Deck 5: Differential and Multistage Amplifiers

ملء الشاشة (f)
exit full mode
سؤال
    Figure 9.1.1 For the differential cascode amplifier in Fig. 9.1.1, all the transistors have the same threshold voltage  \left|V_{t}\right|=0.5 \mathrm{~V}  and are operating at the same overdrive voltage. For the purpose of calculating dc quantities, neglect the Early effect. The current source  I  requires a minimum dc voltage  V_{C S}=0.25 \mathrm{~V}  for its proper operation. (a) With  v_{G 1}=v_{G 2}=0 \mathrm{~V} , find: i. The bias current in each of the eight transistors. ii.  \left|V_{O V}\right|  for each of the eight transistors. iii.  g_{m}  for each transistor. iv.  r_{O}  and  A_{0}  for each transistor assuming  \left|V_{A}\right|=   5 \mathrm{~V} . v. The dc voltage at the drains of  Q_{1}  and  Q_{2} . (b) Find the input common-mode range. (c) With  v_{G 1}=v_{i d} / 2  and  v_{G 2}=-v_{i d} / 2 , where  v_{i d} \ll 2 V_{O V} , give the differential half-circuit and use it to determine the differential gain  v_{o d} / v_{i d} .<div style=padding-top: 35px>

Figure 9.1.1
For the differential cascode amplifier in Fig. 9.1.1, all the transistors have the same threshold voltage Vt=0.5 V\left|V_{t}\right|=0.5 \mathrm{~V} and are operating at the same overdrive voltage. For the purpose of calculating dc quantities, neglect the Early effect. The current source II requires a minimum dc voltage VCS=0.25 VV_{C S}=0.25 \mathrm{~V} for its proper operation.
(a) With vG1=vG2=0 Vv_{G 1}=v_{G 2}=0 \mathrm{~V} , find:
i. The bias current in each of the eight transistors.
ii. VOV\left|V_{O V}\right| for each of the eight transistors. iii. gmg_{m} for each transistor.
iv. rOr_{O} and A0A_{0} for each transistor assuming VA=\left|V_{A}\right|= 5 V5 \mathrm{~V} .
v. The dc voltage at the drains of Q1Q_{1} and Q2Q_{2} .
(b) Find the input common-mode range.
(c) With vG1=vid/2v_{G 1}=v_{i d} / 2 and vG2=vid/2v_{G 2}=-v_{i d} / 2 , where vid2VOVv_{i d} \ll 2 V_{O V} , give the differential half-circuit and use it to determine the differential gain vod/vidv_{o d} / v_{i d} .
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
    Figure 9.2.1 The differential amplifier in Fig. 9.2.1 utilizes current-source loads and is biased with a modified Wilson current mirror. All transistors are operated at the same overdrive voltage  \left|V_{O V}\right|=0.2 \mathrm{~V}  and have equal Early voltage,  \left|V_{A}\right|=4 \mathrm{~V} . (a) Find the differential gain. (b) Find the CMRR (in  \mathrm{dB}  ) assuming that the only mismatch is that between  g_{m 1}  and  g_{m 2}  with  \triangle g_{m} / g_{m}=0.01 . (c) If the Wilson mirror is replaced with a simple current mirror, what does the CMRR become?<div style=padding-top: 35px>

Figure 9.2.1
The differential amplifier in Fig. 9.2.1 utilizes current-source loads and is biased with a modified Wilson current mirror. All transistors are operated at the same overdrive voltage VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} and have equal Early voltage, VA=4 V\left|V_{A}\right|=4 \mathrm{~V} .
(a) Find the differential gain.
(b) Find the CMRR (in dB\mathrm{dB} ) assuming that the
only mismatch is that between gm1g_{m 1} and gm2g_{m 2} with gm/gm=0.01\triangle g_{m} / g_{m}=0.01 .
(c) If the Wilson mirror is replaced with a simple current mirror, what does the CMRR become?
سؤال
    Figure 9.3.1 For the amplifier in Fig. 9.3.1: (a) Assuming  Q_{3}  and  Q_{4}  have very high  \beta  values, determine the value of  R  that will provide a dc current of  0.25 \mathrm{~mA}  for each of  Q_{1}  and  Q_{2} . (b) Assuming  Q_{1}  and  Q_{2}  have very high  \beta  values, determine the value of  R_{C}  that results in a dc voltage of  +3 \mathrm{~V}  at the collectors of  Q_{1}  and  Q_{2} . (c) What is the input common-mode range for this differential amplifier? (d) Determine the value of the differential voltage gain  v_{O} / v_{i d} . (e) Determine the value of the input differential resistance,  R_{i d} . Assume  \beta_{1}=\beta_{2}=100 . (f) If it is required to raise the value of  R_{i d}  by factor of 5 by including a resistance  R_{E}  in the emitter of each of  Q_{1}  and  Q_{2} , what value of  R_{E}  is required? What is the resulting value of the differential gain? (g) If the transistors have an Early voltage  V_{A}=50 \mathrm{~V} , calculate the worst-case value of the common-mode gain resulting from the resistances  R_{C}  having finite tolerances of  \pm 1 \% . Hence, find the value of the CMRR of the original amplifier (i.e., the one without the resistances  R_{E}  included). (h) With the two input terminals grounded, calculate the value of the worst-case differential dc voltage at the output resulting from the resistances  R_{C}  having finite tolerances of  \pm 1 \% . Hence, find the input offset voltage of the original amplifier (i.e., the one without  R_{E}  's).<div style=padding-top: 35px>

Figure 9.3.1
For the amplifier in Fig. 9.3.1:
(a) Assuming Q3Q_{3} and Q4Q_{4} have very high β\beta values, determine the value of RR that will provide a dc current of 0.25 mA0.25 \mathrm{~mA} for each of Q1Q_{1} and Q2Q_{2} . (b) Assuming Q1Q_{1} and Q2Q_{2} have very high β\beta values, determine the value of RCR_{C} that results in a dc voltage of +3 V+3 \mathrm{~V} at the collectors of Q1Q_{1} and Q2Q_{2} .
(c) What is the input common-mode range for this differential amplifier?
(d) Determine the value of the differential voltage gain vO/vidv_{O} / v_{i d} .
(e) Determine the value of the input differential resistance, RidR_{i d} . Assume β1=β2=100\beta_{1}=\beta_{2}=100 .
(f) If it is required to raise the value of RidR_{i d} by factor of 5 by including a resistance RER_{E} in the emitter of each of Q1Q_{1} and Q2Q_{2} , what value of RER_{E} is required? What is the resulting value of the differential gain?
(g) If the transistors have an Early voltage VA=50 VV_{A}=50 \mathrm{~V} , calculate the worst-case value of the common-mode gain resulting from the resistances RCR_{C} having finite tolerances of ±1%\pm 1 \% . Hence, find the value of the CMRR of the original amplifier (i.e., the one without the resistances RER_{E} included).
(h) With the two input terminals grounded, calculate the value of the worst-case differential dc voltage at the output resulting from the resistances RCR_{C} having finite tolerances of ±1%\pm 1 \% . Hence, find the input offset voltage of the original amplifier (i.e., the one without RER_{E} 's).
سؤال
   Figure 9.4.1 For the circuit shown in Fig. 9.4.1, neglect base currents in dc calculations and assume that for each transistor  V_{B E}=0.7 \mathrm{~V} . Transistors  Q_{1}  and  Q_{2}  are perfectly matched. Transistor  Q_{3}  has twice the emitter-base junction area of  Q_{4} . (a) For  v_{B 1}=v_{B 2}=0 \mathrm{~V} , design the circuit to establish a dc bias current of  0.1 \mathrm{~mA}  in the collector of each of  Q_{1}  and  Q_{2}  and a dc voltage of  +1 \mathrm{~V}  at the collector of each of  Q_{1}  and  Q_{2} . Specify the values required for  R, R_{1} , and  R_{2} . (b) For  v_{B 1}=v_{i d} / 2  and  v_{B 2}=-v_{i d} / 2 , determine the differential small-signal voltage gain  v_{o d} / v_{i d} . Ignore the Early effect. If  \beta_{1}=\beta_{2}=100 , what is the differential input resistance of the differential amplifier  Q_{1}-Q_{2}  ? (c) If  Q_{3}  has an Early voltage of  100 \mathrm{~V} , find its output resistance and use this result to determine the common-mode gain of the differential amplifier  v_{o d} / v_{i c m} , where  v_{B 1}=v_{B 2}=v_{i c m}  and assuming that each of  R_{1}  and  R_{2}  is accurate to within  \pm 1 \% . What is the resulting CMRR in decibels?<div style=padding-top: 35px>
Figure 9.4.1
For the circuit shown in Fig. 9.4.1, neglect base currents in dc calculations and assume that for each transistor VBE=0.7 VV_{B E}=0.7 \mathrm{~V} . Transistors Q1Q_{1} and Q2Q_{2} are perfectly matched. Transistor Q3Q_{3} has twice the emitter-base junction area of Q4Q_{4} .
(a) For vB1=vB2=0 Vv_{B 1}=v_{B 2}=0 \mathrm{~V} , design the circuit to establish a dc bias current of 0.1 mA0.1 \mathrm{~mA} in the collector of each of Q1Q_{1} and Q2Q_{2} and a dc voltage of +1 V+1 \mathrm{~V} at the collector of each of Q1Q_{1} and Q2Q_{2} . Specify the values required for R,R1R, R_{1} , and R2R_{2} .
(b) For vB1=vid/2v_{B 1}=v_{i d} / 2 and vB2=vid/2v_{B 2}=-v_{i d} / 2 , determine the differential small-signal voltage gain vod/vidv_{o d} / v_{i d} . Ignore the Early effect. If β1=β2=100\beta_{1}=\beta_{2}=100 , what is the differential input resistance of the differential amplifier Q1Q2Q_{1}-Q_{2} ?
(c) If Q3Q_{3} has an Early voltage of 100 V100 \mathrm{~V} , find its output resistance and use this result to determine the common-mode gain of the differential amplifier vod/vicmv_{o d} / v_{i c m} , where vB1=vB2=vicmv_{B 1}=v_{B 2}=v_{i c m} and assuming that each of R1R_{1} and R2R_{2} is accurate to within ±1%\pm 1 \% . What is the resulting CMRR in decibels?
سؤال
    Figure 9.5.1 (a) For the circuit in Fig. 9.5.1 (refer to Figure above), assuming  \left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=\infty  (i.e., ignoring base currents), and  V_{A}=\infty  (i.e., ignoring the Early effect), find the dc values of the labelled currents and voltages. (b) If the bases of  Q_{6}  and  Q_{7}  are disconnected from ground and a differential input signal  v_{i d}  is applied, find the differential gain if the output is taken between the two collectors. (c) Repeat (b) for the differential amplifier  \left(Q_{11}, Q_{12}\right) .<div style=padding-top: 35px>

