Deck 10: Series

ملء الشاشة (f)
exit full mode
سؤال
Use the nth term test to investigate the series n=1n+1n+2\sum_{n=1}^{\infty} \frac{n+1}{n+2} .

A) The series converges.
B) limnn+1n+2=10\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 \neq 0 , so the series diverges.
C) limnn+1n+2=0\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=0 , so the test fails to tell us anything about the series.
D) limnn+1n+2=1\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 , so the test fails to tell us anything about the series.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Use the integral test to investigate the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} .

A) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the series n=11n3/2=2\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}=2 .
B) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
C) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} diverges.
D) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the test fails to tell us anything about the series.
سؤال
Use the ratio test to investigate the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} .

A) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} diverges.
B) limn2n+1(n+1)!2nn!=limn2n+1=0<1\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow} \frac{2}{n+1}=0<1 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
C) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the ratio test fails to tell us anything about the series.
D) limn2nn!2n+1(n+1)!=limnn+12=\lim _{n \rightarrow \infty} \frac{\frac{2 n}{n !}}{\frac{2^{n+1}}{(n+1) !}}=\lim _{n \rightarrow \infty} \frac{n+1}{2}=\infty , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
سؤال
Investigate the alternating series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} .

A) The p- series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges absolutely.
B) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges conditionally.
C) The ratio test gives r=1\mathrm{r}=1 , so the series n=1(1)n+1n2\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}+1}}{\mathrm{n}^{2}} diverges.
D) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} diverges.
سؤال
Find the interval of convergence of the power series n=1xnn\sum_{n=1}^{\infty} \frac{x^{n}}{n} .

A)  <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)  <div style=padding-top: 35px>
B) 1x<1-1 \leq x<1
C) 1x1-1 \leq x \leq 1
D) <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)  <div style=padding-top: 35px>
سؤال
Find a Maclaurin series expansion forf(x) =e3x=e^{3 x} .

A) n=0xnn!=1+x+x22!+x33!+\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots
B) n=0(3x)nn!=1+3x+9x22!+27x33!+\sum_{n=0}^{\infty} \frac{(3 \mathrm{x})^{n}}{n !}=1+3 \mathrm{x}+\frac{9 \mathrm{x}^{2}}{2 !}+\frac{27 \mathrm{x}^{3}}{3 !}+\ldots
C) n=0(3x)n(3n)!=1+3x3!+9x26!+27x39!+\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(3 n) !}=1+\frac{3 x}{3 !}+\frac{9 x^{2}}{6 !}+\frac{27 x^{3}}{9 !}+\ldots
D) n=03xnn!=3+3x+3x22!+3x33!+\sum_{n=0}^{\infty} \frac{3 x^{n}}{n !}=3+3 x+\frac{3 x^{2}}{2 !}+\frac{3 x^{3}}{3 !}+\ldots
سؤال
Find a Taylor series expansion for f(x)=sinx\mathrm{f}(\mathrm{x})=\sin \mathrm{x} with a=π\mathrm{a}=\pi .

A) n=0(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!+(xπ)55!+(xπ)77!+\sum_{n=0}^{\infty} \frac{(x-\pi)^{2 n+1}}{(2 n+1) !}=(x-\pi)+\frac{(x-\pi)^{3}}{3 !}+\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}+\ldots
B) n=0(1)n(xπ)2n+1(2n)!=1(xπ)22!+(xπ)44!(xπ)66!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}) !}=1-\frac{(\mathrm{x}-\pi)^{2}}{2 !}+\frac{(\mathrm{x}-\pi)^{4}}{4 !}-\frac{(\mathrm{x}-\pi)^{6}}{6 !}+\ldots
C) n=0(1)n(xπ)2n+1(2n+1)!=(xπ)(xπ)33!+(xπ)55!(xπ)77!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}+1) !}=(\mathrm{x}-\pi)-\frac{(\mathrm{x}-\pi)^{3}}{3 !}+\frac{(\mathrm{x}-\pi)^{5}}{5 !}-\frac{(\mathrm{x}-\pi)^{7}}{7 !}+\ldots
D) n=0(1)n+1(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!(xπ)55!+(xπ)77!\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-\pi)^{2 n+1}}{(2 n+1) !}=-(x-\pi)+\frac{(x-\pi)^{3}}{3 !}-\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}-\ldots
سؤال
Use the first four non- zero terms of the Maclaurin series for f(x)=exf(x)=e^{x} to estimate e0.3e^{-0.3} .

A) .7405
B).7399
C) .7407
D).7402
سؤال
Find the Fourier series for the square wave (of period 2π2 \pi ) given by f(x)={1,πx<01,0xπ\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-1, & -\pi \leq \mathrm{x}<0 \\ 1, & 0 \leq \mathrm{x} \leq \pi\end{array}\right.

A) n=02πsin[(2n+1)x]2n+1=2π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
B) n=04πsin[(2n+1)x]2n+1=4π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
C) n=04πcos[(2n+1)x]2n+1=4π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
D) n=02πcos[(2n+1)x]2n+1=2π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
سؤال
For the problems below, determine whether each series converges or diverges.

