following component values are given: RS=5kΩ,R1=1kΩ,R2=R_{S}=5 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega, R_{2}= 11kΩ11 \mathrm{k} \Omega , and R5=300ΩR_{5}=300 \Omega . The BJTs have β=100\beta=100 , VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} , and ro=r_{o}=\infty . The capacitors C1,C2C_{1}, C_{2} , C3C_{3} , and C4C_{4} are very large.
(a) Find values for RB1,RB2,R3,RC1,R4R_{B 1}, R_{B 2}, R_{3}, R_{C 1}, R_{4} , and RC2R_{C 2} so as to establish the following de conditions: VB1=+4 V,VC1=+6 V,VC2=+4 V,IE1=V_{B 1}=+4 \mathrm{~V}, V_{C 1}=+6 \mathrm{~V}, V_{C 2}=+4 \mathrm{~V}, I_{E 1}= IE2=1 mAI_{E 2}=1 \mathrm{~mA} , and I=0.1 mAI=0.1 \mathrm{~mA} . Hint: Do as many of your calculations as possible on Fig. 11.5.1 on the exam paper.
(b) Supply the AA circuit and find the values of AA , RiR_{i} , and ROR_{O} .
(c) Supply the β\beta circuit and find the value of β\beta .
(d) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} , the input resistance RinR_{\mathrm{in}} , and the output resistance Rout. R_{\text {out. }}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.
فتح الحزمة
k this deck
6
Figure 11.6.1 (refer to Figure below)
 Figure 11.6.1 (refer to Figure below)    Figure 11.6.1 shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:  A_{1}  has a differential input resistance of  82 \mathrm{k} \Omega , an open-circuit differential voltage gain of  20 \mathrm{~V} / \mathrm{V} , and an output resistance of  3.2 \mathrm{k} \Omega .  A_{2}  has an input resistance of  5 \mathrm{k} \Omega , a shortcircuit tranconductance of  20 \mathrm{~mA} / \mathrm{V} , and an output resistance of  20 \mathrm{k} \Omega .  A_{3}  has an input resistance of  20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of  1 \mathrm{k} \Omega . The feedback amplifier is fed with a signal source having  R_{S}=9 \mathrm{k} \Omega  and is connected to a load  R_{L}=1 \mathrm{k} \Omega . The feedback network has  R_{1}=10 \mathrm{k} \Omega  and  R_{2}=90 \mathrm{k} \Omega . (a) Give the  A  circuit and find the value of  A . (b) Find  \beta  and the amount of feedback. (c) Find the closed-loop gain  A_{f} \equiv V_{o} / V_{s} . (d) Find the input resistance  R_{\text {in }} . (e) Find the output resistance  R_{\text {out }} . (f) If the high-frequency response of the openloop gain  A  is dominated by a pole at  1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain? (g) If for some reason the gain of  A_{1}  drops to half its nominal value, what is the percentage change in  A_{f}  ?

Figure 11.6.1
shows a feedback voltage amplifier in which the basic amplifier is composed of three cascaded stages having the following characteristics:
A1A_{1} has a differential input resistance of 82kΩ82 \mathrm{k} \Omega , an open-circuit differential voltage gain of 20 V/V20 \mathrm{~V} / \mathrm{V} , and an output resistance of 3.2kΩ3.2 \mathrm{k} \Omega .
A2A_{2} has an input resistance of 5kΩ5 \mathrm{k} \Omega , a shortcircuit tranconductance of 20 mA/V20 \mathrm{~mA} / \mathrm{V} , and an output resistance of 20kΩ20 \mathrm{k} \Omega . A3A_{3} has an input resistance of 20kΩ20 \mathrm{k} \Omega , an opencircuit voltage gain of unity, and an output resistance of 1kΩ1 \mathrm{k} \Omega .