Figure 9.5.1
(a) For the circuit in Fig. 9.5.1 (refer to Figure above), assuming VBE=0.7 V,β=\left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=\infty (i.e., ignoring base currents), and VA=V_{A}=\infty (i.e., ignoring the Early effect), find the dc values of the labelled currents and voltages.
(b) If the bases of Q6Q_{6} and Q7Q_{7} are disconnected from ground and a differential input signal vidv_{i d} is applied, find the differential gain if the output is taken between the two collectors.
(c) Repeat (b) for the differential amplifier (Q11,Q12)\left(Q_{11}, Q_{12}\right) .
سؤال
   Figure 9.6.1 In the circuit of Fig. 9.6.1, all transistors are matched with  k_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=0.4 \mathrm{~V} , and  \left|V_{A}\right|=10 \mathrm{~V} . (a) If  v_{G 1}=v_{G 2}=0 \mathrm{~V} , find the dc bias current in each of the four transistors  Q_{1}, Q_{2}, Q_{3} , and  Q_{4} , as well as the overdrive voltage  \left|V_{O V}\right|  for each. Ignore the Early effect. Also, find the de voltage at the sources of  Q_{1}  and  Q_{2} , as well as the de voltage at the gates of  Q_{3}  and  Q_{4} . (b) Find  g_{m}  of each of  Q_{1}  and  Q_{2} , and determine  r_{o}  of each of  Q_{2}  and  Q_{4} . (c) If  v_{G 1}=+v_{i d} / 2  and  v_{G 2}=-v_{i d} / 2 , find the differential gain  A_{d}=v_{o} / v_{i d} . (d) Find the output resistance  R_{S S}  of the biascurrent source  Q_{5}  and use it to determine the common mode gain  A_{c m}  in the case  v_{G 1}=v_{G 2}=   v_{i \mathrm{~cm}} . Also, find the CMRR in  \mathrm{dB} . (e) If it is required to increase the CMRR by  6 \mathrm{~dB} , by what factor should the channel length of  Q_{5}  be changed?<div style=padding-top: 35px>
Figure 9.6.1
In the circuit of Fig. 9.6.1, all transistors are matched with kn=kp=2 mA/V2,Vt=0.4 Vk_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=0.4 \mathrm{~V} , and VA=10 V\left|V_{A}\right|=10 \mathrm{~V} .
(a) If vG1=vG2=0 Vv_{G 1}=v_{G 2}=0 \mathrm{~V} , find the dc bias current in each of the four transistors Q1,Q2,Q3Q_{1}, Q_{2}, Q_{3} , and Q4Q_{4} , as well as the overdrive voltage VOV\left|V_{O V}\right| for each. Ignore the Early effect. Also, find the de voltage at the sources of Q1Q_{1} and Q2Q_{2} , as well as the de voltage at the gates of Q3Q_{3} and Q4Q_{4} .
(b) Find gmg_{m} of each of Q1Q_{1} and Q2Q_{2} , and determine ror_{o} of each of Q2Q_{2} and Q4Q_{4} .
(c) If vG1=+vid/2v_{G 1}=+v_{i d} / 2 and vG2=vid/2v_{G 2}=-v_{i d} / 2 , find the differential gain Ad=vo/vidA_{d}=v_{o} / v_{i d} .
(d) Find the output resistance RSSR_{S S} of the biascurrent source Q5Q_{5} and use it to determine the common mode gain AcmA_{c m} in the case vG1=vG2=v_{G 1}=v_{G 2}= vi cmv_{i \mathrm{~cm}} . Also, find the CMRR in dB\mathrm{dB} .
(e) If it is required to increase the CMRR by 6 dB6 \mathrm{~dB} , by what factor should the channel length of Q5Q_{5} be changed?
سؤال
    Figure 9.7.1 The current-mirror-loaded CMOS amplifier shown in Fig. 9.7.1 is fabricated in a  0.5-\mu \mathrm{m}  technology for which  V_{t n}=-V_{t p}=0.5 \mathrm{~V},\left|V_{A}\right|=20 \mathrm{~V} , and  \mu_{n} C_{o x}=2 \mu_{p} C_{o x}=200 \mu \mathrm{A} / \mathrm{V}^{2} . Transistors  Q_{1}  and  Q_{2}  are matched,  Q_{3}  and  Q_{4}  are matched, and  Q_{5}  and  Q_{6}  are matched. The  (W / L)  ratios of all devices are selected so that all operate at the same  \left|V_{O V}\right| . (a) Starting from  \left|A_{d}\right|=g_{m 1}\left(r_{o 2} \| r_{o 4}\right)  and  \left|A_{c m}\right|=1 / 2 g_{m 3} R_{S S}  show that  \left|A_{d}\right|=\left|V_{A}\right| /\left|V_{O V}\right|  and  \mathrm{CMRR}=2\left(\left|V_{A}\right| /\left|V_{O V}\right|\right)^{2}  (b) To obtain a differential gain of  40 \mathrm{~V} / \mathrm{V} , find the overdrive voltage  \left|V_{O V}\right|  at which the transistors should be operated. Also, find the resulting CMRR in  \mathrm{dB} . (c) Using a reference current  I_{\mathrm{REF}}=200 \mu \mathrm{A} , find the  (W / L)  required for each of the six transistors. (d) With both input terminals grounded, what dc voltage occurs at the output (neglecting the Early effect)? Hence, compute the systematic input offset voltage. (e) Find the input common-mode range. (f) If the input differential signal is riding on an input common-mode voltage of  0 \mathrm{~V} , what is the maximum allowable output voltage swing in both directions? Hence, find the peak-to-peak amplitude of the largest sine-wave signal that can be applied between the two input terminals (without dc offset compensation).<div style=padding-top: 35px>

Figure 9.7.1
The current-mirror-loaded CMOS amplifier shown in Fig. 9.7.1 is fabricated in a 0.5μm0.5-\mu \mathrm{m} technology for which Vtn=Vtp=0.5 V,VA=20 VV_{t n}=-V_{t p}=0.5 \mathrm{~V},\left|V_{A}\right|=20 \mathrm{~V} , and μnCox=2μpCox=200μA/V2\mu_{n} C_{o x}=2 \mu_{p} C_{o x}=200 \mu \mathrm{A} / \mathrm{V}^{2} . Transistors Q1Q_{1} and Q2Q_{2} are matched, Q3Q_{3} and Q4Q_{4} are matched, and Q5Q_{5} and Q6Q_{6} are matched. The (W/L)(W / L) ratios of all devices are selected so that all operate at the same VOV\left|V_{O V}\right| .
(a) Starting from
Ad=gm1(ro2ro4)\left|A_{d}\right|=g_{m 1}\left(r_{o 2} \| r_{o 4}\right)
and
Acm=1/2gm3RSS\left|A_{c m}\right|=1 / 2 g_{m 3} R_{S S}
show that
Ad=VA/VOV\left|A_{d}\right|=\left|V_{A}\right| /\left|V_{O V}\right|
and
CMRR=2(VA/VOV)2\mathrm{CMRR}=2\left(\left|V_{A}\right| /\left|V_{O V}\right|\right)^{2}
(b) To obtain a differential gain of 40 V/V40 \mathrm{~V} / \mathrm{V} , find the overdrive voltage VOV\left|V_{O V}\right| at which the transistors should be operated. Also, find the resulting CMRR in dB\mathrm{dB} .
(c) Using a reference current IREF=200μAI_{\mathrm{REF}}=200 \mu \mathrm{A} , find the (W/L)(W / L) required for each of the six transistors.
(d) With both input terminals grounded, what dc voltage occurs at the output (neglecting the Early effect)? Hence, compute the systematic input offset voltage.
(e) Find the input common-mode range.
(f) If the input differential signal is riding on an input common-mode voltage of 0 V0 \mathrm{~V} , what is the maximum allowable output voltage swing in both directions? Hence, find the peak-to-peak amplitude of the largest sine-wave signal that can be applied between the two input terminals (without dc offset compensation).
سؤال
    Figure 9.8.1 The two-stage CMOS op amp shown in Fig. 9.8.1 utilizes eight transistors,  Q_{1}  to  Q_{8} , all having the same channel length  L . Transistors  Q_{1}  and  Q_{2}  are matched and  Q_{3}  and  Q_{4}  are matched. For the process technology utilized,  \mu_{n}=4 \mu_{p} . All transistors have the same Early voltage,  \left|V_{A}\right| . (a) If the width of each of  Q_{1}  and  Q_{2}  is denoted  W , find the width of each of  Q_{3}  to  Q_{8}  in terms of  W  so that all transistors operate at equal overdrive voltages, and that  Q_{6}  conducts a de bias current equal to that supplied by  Q_{7} . Neglect the Early effect for this part. (b) Derive an expression for the overall voltage gain in terms of  \left|V_{A}\right|  and  \left|V_{O V}\right| . Hence, determine the required value of  \left|V_{O V}\right|  for the case  \left|V_{A}\right|=10   \mathrm{V}  and the voltage gain required is  2500 \mathrm{~V} / \mathrm{V} .<div style=padding-top: 35px>

Figure 9.8.1
The two-stage CMOS op amp shown in Fig. 9.8.1 utilizes eight transistors, Q1Q_{1} to Q8Q_{8} , all having the same channel length LL . Transistors Q1Q_{1} and Q2Q_{2} are matched and Q3Q_{3} and Q4Q_{4} are matched. For the process technology utilized, μn=4μp\mu_{n}=4 \mu_{p} . All transistors have the same Early voltage, VA\left|V_{A}\right| .
(a) If the width of each of Q1Q_{1} and Q2Q_{2} is denoted WW , find the width of each of Q3Q_{3} to Q8Q_{8} in terms of WW so that all transistors operate at equal overdrive voltages, and that Q6Q_{6} conducts a de bias current equal to that supplied by Q7Q_{7} . Neglect the Early effect for this part.
(b) Derive an expression for the overall voltage gain in terms of VA\left|V_{A}\right| and VOV\left|V_{O V}\right| . Hence, determine the required value of VOV\left|V_{O V}\right| for the case VA=10\left|V_{A}\right|=10 V\mathrm{V} and the voltage gain required is 2500 V/V2500 \mathrm{~V} / \mathrm{V} .
سؤال
    Figure 9.9.1 The two-stage CMOS op amp shown in Fig. 9.9.1 is fabricated in a  0.18-\mu \mathrm{m}  technology having  k_{n}^{\prime}=   4 k_{p}^{\prime}=400 \mu \mathrm{A} / \mathrm{V}^{2} , and  V_{t n}=-V_{t p}=0.4 \mathrm{~V} . (a) With  A  and  B  grounded, perform a de design that will result in each of  Q_{1}, Q_{2}, Q_{3} , and  Q_{4}  conducting a drain current of  100 \mu \mathrm{A} , and each of  Q_{5}, Q_{6} , and  Q_{7}  conducting a drain current of  200 \mu \mathrm{A} . Design so that all transistors operate at a  0.2-\mathrm{V}  overdrive voltage. Neglect the Early effect. Specify the  W / L  ratio required for each MOSFET. Present your results in a table. What is the dc voltage at the output (ideally)? (b) Find the input common-mode range. (c) Find the allowable range of the output voltage. (d) With  v_{A}=v_{i d} / 2  and  v_{B}=-v_{i d} / 2 , find the voltage gain  v_{O} / v_{i d} . Assume that the Early voltage is  \left|V_{A}\right|=5 \mathrm{~V} .<div style=padding-top: 35px>

Figure 9.9.1
The two-stage CMOS op amp shown in Fig. 9.9.1 is fabricated in a 0.18μm0.18-\mu \mathrm{m} technology having kn=k_{n}^{\prime}= 4kp=400μA/V24 k_{p}^{\prime}=400 \mu \mathrm{A} / \mathrm{V}^{2} , and Vtn=Vtp=0.4 VV_{t n}=-V_{t p}=0.4 \mathrm{~V} .
(a) With AA and BB grounded, perform a de design that will result in each of Q1,Q2,Q3Q_{1}, Q_{2}, Q_{3} , and Q4Q_{4} conducting a drain current of 100μA100 \mu \mathrm{A} , and each of Q5,Q6Q_{5}, Q_{6} , and Q7Q_{7} conducting a drain current of 200μA200 \mu \mathrm{A} . Design so that all transistors operate at a 0.2V0.2-\mathrm{V} overdrive voltage. Neglect the Early effect. Specify the W/LW / L ratio required for each MOSFET.
Present your results in a table. What is the dc voltage at the output (ideally)?
(b) Find the input common-mode range.
(c) Find the allowable range of the output voltage.
(d) With vA=vid/2v_{A}=v_{i d} / 2 and vB=vid/2v_{B}=-v_{i d} / 2 , find the voltage gain vO/vidv_{O} / v_{i d} . Assume that the Early voltage is VA=5 V\left|V_{A}\right|=5 \mathrm{~V} .
سؤال
Refer to Figure 9.10.1 below.
 Refer to Figure 9.10.1 below.    Figure 9.10.1 Note: Neglect the Early effect; that is, assume  r_{O}=\infty . Assume  \left|V_{B E}\right|=0.7 \mathrm{~V} . (a) For  V_{A}=V_{B}=0 \mathrm{~V}  and neglecting all base currents, design the circuit of Fig. 9.10.1 so that each of  Q_{1}  and  Q_{2}  operates at a dc bias current of  0.25 \mathrm{~mA}, V_{C}=V_{D}=+10 \mathrm{~V}, V_{E}=0 \mathrm{~V} , and  Q_{5}  operates at a dc bias current of  3 \mathrm{~mA} . Specify the dc bias current at which each of  Q_{3}  and  Q_{4}  will be operating and give the required value of  R_{1}, R_{2} ,  R_{3}, R_{4} , and  R_{5} . (b) If  \beta=99 , what must the value of each of the two resistances labeled  R_{e}  be so as to obtain an input differential resistance of  40 \mathrm{k} \Omega  ? (c) Find the differential voltage gain of the input stage,  Q_{1}-Q_{2} . (d) Find the voltage gain of the second stage,  Q_{3}-Q_{4} . (e) Find the voltage gain of the output stage,  Q_{5} . (f) Find the overall voltage gain,  v_{e} /\left(v_{b}-v_{a}\right) .<div style=padding-top: 35px>

Figure 9.10.1
Note: Neglect the Early effect; that is, assume rO=r_{O}=\infty . Assume VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} .
(a) For VA=VB=0 VV_{A}=V_{B}=0 \mathrm{~V} and neglecting all base currents, design the circuit of Fig. 9.10.1 so that each of Q1Q_{1} and Q2Q_{2} operates at a dc bias current of 0.25 mA,VC=VD=+10 V,VE=0 V0.25 \mathrm{~mA}, V_{C}=V_{D}=+10 \mathrm{~V}, V_{E}=0 \mathrm{~V} , and Q5Q_{5} operates at a dc bias current of 3 mA3 \mathrm{~mA} . Specify the dc bias current at which each of Q3Q_{3} and Q4Q_{4} will be operating and give the required value of R1,R2R_{1}, R_{2} , R3,R4R_{3}, R_{4} , and R5R_{5} .
(b) If β=99\beta=99 , what must the value of each of the two resistances labeled ReR_{e} be so as to obtain an input differential resistance of 40kΩ40 \mathrm{k} \Omega ?
(c) Find the differential voltage gain of the input stage, Q1Q2Q_{1}-Q_{2} .
(d) Find the voltage gain of the second stage, Q3Q4Q_{3}-Q_{4} .
(e) Find the voltage gain of the output stage, Q5Q_{5} .
(f) Find the overall voltage gain, ve/(vbva)v_{e} /\left(v_{b}-v_{a}\right) .
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/10
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 5: Differential and Multistage Amplifiers
1
    Figure 9.1.1 For the differential cascode amplifier in Fig. 9.1.1, all the transistors have the same threshold voltage  \left|V_{t}\right|=0.5 \mathrm{~V}  and are operating at the same overdrive voltage. For the purpose of calculating dc quantities, neglect the Early effect. The current source  I  requires a minimum dc voltage  V_{C S}=0.25 \mathrm{~V}  for its proper operation. (a) With  v_{G 1}=v_{G 2}=0 \mathrm{~V} , find: i. The bias current in each of the eight transistors. ii.  \left|V_{O V}\right|  for each of the eight transistors. iii.  g_{m}  for each transistor. iv.  r_{O}  and  A_{0}  for each transistor assuming  \left|V_{A}\right|=   5 \mathrm{~V} . v. The dc voltage at the drains of  Q_{1}  and  Q_{2} . (b) Find the input common-mode range. (c) With  v_{G 1}=v_{i d} / 2  and  v_{G 2}=-v_{i d} / 2 , where  v_{i d} \ll 2 V_{O V} , give the differential half-circuit and use it to determine the differential gain  v_{o d} / v_{i d} .