The feedback amplifier is fed with a signal source having RS=9kΩR_{S}=9 \mathrm{k} \Omega and is connected to a load RL=1kΩR_{L}=1 \mathrm{k} \Omega . The feedback network has R1=10kΩR_{1}=10 \mathrm{k} \Omega and R2=90kΩR_{2}=90 \mathrm{k} \Omega .
(a) Give the AA circuit and find the value of AA .
(b) Find β\beta and the amount of feedback.
(c) Find the closed-loop gain AfVo/VsA_{f} \equiv V_{o} / V_{s} .
(d) Find the input resistance Rin R_{\text {in }} .
(e) Find the output resistance Rout R_{\text {out }} .
(f) If the high-frequency response of the openloop gain AA is dominated by a pole at 1kHz1 \mathrm{kHz} , what is the upper 3-dB frequency of the closed-loop gain?
(g) If for some reason the gain of A1A_{1} drops to half its nominal value, what is the percentage change in AfA_{f} ?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.
فتح الحزمة
k this deck
7
In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors CC1C_{C 1} and CC2C_{C 2} are very large and thus act as perfect short circuits at
 In the circuit of Fig. 11.7.1 (refer to Figure below), assume that coupling capacitors  C_{C 1}  and  C_{C 2}  are very large and thus act as perfect short circuits at    Figure 11.7.1 the frequencies of interest. Transistors  Q_{1}, Q_{2} , and  Q_{3}  are identical and are operating at identical dc bias conditions so that each has  g_{m}=5 \mathrm{~mA} / \mathrm{V}  and  r_{o}=10 \mathrm{k} \Omega . (a) Replacing the signal source  V_{S}  and  R_{S}  with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology. (b) Give the  \beta  circuit and determine the value of  \beta . (c) Give the ideal value of the closed-loop gain and hence of the voltage gain  V_{o} / V_{S} . (d) Provide the  A  circuit and determine the values of  A, R_{i} , and  R_{o} . (e) Find the values of  A_{f}, R_{i f} , and  R_{o f} . (f) Find the actual value of voltage gain  V_{o} / V_{S}  realized and compare to the approximate value found in (c). (g) Find the value of  R_{\text {in }} , (h) Find the value of  R_{\text {out }} . (i) If  V_{s}  is  100 \mathrm{mV} , find the magnitudes of the signals at the gates of  Q_{1}, Q_{2} , and  Q_{3}  and at the output (i.e.,  V_{o}  ).

Figure 11.7.1
the frequencies of interest. Transistors Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} are identical and are operating at identical dc bias conditions so that each has gm=5 mA/Vg_{m}=5 \mathrm{~mA} / \mathrm{V} and ro=10kΩr_{o}=10 \mathrm{k} \Omega .
(a) Replacing the signal source VSV_{S} and RSR_{S} with its Norton's equivalent circuit, show that this feedback amplifier utilizes the shunt-shunt feedback topology.
(b) Give the β\beta circuit and determine the value of β\beta .
(c) Give the ideal value of the closed-loop gain and hence of the voltage gain Vo/VSV_{o} / V_{S} .
(d) Provide the AA circuit and determine the values of A,RiA, R_{i} , and RoR_{o} .
(e) Find the values of Af,RifA_{f}, R_{i f} , and RofR_{o f} .
(f) Find the actual value of voltage gain Vo/VSV_{o} / V_{S} realized and compare to the approximate value found in (c).
(g) Find the value of Rin R_{\text {in }} ,
(h) Find the value of Rout R_{\text {out }} .
(i) If VsV_{s} is 100mV100 \mathrm{mV} , find the magnitudes of the signals at the gates of Q1,Q2Q_{1}, Q_{2} , and Q3Q_{3} and at the output (i.e., VoV_{o} ).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.