Figure 9.1.1
For the differential cascode amplifier in Fig. 9.1.1, all the transistors have the same threshold voltage Vt=0.5 V\left|V_{t}\right|=0.5 \mathrm{~V} and are operating at the same overdrive voltage. For the purpose of calculating dc quantities, neglect the Early effect. The current source II requires a minimum dc voltage VCS=0.25 VV_{C S}=0.25 \mathrm{~V} for its proper operation.
(a) With vG1=vG2=0 Vv_{G 1}=v_{G 2}=0 \mathrm{~V} , find:
i. The bias current in each of the eight transistors.
ii. VOV\left|V_{O V}\right| for each of the eight transistors. iii. gmg_{m} for each transistor.
iv. rOr_{O} and A0A_{0} for each transistor assuming VA=\left|V_{A}\right|= 5 V5 \mathrm{~V} .
v. The dc voltage at the drains of Q1Q_{1} and Q2Q_{2} .
(b) Find the input common-mode range.
(c) With vG1=vid/2v_{G 1}=v_{i d} / 2 and vG2=vid/2v_{G 2}=-v_{i d} / 2 , where vid2VOVv_{i d} \ll 2 V_{O V} , give the differential half-circuit and use it to determine the differential gain vod/vidv_{o d} / v_{i d} .
    Figure 9.1.1 (a) (i)  I_{D}=\frac{I}{2}=25 \mu \mathrm{A}  (ii) Since for  Q_{7}  and  Q_{8} ,  V_{S G}=2.5-1.75=0.75 \mathrm{~V}  and since all transistors have the same  \left|V_{t}\right|  and  \left|V_{O V}\right| , then  \left|V_{O V}\right|=0.75-0.5=0.25 \mathrm{~V}  (iii)  g_{m}=\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.025}{0.25}=0.2 \mathrm{~mA} / \mathrm{V}  (iv)  \begin{aligned} r_{o} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.025}=200 \mathrm{k} \Omega \\ A_{0} & =g_{m} r_{o}=0.2 \times 200=40 \end{aligned}  (v)  V_{D 1}=V_{D 2}=0.75-V_{G S 3,4}=0 \mathrm{~V}  (b)  \begin{aligned} v_{I C M \max } & =V_{D 1}+V_{t}=0+0.5=0.5 \mathrm{~V} \\ v_{I C M \min } & =-V_{S S}+V_{C S}+V_{G S 1,2} \\ & =-2.5+0.25+0.75=-1.5 \mathrm{~V} \end{aligned}  Thus, (c)    Figure 9.1.2 From the differential half-circuit in Fig. 9.1.2, we find  \begin{aligned} \frac{v_{o d}}{v_{i d}} & =g_{m 1} R_{O} \\ & =g_{m} \times \frac{1}{2}\left(g_{m} r_{o}\right) r_{o} \\ & =\frac{1}{2}\left(g_{m} r_{o}\right)^{2} \\ & =\frac{1}{2} A_{0}^{2}=\frac{1}{2} \times 40^{2}=800 \mathrm{~V} / \mathrm{V} \end{aligned}

Figure 9.1.1
(a)
(i)
ID=I2=25μAI_{D}=\frac{I}{2}=25 \mu \mathrm{A}
(ii) Since for Q7Q_{7} and Q8Q_{8} ,
VSG=2.51.75=0.75 VV_{S G}=2.5-1.75=0.75 \mathrm{~V}
and since all transistors have the same Vt\left|V_{t}\right| and VOV\left|V_{O V}\right| , then
VOV=0.750.5=0.25 V\left|V_{O V}\right|=0.75-0.5=0.25 \mathrm{~V}
(iii)
gm=2IDVOV=2×0.0250.25=0.2 mA/Vg_{m}=\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.025}{0.25}=0.2 \mathrm{~mA} / \mathrm{V}
(iv)
ro=VAID=50.025=200kΩA0=gmro=0.2×200=40\begin{aligned}r_{o} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.025}=200 \mathrm{k} \Omega \\A_{0} & =g_{m} r_{o}=0.2 \times 200=40\end{aligned}
(v)
VD1=VD2=0.75VGS3,4=0 VV_{D 1}=V_{D 2}=0.75-V_{G S 3,4}=0 \mathrm{~V}
(b)
vICMmax=VD1+Vt=0+0.5=0.5 VvICMmin=VSS+VCS+VGS1,2=2.5+0.25+0.75=1.5 V\begin{aligned}v_{I C M \max } & =V_{D 1}+V_{t}=0+0.5=0.5 \mathrm{~V} \\v_{I C M \min } & =-V_{S S}+V_{C S}+V_{G S 1,2} \\& =-2.5+0.25+0.75=-1.5 \mathrm{~V}\end{aligned}
Thus,
(c)
    Figure 9.1.1 (a) (i)  I_{D}=\frac{I}{2}=25 \mu \mathrm{A}  (ii) Since for  Q_{7}  and  Q_{8} ,  V_{S G}=2.5-1.75=0.75 \mathrm{~V}  and since all transistors have the same  \left|V_{t}\right|  and  \left|V_{O V}\right| , then  \left|V_{O V}\right|=0.75-0.5=0.25 \mathrm{~V}  (iii)  g_{m}=\frac{2 I_{D}}{\left|V_{O V}\right|}=\frac{2 \times 0.025}{0.25}=0.2 \mathrm{~mA} / \mathrm{V}  (iv)  \begin{aligned} r_{o} & =\frac{\left|V_{A}\right|}{I_{D}}=\frac{5}{0.025}=200 \mathrm{k} \Omega \\ A_{0} & =g_{m} r_{o}=0.2 \times 200=40 \end{aligned}  (v)  V_{D 1}=V_{D 2}=0.75-V_{G S 3,4}=0 \mathrm{~V}  (b)  \begin{aligned} v_{I C M \max } & =V_{D 1}+V_{t}=0+0.5=0.5 \mathrm{~V} \\ v_{I C M \min } & =-V_{S S}+V_{C S}+V_{G S 1,2} \\ & =-2.5+0.25+0.75=-1.5 \mathrm{~V} \end{aligned}  Thus, (c)    Figure 9.1.2 From the differential half-circuit in Fig. 9.1.2, we find  \begin{aligned} \frac{v_{o d}}{v_{i d}} & =g_{m 1} R_{O} \\ & =g_{m} \times \frac{1}{2}\left(g_{m} r_{o}\right) r_{o} \\ & =\frac{1}{2}\left(g_{m} r_{o}\right)^{2} \\ & =\frac{1}{2} A_{0}^{2}=\frac{1}{2} \times 40^{2}=800 \mathrm{~V} / \mathrm{V} \end{aligned}

Figure 9.1.2
From the differential half-circuit in Fig. 9.1.2, we find
vodvid=gm1RO=gm×12(gmro)ro=12(gmro)2=12A02=12×402=800 V/V\begin{aligned}\frac{v_{o d}}{v_{i d}} & =g_{m 1} R_{O} \\& =g_{m} \times \frac{1}{2}\left(g_{m} r_{o}\right) r_{o} \\& =\frac{1}{2}\left(g_{m} r_{o}\right)^{2} \\& =\frac{1}{2} A_{0}^{2}=\frac{1}{2} \times 40^{2}=800 \mathrm{~V} / \mathrm{V}\end{aligned}
2
    Figure 9.2.1 The differential amplifier in Fig. 9.2.1 utilizes current-source loads and is biased with a modified Wilson current mirror. All transistors are operated at the same overdrive voltage  \left|V_{O V}\right|=0.2 \mathrm{~V}  and have equal Early voltage,  \left|V_{A}\right|=4 \mathrm{~V} . (a) Find the differential gain. (b) Find the CMRR (in  \mathrm{dB}  ) assuming that the only mismatch is that between  g_{m 1}  and  g_{m 2}  with  \triangle g_{m} / g_{m}=0.01 . (c) If the Wilson mirror is replaced with a simple current mirror, what does the CMRR become?

Figure 9.2.1
The differential amplifier in Fig. 9.2.1 utilizes current-source loads and is biased with a modified Wilson current mirror. All transistors are operated at the same overdrive voltage VOV=0.2 V\left|V_{O V}\right|=0.2 \mathrm{~V} and have equal Early voltage, VA=4 V\left|V_{A}\right|=4 \mathrm{~V} .
(a) Find the differential gain.
(b) Find the CMRR (in dB\mathrm{dB} ) assuming that the
only mismatch is that between gm1g_{m 1} and gm2g_{m 2} with gm/gm=0.01\triangle g_{m} / g_{m}=0.01 .
(c) If the Wilson mirror is replaced with a simple current mirror, what does the CMRR become?
    Figure 9.2.1 (a)  A_{d}=g_{m 1}\left(r_{o 1} \| r_{o 3}\right)  where  \begin{aligned} g_{m 1} & =\frac{2 I_{D}}{\left|V_{O V}\right|} \\ r_{o 1} & =r_{o 3}=\frac{\left|V_{A}\right|}{I_{D}} \\ A_{d} & =\frac{2 I_{D}}{\left|V_{O V}\right|} \times \frac{1}{2} \frac{\left|V_{A}\right|}{I_{D}} \\ & =\frac{\left|V_{A}\right|}{\left|V_{O V}\right|}=\frac{4}{0.2}=20 \mathrm{~V} / \mathrm{V} \end{aligned}  (b)  \mathrm{CMRR}=\left(2 g_{m 1} R_{S S}\right) /\left(\frac{\triangle g_{m}}{g_{m}}\right)  where  \begin{aligned} R_{S S} & =\left(g_{m 7} r_{o 7}\right) r_{o 9} \\ & =\frac{2 I_{D 7}}{\left|V_{O V}\right|} \times \frac{V_{A}}{I_{D 7}} \times \frac{V_{A}}{I_{D 9}} \\ & =\frac{2 V_{A}}{\left|V_{O V}\right|} \frac{V_{A}}{I_{D 9}} \end{aligned}  But  I_{D 9}=2 \times \frac{I}{2}=I  and  g_{m 1}=\frac{2 I_{D 1}}{\left|V_{O V}\right|}=\frac{2 \times\left(\frac{I}{2}\right)}{\left|V_{O V}\right|}=\frac{I}{\left|V_{O V}\right|}  Thus,  \begin{aligned} \mathrm{CMRR} & =\frac{2 I}{\left|V_{O V}\right|} \times \frac{2\left|V_{A}\right|}{\left|V_{O V}\right|} \times \frac{\left|V_{A}\right|}{I} \times \frac{1}{0.01} \\ & =400\left|\frac{V_{A}}{V_{O V}}\right|^{2}=400 \times\left(\frac{4}{0.2}\right)^{2} \\ & =1.6 \times 10^{5} \end{aligned}  or  20 \log \left(1.6 \times 10^{5}\right)=104 \mathrm{~dB}  (c) If the Wilson mirror is replaced with a simple current mirror,  R_{S S}=r_{o}=\frac{\left|V_{A}\right|}{I}  Thus,  \begin{aligned} \mathrm{CMRR} & =\frac{2 I}{\left|V_{O V}\right|} \times \frac{\left|V_{A}\right|}{I} \times \frac{1}{0.01} \\ & =200\left|\frac{V_{A}}{V_{O V}}\right|=200 \times\left(\frac{4}{0.2}\right) \\ & =4000 \end{aligned}  or  72 \mathrm{~dB}

Figure 9.2.1 (a)
Ad=gm1(ro1ro3)A_{d}=g_{m 1}\left(r_{o 1} \| r_{o 3}\right)
where
gm1=2IDVOVro1=ro3=VAIDAd=2IDVOV×12VAID=VAVOV=40.2=20 V/V\begin{aligned}g_{m 1} & =\frac{2 I_{D}}{\left|V_{O V}\right|} \\r_{o 1} & =r_{o 3}=\frac{\left|V_{A}\right|}{I_{D}} \\A_{d} & =\frac{2 I_{D}}{\left|V_{O V}\right|} \times \frac{1}{2} \frac{\left|V_{A}\right|}{I_{D}} \\& =\frac{\left|V_{A}\right|}{\left|V_{O V}\right|}=\frac{4}{0.2}=20 \mathrm{~V} / \mathrm{V}\end{aligned}
(b)
CMRR=(2gm1RSS)/(gmgm)\mathrm{CMRR}=\left(2 g_{m 1} R_{S S}\right) /\left(\frac{\triangle g_{m}}{g_{m}}\right)
where
RSS=(gm7ro7)ro9=2ID7VOV×VAID7×VAID9=2VAVOVVAID9\begin{aligned}R_{S S} & =\left(g_{m 7} r_{o 7}\right) r_{o 9} \\& =\frac{2 I_{D 7}}{\left|V_{O V}\right|} \times \frac{V_{A}}{I_{D 7}} \times \frac{V_{A}}{I_{D 9}} \\& =\frac{2 V_{A}}{\left|V_{O V}\right|} \frac{V_{A}}{I_{D 9}}\end{aligned}
But
ID9=2×I2=II_{D 9}=2 \times \frac{I}{2}=I
and
gm1=2ID1VOV=2×(I2)VOV=IVOVg_{m 1}=\frac{2 I_{D 1}}{\left|V_{O V}\right|}=\frac{2 \times\left(\frac{I}{2}\right)}{\left|V_{O V}\right|}=\frac{I}{\left|V_{O V}\right|}
Thus,
CMRR=2IVOV×2VAVOV×VAI×10.01=400VAVOV2=400×(40.2)2=1.6×105\begin{aligned}\mathrm{CMRR} & =\frac{2 I}{\left|V_{O V}\right|} \times \frac{2\left|V_{A}\right|}{\left|V_{O V}\right|} \times \frac{\left|V_{A}\right|}{I} \times \frac{1}{0.01} \\& =400\left|\frac{V_{A}}{V_{O V}}\right|^{2}=400 \times\left(\frac{4}{0.2}\right)^{2} \\& =1.6 \times 10^{5}\end{aligned}
or
20log(1.6×105)=104 dB20 \log \left(1.6 \times 10^{5}\right)=104 \mathrm{~dB}
(c) If the Wilson mirror is replaced with a simple current mirror,
RSS=ro=VAIR_{S S}=r_{o}=\frac{\left|V_{A}\right|}{I}
Thus,
CMRR=2IVOV×VAI×10.01=200VAVOV=200×(40.2)=4000\begin{aligned}\mathrm{CMRR} & =\frac{2 I}{\left|V_{O V}\right|} \times \frac{\left|V_{A}\right|}{I} \times \frac{1}{0.01} \\& =200\left|\frac{V_{A}}{V_{O V}}\right|=200 \times\left(\frac{4}{0.2}\right) \\& =4000\end{aligned}
or 72 dB72 \mathrm{~dB}
3
    Figure 9.3.1 For the amplifier in Fig. 9.3.1: (a) Assuming  Q_{3}  and  Q_{4}  have very high  \beta  values, determine the value of  R  that will provide a dc current of  0.25 \mathrm{~mA}  for each of  Q_{1}  and  Q_{2} . (b) Assuming  Q_{1}  and  Q_{2}  have very high  \beta  values, determine the value of  R_{C}  that results in a dc voltage of  +3 \mathrm{~V}  at the collectors of  Q_{1}  and  Q_{2} . (c) What is the input common-mode range for this differential amplifier? (d) Determine the value of the differential voltage gain  v_{O} / v_{i d} . (e) Determine the value of the input differential resistance,  R_{i d} . Assume  \beta_{1}=\beta_{2}=100 . (f) If it is required to raise the value of  R_{i d}  by factor of 5 by including a resistance  R_{E}  in the emitter of each of  Q_{1}  and  Q_{2} , what value of  R_{E}  is required? What is the resulting value of the differential gain? (g) If the transistors have an Early voltage  V_{A}=50 \mathrm{~V} , calculate the worst-case value of the common-mode gain resulting from the resistances  R_{C}  having finite tolerances of  \pm 1 \% . Hence, find the value of the CMRR of the original amplifier (i.e., the one without the resistances  R_{E}  included). (h) With the two input terminals grounded, calculate the value of the worst-case differential dc voltage at the output resulting from the resistances  R_{C}  having finite tolerances of  \pm 1 \% . Hence, find the input offset voltage of the original amplifier (i.e., the one without  R_{E}  's).