فتح الحزمة
k this deck
8
    Figure 11.8.1 Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider  \left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage  \left|V_{O V}\right|=0.2 \mathrm{~V}  and has an Early voltage  \left|V_{A}\right|=20 \mathrm{~V} . (a) Find expressions for  \beta  and for the ideal value of the closed-loop gain  V_{o} / V_{s} . Hence, find the value of  \beta  and the ideal value of  V_{o} / V_{S} . (b) Give the  A  circuit and expressions for  A  and  R_{O} . Hence, find the values of the open-loop gain  A  and the open-loop output resistances  R_{O} . (c) Find the value of the closed-loop gain  A_{f} \equiv   V_{o} / V_{S} . Compare to the ideal value found in (a). (d) Find the value of the output resistance  R_{\text {out }} .

Figure 11.8.1
Figure 11.8.1 shows a MOS current-mirrorloaded differential amplifier with negative feedback applied through a voltage divider (R1,R2)\left(R_{1}, R_{2}\right) . Each of the four MOS transistors is operating at an overdrive voltage VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} and has an Early voltage VA=20 V\left|V_{A}\right|=20 \mathrm{~V} .
(a) Find expressions for β\beta and for the ideal value of the closed-loop gain Vo/VsV_{o} / V_{s} . Hence, find the value of β\beta and the ideal value of Vo/VSV_{o} / V_{S} .
(b) Give the AA circuit and expressions for AA and ROR_{O} . Hence, find the values of the open-loop gain AA and the open-loop output resistances ROR_{O} .
(c) Find the value of the closed-loop gain AfA_{f} \equiv Vo/VSV_{o} / V_{S} . Compare to the ideal value found in (a).
(d) Find the value of the output resistance Rout R_{\text {out }} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.
فتح الحزمة
k this deck
9
    Figure 11.9.1 An op amp has a dc gain of  100 \mathrm{~dB}  and three real-axis poles with frequencies  f_{P 1}=10^{4} \mathrm{~Hz} ,  f_{P 2}=10^{5} \mathrm{~Hz} , and  f_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where  C_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and  C_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at  f_{P 1}  and that the output circuit is responsible for the pole at  f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity. (a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from  0.1 \mathrm{~Hz}  to  10^{7} \mathrm{~Hz} . (b) If the frequency compensation is achieved by connecting a capacitor  C_{C}  in parallel with  C_{1} , find the required value of  C_{C}  and sketch the modified gain response on your Bode plot. (c) If the frequency compensation is achieved by placing a capacitor  C_{f}  in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of  C_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.

Figure 11.9.1
An op amp has a dc gain of 100 dB100 \mathrm{~dB} and three real-axis poles with frequencies fP1=104 Hzf_{P 1}=10^{4} \mathrm{~Hz} , fP2=105 Hzf_{P 2}=10^{5} \mathrm{~Hz} , and fP3=106 Hzf_{P 3}=10^{6} \mathrm{~Hz} . The op-amp internal circuit includes an amplifier stage having the equivalent circuit shown in Fig. 11.9.1, where C1=100pF,gm=20 mA/VC_{1}=100 \mathrm{pF}, g_{m}=20 \mathrm{~mA} / \mathrm{V} , and C2=10pFC_{2}=10 \mathrm{pF} . Furthermore, it is found that the input circuit of this stage is responsible for the pole at fP1f_{P 1} and that the output circuit is responsible for the pole at fP2f_{P 2} . It is required to frequency-compensate this op amp so that it becomes stable in closed-loop configurations with a closed-loop gain as low as unity.
(a) Sketch and clearly label a Bode plot for the op amp gain. Use a frequency axis that extends from 0.1 Hz0.1 \mathrm{~Hz} to 107 Hz10^{7} \mathrm{~Hz} .
(b) If the frequency compensation is achieved by connecting a capacitor CCC_{C} in parallel with C1C_{1} , find the required value of CCC_{C} and sketch the modified gain response on your Bode plot.
(c) If the frequency compensation is achieved by placing a capacitor CfC_{f} in the feedback path of the amplifier stage in Fig. 11.9.1 -that is, between nodes 1 and 2 (Miller compensation)-find the required value of CfC_{f} . Also, find the new frequencies of the poles and sketch the modified gain on your Bode plot.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 9 في هذه المجموعة.