Figure 9.3.1
For the amplifier in Fig. 9.3.1:
(a) Assuming Q3Q_{3} and Q4Q_{4} have very high β\beta values, determine the value of RR that will provide a dc current of 0.25 mA0.25 \mathrm{~mA} for each of Q1Q_{1} and Q2Q_{2} . (b) Assuming Q1Q_{1} and Q2Q_{2} have very high β\beta values, determine the value of RCR_{C} that results in a dc voltage of +3 V+3 \mathrm{~V} at the collectors of Q1Q_{1} and Q2Q_{2} .
(c) What is the input common-mode range for this differential amplifier?
(d) Determine the value of the differential voltage gain vO/vidv_{O} / v_{i d} .
(e) Determine the value of the input differential resistance, RidR_{i d} . Assume β1=β2=100\beta_{1}=\beta_{2}=100 .
(f) If it is required to raise the value of RidR_{i d} by factor of 5 by including a resistance RER_{E} in the emitter of each of Q1Q_{1} and Q2Q_{2} , what value of RER_{E} is required? What is the resulting value of the differential gain?
(g) If the transistors have an Early voltage VA=50 VV_{A}=50 \mathrm{~V} , calculate the worst-case value of the common-mode gain resulting from the resistances RCR_{C} having finite tolerances of ±1%\pm 1 \% . Hence, find the value of the CMRR of the original amplifier (i.e., the one without the resistances RER_{E} included).
(h) With the two input terminals grounded, calculate the value of the worst-case differential dc voltage at the output resulting from the resistances RCR_{C} having finite tolerances of ±1%\pm 1 \% . Hence, find the input offset voltage of the original amplifier (i.e., the one without RER_{E} 's).
    Figure 9.3.1 (a) To obtain a  0.25-\mathrm{mA}  current in each of  Q_{1}  and  Q_{2} , the current in  Q_{3}  must be  0.5 \mathrm{~mA} . For  Q_{3}  and  Q_{4}  having high  \beta  values, the current through  R  and  Q_{4}  must be  0.5 \mathrm{~mA} , thus  R=\frac{10-0.7}{0.5}=18.6 \mathrm{k} \Omega  (b)  R_{C}=\frac{5-3}{0.25}=8 \mathrm{k} \Omega  (c)  \begin{aligned} v_{I C M \max } & =V_{C 1,2}+0.4 \\ & =3.4 \mathrm{~V} \\ v_{I C M \min } & =-5+0.3+0.7=-4 \mathrm{~V} \end{aligned}  Thus,  -4 \mathrm{~V} \leq v_{I C M} \leq+3.4 \mathrm{~V}  (d)  \frac{v_{o}}{v_{i d}}=g_{m 1,2} R_{C}  where  g_{m 1,2}=\frac{I_{C 1,2}}{V_{T}}=\frac{0.25 \mathrm{~mA}}{0.025 \mathrm{~V}}=10 \mathrm{~mA} / \mathrm{V}  Thus,  \frac{v_{o}}{v_{i d}}=10 \times 8=80 \mathrm{~V} / \mathrm{V}  (e)  \begin{aligned} R_{i d} & =2 r_{\pi}=2 \frac{\beta}{g_{m}} \\ & =\frac{2 \times 100}{10}=20 \mathrm{k} \Omega \end{aligned}  (f) To raise  R_{i d}  by a factor of 5 , we include a resistance  R_{E}  in each of the emitters of  Q_{1}  and  Q_{2}  with  R_{E}  given by  \begin{aligned} R_{E} & =4 r_{e} \\ & =4 \frac{V_{T}}{I_{E}} \\ & =4 \frac{25 \mathrm{mV}}{0.25 \mathrm{~mA}} \\ & =400 \Omega \end{aligned}  This will reduce the differential gain by the same factor of 5 , thus  \frac{v_{o}}{v_{i d}}=\frac{80}{5}=16 \mathrm{~V} / \mathrm{V}  (g)  \left|A_{c m}\right|=\left(\frac{R_{C}}{2 R_{E E}}\right)\left(\frac{\triangle R_{C}}{R_{C}}\right)  where  R_{E E}=\left.r_{o}\right|_{Q_{3}}=\frac{V_{A}}{I_{C 3}}=\frac{50}{0.5}=100 \mathrm{k} \Omega   \frac{\triangle R_{C}}{R_{C}}=0.02  Thus,  \begin{aligned} \left|A_{c m}\right| & =\frac{8}{2 \times 100} \times 0.02=8 \times 10^{-4} \mathrm{~V} / \mathrm{V} \\ \mathrm{CMRR} & =\frac{80}{8 \times 10^{-4}}=10^{5} \end{aligned}  or  100 \mathrm{~dB} . (h)  \begin{aligned} \left|V_{O}\right| & =0.25\left(R_{C}+0.01 R_{C}\right)-0.25\left(R_{C}-0.01 R_{C}\right) \\ & =0.25 \times 0.02 \times 8=0.04 \mathrm{~V} \\ & =40 \mathrm{mV} \\ V_{O S} & =\frac{40}{80}=0.5 \mathrm{mV} \end{aligned}

Figure 9.3.1
(a) To obtain a 0.25mA0.25-\mathrm{mA} current in each of Q1Q_{1} and Q2Q_{2} , the current in Q3Q_{3} must be 0.5 mA0.5 \mathrm{~mA} . For Q3Q_{3} and Q4Q_{4} having high β\beta values, the current through RR and Q4Q_{4} must be 0.5 mA0.5 \mathrm{~mA} , thus
R=100.70.5=18.6kΩR=\frac{10-0.7}{0.5}=18.6 \mathrm{k} \Omega
(b)
RC=530.25=8kΩR_{C}=\frac{5-3}{0.25}=8 \mathrm{k} \Omega
(c)
vICMmax=VC1,2+0.4=3.4 VvICMmin=5+0.3+0.7=4 V\begin{aligned}v_{I C M \max } & =V_{C 1,2}+0.4 \\& =3.4 \mathrm{~V} \\v_{I C M \min } & =-5+0.3+0.7=-4 \mathrm{~V}\end{aligned}
Thus,
4 VvICM+3.4 V-4 \mathrm{~V} \leq v_{I C M} \leq+3.4 \mathrm{~V}
(d)
vovid=gm1,2RC\frac{v_{o}}{v_{i d}}=g_{m 1,2} R_{C}
where
gm1,2=IC1,2VT=0.25 mA0.025 V=10 mA/Vg_{m 1,2}=\frac{I_{C 1,2}}{V_{T}}=\frac{0.25 \mathrm{~mA}}{0.025 \mathrm{~V}}=10 \mathrm{~mA} / \mathrm{V}
Thus,
vovid=10×8=80 V/V\frac{v_{o}}{v_{i d}}=10 \times 8=80 \mathrm{~V} / \mathrm{V}
(e)
Rid=2rπ=2βgm=2×10010=20kΩ\begin{aligned}R_{i d} & =2 r_{\pi}=2 \frac{\beta}{g_{m}} \\& =\frac{2 \times 100}{10}=20 \mathrm{k} \Omega\end{aligned}
(f) To raise RidR_{i d} by a factor of 5 , we include a resistance RER_{E} in each of the emitters of Q1Q_{1} and Q2Q_{2} with RER_{E} given by
RE=4re=4VTIE=425mV0.25 mA=400Ω\begin{aligned}R_{E} & =4 r_{e} \\& =4 \frac{V_{T}}{I_{E}} \\& =4 \frac{25 \mathrm{mV}}{0.25 \mathrm{~mA}} \\& =400 \Omega\end{aligned}
This will reduce the differential gain by the same factor of 5 , thus
vovid=805=16 V/V\frac{v_{o}}{v_{i d}}=\frac{80}{5}=16 \mathrm{~V} / \mathrm{V}
(g)
Acm=(RC2REE)(RCRC)\left|A_{c m}\right|=\left(\frac{R_{C}}{2 R_{E E}}\right)\left(\frac{\triangle R_{C}}{R_{C}}\right)
where
REE=roQ3=VAIC3=500.5=100kΩR_{E E}=\left.r_{o}\right|_{Q_{3}}=\frac{V_{A}}{I_{C 3}}=\frac{50}{0.5}=100 \mathrm{k} \Omega
RCRC=0.02\frac{\triangle R_{C}}{R_{C}}=0.02
Thus,
Acm=82×100×0.02=8×104 V/VCMRR=808×104=105\begin{aligned}\left|A_{c m}\right| & =\frac{8}{2 \times 100} \times 0.02=8 \times 10^{-4} \mathrm{~V} / \mathrm{V} \\\mathrm{CMRR} & =\frac{80}{8 \times 10^{-4}}=10^{5}\end{aligned}
or 100 dB100 \mathrm{~dB} .
(h)
VO=0.25(RC+0.01RC)0.25(RC0.01RC)=0.25×0.02×8=0.04 V=40mVVOS=4080=0.5mV\begin{aligned}\left|V_{O}\right| & =0.25\left(R_{C}+0.01 R_{C}\right)-0.25\left(R_{C}-0.01 R_{C}\right) \\& =0.25 \times 0.02 \times 8=0.04 \mathrm{~V} \\& =40 \mathrm{mV} \\V_{O S} & =\frac{40}{80}=0.5 \mathrm{mV}\end{aligned}
4
   Figure 9.4.1 For the circuit shown in Fig. 9.4.1, neglect base currents in dc calculations and assume that for each transistor  V_{B E}=0.7 \mathrm{~V} . Transistors  Q_{1}  and  Q_{2}  are perfectly matched. Transistor  Q_{3}  has twice the emitter-base junction area of  Q_{4} . (a) For  v_{B 1}=v_{B 2}=0 \mathrm{~V} , design the circuit to establish a dc bias current of  0.1 \mathrm{~mA}  in the collector of each of  Q_{1}  and  Q_{2}  and a dc voltage of  +1 \mathrm{~V}  at the collector of each of  Q_{1}  and  Q_{2} . Specify the values required for  R, R_{1} , and  R_{2} . (b) For  v_{B 1}=v_{i d} / 2  and  v_{B 2}=-v_{i d} / 2 , determine the differential small-signal voltage gain  v_{o d} / v_{i d} . Ignore the Early effect. If  \beta_{1}=\beta_{2}=100 , what is the differential input resistance of the differential amplifier  Q_{1}-Q_{2}  ? (c) If  Q_{3}  has an Early voltage of  100 \mathrm{~V} , find its output resistance and use this result to determine the common-mode gain of the differential amplifier  v_{o d} / v_{i c m} , where  v_{B 1}=v_{B 2}=v_{i c m}  and assuming that each of  R_{1}  and  R_{2}  is accurate to within  \pm 1 \% . What is the resulting CMRR in decibels?
Figure 9.4.1
For the circuit shown in Fig. 9.4.1, neglect base currents in dc calculations and assume that for each transistor VBE=0.7 VV_{B E}=0.7 \mathrm{~V} . Transistors Q1Q_{1} and Q2Q_{2} are perfectly matched. Transistor Q3Q_{3} has twice the emitter-base junction area of Q4Q_{4} .
(a) For vB1=vB2=0 Vv_{B 1}=v_{B 2}=0 \mathrm{~V} , design the circuit to establish a dc bias current of 0.1 mA0.1 \mathrm{~mA} in the collector of each of Q1Q_{1} and Q2Q_{2} and a dc voltage of +1 V+1 \mathrm{~V} at the collector of each of Q1Q_{1} and Q2Q_{2} . Specify the values required for R,R1R, R_{1} , and R2R_{2} .
(b) For vB1=vid/2v_{B 1}=v_{i d} / 2 and vB2=vid/2v_{B 2}=-v_{i d} / 2 , determine the differential small-signal voltage gain vod/vidv_{o d} / v_{i d} . Ignore the Early effect. If β1=β2=100\beta_{1}=\beta_{2}=100 , what is the differential input resistance of the differential amplifier Q1Q2Q_{1}-Q_{2} ?
(c) If Q3Q_{3} has an Early voltage of 100 V100 \mathrm{~V} , find its output resistance and use this result to determine the common-mode gain of the differential amplifier vod/vicmv_{o d} / v_{i c m} , where vB1=vB2=vicmv_{B 1}=v_{B 2}=v_{i c m} and assuming that each of R1R_{1} and R2R_{2} is accurate to within ±1%\pm 1 \% . What is the resulting CMRR in decibels?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
5
    Figure 9.5.1 (a) For the circuit in Fig. 9.5.1 (refer to Figure above), assuming  \left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=\infty  (i.e., ignoring base currents), and  V_{A}=\infty  (i.e., ignoring the Early effect), find the dc values of the labelled currents and voltages. (b) If the bases of  Q_{6}  and  Q_{7}  are disconnected from ground and a differential input signal  v_{i d}  is applied, find the differential gain if the output is taken between the two collectors. (c) Repeat (b) for the differential amplifier  \left(Q_{11}, Q_{12}\right) .

Figure 9.5.1
(a) For the circuit in Fig. 9.5.1 (refer to Figure above), assuming VBE=0.7 V,β=\left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=\infty (i.e., ignoring base currents), and VA=V_{A}=\infty (i.e., ignoring the Early effect), find the dc values of the labelled currents and voltages.
(b) If the bases of Q6Q_{6} and Q7Q_{7} are disconnected from ground and a differential input signal vidv_{i d} is applied, find the differential gain if the output is taken between the two collectors.
(c) Repeat (b) for the differential amplifier (Q11,Q12)\left(Q_{11}, Q_{12}\right) .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
6
   Figure 9.6.1 In the circuit of Fig. 9.6.1, all transistors are matched with  k_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=0.4 \mathrm{~V} , and  \left|V_{A}\right|=10 \mathrm{~V} . (a) If  v_{G 1}=v_{G 2}=0 \mathrm{~V} , find the dc bias current in each of the four transistors  Q_{1}, Q_{2}, Q_{3} , and  Q_{4} , as well as the overdrive voltage  \left|V_{O V}\right|  for each. Ignore the Early effect. Also, find the de voltage at the sources of  Q_{1}  and  Q_{2} , as well as the de voltage at the gates of  Q_{3}  and  Q_{4} . (b) Find  g_{m}  of each of  Q_{1}  and  Q_{2} , and determine  r_{o}  of each of  Q_{2}  and  Q_{4} . (c) If  v_{G 1}=+v_{i d} / 2  and  v_{G 2}=-v_{i d} / 2 , find the differential gain  A_{d}=v_{o} / v_{i d} . (d) Find the output resistance  R_{S S}  of the biascurrent source  Q_{5}  and use it to determine the common mode gain  A_{c m}  in the case  v_{G 1}=v_{G 2}=   v_{i \mathrm{~cm}} . Also, find the CMRR in  \mathrm{dB} . (e) If it is required to increase the CMRR by  6 \mathrm{~dB} , by what factor should the channel length of  Q_{5}  be changed?
Figure 9.6.1
In the circuit of Fig. 9.6.1, all transistors are matched with kn=kp=2 mA/V2,Vt=0.4 Vk_{n}=k_{p}=2 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=0.4 \mathrm{~V} , and VA=10 V\left|V_{A}\right|=10 \mathrm{~V} .
(a) If vG1=vG2=0 Vv_{G 1}=v_{G 2}=0 \mathrm{~V} , find the dc bias current in each of the four transistors Q1,Q2,Q3Q_{1}, Q_{2}, Q_{3} , and Q4Q_{4} , as well as the overdrive voltage VOV\left|V_{O V}\right| for each. Ignore the Early effect. Also, find the de voltage at the sources of Q1Q_{1} and Q2Q_{2} , as well as the de voltage at the gates of Q3Q_{3} and Q4Q_{4} .
(b) Find gmg_{m} of each of Q1Q_{1} and Q2Q_{2} , and determine ror_{o} of each of Q2Q_{2} and Q4Q_{4} .
(c) If vG1=+vid/2v_{G 1}=+v_{i d} / 2 and vG2=vid/2v_{G 2}=-v_{i d} / 2 , find the differential gain Ad=vo/vidA_{d}=v_{o} / v_{i d} .
(d) Find the output resistance RSSR_{S S} of the biascurrent source Q5Q_{5} and use it to determine the common mode gain AcmA_{c m} in the case vG1=vG2=v_{G 1}=v_{G 2}= vi cmv_{i \mathrm{~cm}} . Also, find the CMRR in dB\mathrm{dB} .
(e) If it is required to increase the CMRR by 6 dB6 \mathrm{~dB} , by what factor should the channel length of Q5Q_{5} be changed?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
7
    Figure 9.7.1 The current-mirror-loaded CMOS amplifier shown in Fig. 9.7.1 is fabricated in a  0.5-\mu \mathrm{m}  technology for which  V_{t n}=-V_{t p}=0.5 \mathrm{~V},\left|V_{A}\right|=20 \mathrm{~V} , and  \mu_{n} C_{o x}=2 \mu_{p} C_{o x}=200 \mu \mathrm{A} / \mathrm{V}^{2} . Transistors  Q_{1}  and  Q_{2}  are matched,  Q_{3}  and  Q_{4}  are matched, and  Q_{5}  and  Q_{6}  are matched. The  (W / L)  ratios of all devices are selected so that all operate at the same  \left|V_{O V}\right| . (a) Starting from  \left|A_{d}\right|=g_{m 1}\left(r_{o 2} \| r_{o 4}\right)  and  \left|A_{c m}\right|=1 / 2 g_{m 3} R_{S S}  show that  \left|A_{d}\right|=\left|V_{A}\right| /\left|V_{O V}\right|  and  \mathrm{CMRR}=2\left(\left|V_{A}\right| /\left|V_{O V}\right|\right)^{2}  (b) To obtain a differential gain of  40 \mathrm{~V} / \mathrm{V} , find the overdrive voltage  \left|V_{O V}\right|  at which the transistors should be operated. Also, find the resulting CMRR in  \mathrm{dB} . (c) Using a reference current  I_{\mathrm{REF}}=200 \mu \mathrm{A} , find the  (W / L)  required for each of the six transistors. (d) With both input terminals grounded, what dc voltage occurs at the output (neglecting the Early effect)? Hence, compute the systematic input offset voltage. (e) Find the input common-mode range. (f) If the input differential signal is riding on an input common-mode voltage of  0 \mathrm{~V} , what is the maximum allowable output voltage swing in both directions? Hence, find the peak-to-peak amplitude of the largest sine-wave signal that can be applied between the two input terminals (without dc offset compensation).

Figure 9.7.1
The current-mirror-loaded CMOS amplifier shown in Fig. 9.7.1 is fabricated in a 0.5μm0.5-\mu \mathrm{m} technology for which Vtn=Vtp=0.5 V,VA=20 VV_{t n}=-V_{t p}=0.5 \mathrm{~V},\left|V_{A}\right|=20 \mathrm{~V} , and μnCox=2μpCox=200μA/V2\mu_{n} C_{o x}=2 \mu_{p} C_{o x}=200 \mu \mathrm{A} / \mathrm{V}^{2} . Transistors Q1Q_{1} and Q2Q_{2} are matched, Q3Q_{3} and Q4Q_{4} are matched, and Q5Q_{5} and Q6Q_{6} are matched. The (W/L)(W / L) ratios of all devices are selected so that all operate at the same VOV\left|V_{O V}\right| .
(a) Starting from
Ad=gm1(ro2ro4)\left|A_{d}\right|=g_{m 1}\left(r_{o 2} \| r_{o 4}\right)
and
Acm=1/2gm3RSS\left|A_{c m}\right|=1 / 2 g_{m 3} R_{S S}
show that
Ad=VA/VOV\left|A_{d}\right|=\left|V_{A}\right| /\left|V_{O V}\right|
and
CMRR=2(VA/VOV)2\mathrm{CMRR}=2\left(\left|V_{A}\right| /\left|V_{O V}\right|\right)^{2}
(b) To obtain a differential gain of 40 V/V40 \mathrm{~V} / \mathrm{V} , find the overdrive voltage VOV\left|V_{O V}\right| at which the transistors should be operated. Also, find the resulting CMRR in dB\mathrm{dB} .
(c) Using a reference current IREF=200μAI_{\mathrm{REF}}=200 \mu \mathrm{A} , find the (W/L)(W / L) required for each of the six transistors.
(d) With both input terminals grounded, what dc voltage occurs at the output (neglecting the Early effect)? Hence, compute the systematic input offset voltage.
(e) Find the input common-mode range.
(f) If the input differential signal is riding on an input common-mode voltage of 0 V0 \mathrm{~V} , what is the maximum allowable output voltage swing in both directions? Hence, find the peak-to-peak amplitude of the largest sine-wave signal that can be applied between the two input terminals (without dc offset compensation).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
8
    Figure 9.8.1 The two-stage CMOS op amp shown in Fig. 9.8.1 utilizes eight transistors,  Q_{1}  to  Q_{8} , all having the same channel length  L . Transistors  Q_{1}  and  Q_{2}  are matched and  Q_{3}  and  Q_{4}  are matched. For the process technology utilized,  \mu_{n}=4 \mu_{p} . All transistors have the same Early voltage,  \left|V_{A}\right| . (a) If the width of each of  Q_{1}  and  Q_{2}  is denoted  W , find the width of each of  Q_{3}  to  Q_{8}  in terms of  W  so that all transistors operate at equal overdrive voltages, and that  Q_{6}  conducts a de bias current equal to that supplied by  Q_{7} . Neglect the Early effect for this part. (b) Derive an expression for the overall voltage gain in terms of  \left|V_{A}\right|  and  \left|V_{O V}\right| . Hence, determine the required value of  \left|V_{O V}\right|  for the case  \left|V_{A}\right|=10   \mathrm{V}  and the voltage gain required is  2500 \mathrm{~V} / \mathrm{V} .

Figure 9.8.1
The two-stage CMOS op amp shown in Fig. 9.8.1 utilizes eight transistors, Q1Q_{1} to Q8Q_{8} , all having the same channel length LL . Transistors Q1Q_{1} and Q2Q_{2} are matched and Q3Q_{3} and Q4Q_{4} are matched. For the process technology utilized, μn=4μp\mu_{n}=4 \mu_{p} . All transistors have the same Early voltage, VA\left|V_{A}\right| .
(a) If the width of each of Q1Q_{1} and Q2Q_{2} is denoted WW , find the width of each of Q3Q_{3} to Q8Q_{8} in terms of WW so that all transistors operate at equal overdrive voltages, and that Q6Q_{6} conducts a de bias current equal to that supplied by Q7Q_{7} . Neglect the Early effect for this part.
(b) Derive an expression for the overall voltage gain in terms of VA\left|V_{A}\right| and VOV\left|V_{O V}\right| . Hence, determine the required value of VOV\left|V_{O V}\right| for the case VA=10\left|V_{A}\right|=10 V\mathrm{V} and the voltage gain required is 2500 V/V2500 \mathrm{~V} / \mathrm{V} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
9
    Figure 9.9.1 The two-stage CMOS op amp shown in Fig. 9.9.1 is fabricated in a  0.18-\mu \mathrm{m}  technology having  k_{n}^{\prime}=   4 k_{p}^{\prime}=400 \mu \mathrm{A} / \mathrm{V}^{2} , and  V_{t n}=-V_{t p}=0.4 \mathrm{~V} . (a) With  A  and  B  grounded, perform a de design that will result in each of  Q_{1}, Q_{2}, Q_{3} , and  Q_{4}  conducting a drain current of  100 \mu \mathrm{A} , and each of  Q_{5}, Q_{6} , and  Q_{7}  conducting a drain current of  200 \mu \mathrm{A} . Design so that all transistors operate at a  0.2-\mathrm{V}  overdrive voltage. Neglect the Early effect. Specify the  W / L  ratio required for each MOSFET. Present your results in a table. What is the dc voltage at the output (ideally)? (b) Find the input common-mode range. (c) Find the allowable range of the output voltage. (d) With  v_{A}=v_{i d} / 2  and  v_{B}=-v_{i d} / 2 , find the voltage gain  v_{O} / v_{i d} . Assume that the Early voltage is  \left|V_{A}\right|=5 \mathrm{~V} .

Figure 9.9.1
The two-stage CMOS op amp shown in Fig. 9.9.1 is fabricated in a 0.18μm0.18-\mu \mathrm{m} technology having kn=k_{n}^{\prime}= 4kp=400μA/V24 k_{p}^{\prime}=400 \mu \mathrm{A} / \mathrm{V}^{2} , and Vtn=Vtp=0.4 VV_{t n}=-V_{t p}=0.4 \mathrm{~V} .
(a) With AA and BB grounded, perform a de design that will result in each of Q1,Q2,Q3Q_{1}, Q_{2}, Q_{3} , and Q4Q_{4} conducting a drain current of 100μA100 \mu \mathrm{A} , and each of Q5,Q6Q_{5}, Q_{6} , and Q7Q_{7} conducting a drain current of 200μA200 \mu \mathrm{A} . Design so that all transistors operate at a 0.2V0.2-\mathrm{V} overdrive voltage. Neglect the Early effect. Specify the W/LW / L ratio required for each MOSFET.
Present your results in a table. What is the dc voltage at the output (ideally)?
(b) Find the input common-mode range.
(c) Find the allowable range of the output voltage.
(d) With vA=vid/2v_{A}=v_{i d} / 2 and vB=vid/2v_{B}=-v_{i d} / 2 , find the voltage gain vO/vidv_{O} / v_{i d} . Assume that the Early voltage is VA=5 V\left|V_{A}\right|=5 \mathrm{~V} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
10
Refer to Figure 9.10.1 below.
 Refer to Figure 9.10.1 below.    Figure 9.10.1 Note: Neglect the Early effect; that is, assume  r_{O}=\infty . Assume  \left|V_{B E}\right|=0.7 \mathrm{~V} . (a) For  V_{A}=V_{B}=0 \mathrm{~V}  and neglecting all base currents, design the circuit of Fig. 9.10.1 so that each of  Q_{1}  and  Q_{2}  operates at a dc bias current of  0.25 \mathrm{~mA}, V_{C}=V_{D}=+10 \mathrm{~V}, V_{E}=0 \mathrm{~V} , and  Q_{5}  operates at a dc bias current of  3 \mathrm{~mA} . Specify the dc bias current at which each of  Q_{3}  and  Q_{4}  will be operating and give the required value of  R_{1}, R_{2} ,  R_{3}, R_{4} , and  R_{5} . (b) If  \beta=99 , what must the value of each of the two resistances labeled  R_{e}  be so as to obtain an input differential resistance of  40 \mathrm{k} \Omega  ? (c) Find the differential voltage gain of the input stage,  Q_{1}-Q_{2} . (d) Find the voltage gain of the second stage,  Q_{3}-Q_{4} . (e) Find the voltage gain of the output stage,  Q_{5} . (f) Find the overall voltage gain,  v_{e} /\left(v_{b}-v_{a}\right) .

Figure 9.10.1
Note: Neglect the Early effect; that is, assume rO=r_{O}=\infty . Assume VBE=0.7 V\left|V_{B E}\right|=0.7 \mathrm{~V} .
(a) For VA=VB=0 VV_{A}=V_{B}=0 \mathrm{~V} and neglecting all base currents, design the circuit of Fig. 9.10.1 so that each of Q1Q_{1} and Q2Q_{2} operates at a dc bias current of 0.25 mA,VC=VD=+10 V,VE=0 V0.25 \mathrm{~mA}, V_{C}=V_{D}=+10 \mathrm{~V}, V_{E}=0 \mathrm{~V} , and Q5Q_{5} operates at a dc bias current of 3 mA3 \mathrm{~mA} . Specify the dc bias current at which each of Q3Q_{3} and Q4Q_{4} will be operating and give the required value of R1,R2R_{1}, R_{2} , R3,R4R_{3}, R_{4} , and R5R_{5} .
(b) If β=99\beta=99 , what must the value of each of the two resistances labeled ReR_{e} be so as to obtain an input differential resistance of 40kΩ40 \mathrm{k} \Omega ?
(c) Find the differential voltage gain of the input stage, Q1Q2Q_{1}-Q_{2} .
(d) Find the voltage gain of the second stage, Q3Q4Q_{3}-Q_{4} .
(e) Find the voltage gain of the output stage, Q5Q_{5} .
(f) Find the overall voltage gain, ve/(vbva)v_{e} /\left(v_{b}-v_{a}\right) .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.