- 1+18+127++1n3+1+\frac{1}{8}+\frac{1}{27}+\ldots+\frac{1}{n^{3}}+\ldots
سؤال
For the problems below, determine whether each series converges or diverges.

- n=11(3n1)2\sum_{n=1}^{\infty} \frac{1}{(3 n-1)^{2}}
سؤال
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n+4n5n\sum_{n=1}^{\infty} \frac{\mathrm{n}+4}{\mathrm{n} \cdot 5^{\mathrm{n}}}
سؤال
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n2n3+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}
سؤال
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=2(1)nsinnn2\sum_{n=2}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}
سؤال
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+1n3n3+1\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{\mathrm{n}^{3}}{\mathrm{n}^{3}+1}
سؤال
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+11n3\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\sqrt[3]{\mathrm{n}}}
سؤال
For the problems below, find the interval of convergences of each series.

- n=1(6x)n(3n)!\sum_{n=1}^{\infty} \frac{(6 x)^{n}}{(3 n) !}
سؤال
For the problems below, find the interval of convergences of each series.

-18 n=1(1)n(x5)nn3\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}}(\mathrm{x}-5)^{\mathrm{n}}}{\sqrt[3]{\mathrm{n}}}
سؤال
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=e2xf(x)=e^{2 x}
سؤال
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=sin3xf(x)=\sin 3 x
سؤال
Find a Maclaurin series expansion for f(x)=ex1xf(x)=\frac{e^{x}-1}{x} .
سؤال
Evaluate 01cosxdx\int_{0}^{1} \cos \sqrt{\mathrm{x}} \mathrm{dx} . (Use three non-zero terms.) Round to four significant digits.
سؤال
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=2x3,a=2f(x)=\frac{2}{x^{3}}, a=2
سؤال
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=cosx,a=π4f(x)=\cos x, a=\frac{\pi}{4}
سؤال
Calculate the value of e1.2\mathrm{e}^{1.2} using the first four non- zero terms of a Taylor series. Round to five significant digits.
سؤال
Find the Fourier series expansion of f(x)=3x,0x<2πf(x)=3 x, 0 \leq x<2 \pi . Write at least four terms.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/26
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 10: Series
1
Use the nth term test to investigate the series n=1n+1n+2\sum_{n=1}^{\infty} \frac{n+1}{n+2} .

A) The series converges.
B) limnn+1n+2=10\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 \neq 0 , so the series diverges.
C) limnn+1n+2=0\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=0 , so the test fails to tell us anything about the series.
D) limnn+1n+2=1\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 , so the test fails to tell us anything about the series.
limnn+1n+2=10\lim _{\mathrm{n} \rightarrow} \frac{\mathrm{n}+1}{\mathrm{n}+2}=1 \neq 0 , so the series diverges.
2
Use the integral test to investigate the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} .

A) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the series n=11n3/2=2\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}=2 .
B) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
C) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} diverges.
D) The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x=2 , so the test fails to tell us anything about the series.
The integral 11x3/2dx=2\int_{1}^{\infty} \frac{1}{\mathrm{x}^{3 / 2}} \mathrm{dx}=2 , so the series n=11n3/2\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{3 / 2}} converges.
3
Use the ratio test to investigate the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} .

A) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} diverges.
B) limn2n+1(n+1)!2nn!=limn2n+1=0<1\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow} \frac{2}{n+1}=0<1 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
C) limn2n+1(n+1)!2nn!=limn2n+1=0\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 , so the ratio test fails to tell us anything about the series.
D) limn2nn!2n+1(n+1)!=limnn+12=\lim _{n \rightarrow \infty} \frac{\frac{2 n}{n !}}{\frac{2^{n+1}}{(n+1) !}}=\lim _{n \rightarrow \infty} \frac{n+1}{2}=\infty , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
limn2n+1(n+1)!2nn!=limn2n+1=0<1\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1) !}}{\frac{2 n}{n !}}=\lim _{n \rightarrow} \frac{2}{n+1}=0<1 , so the series n=12nn!\sum_{n=1}^{\infty} \frac{2^{n}}{n !} converges.
4
Investigate the alternating series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} .

A) The p- series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} converges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges absolutely.
B) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} converges conditionally.
C) The ratio test gives r=1\mathrm{r}=1 , so the series n=1(1)n+1n2\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}+1}}{\mathrm{n}^{2}} diverges.
D) The p-series n=11n2\sum_{n=1}^{\infty} \frac{1}{n^{2}} diverges, so the series n=1(1)n+1n2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} diverges.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find the interval of convergence of the power series n=1xnn\sum_{n=1}^{\infty} \frac{x^{n}}{n} .

A)  <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)
B) 1x<1-1 \leq x<1
C) 1x1-1 \leq x \leq 1
D) <strong>Find the interval of convergence of the power series  \sum_{n=1}^{\infty} \frac{x^{n}}{n} .</strong> A)   B)  -1 \leq x<1  C)  -1 \leq x \leq 1  D)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find a Maclaurin series expansion forf(x) =e3x=e^{3 x} .

A) n=0xnn!=1+x+x22!+x33!+\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots
B) n=0(3x)nn!=1+3x+9x22!+27x33!+\sum_{n=0}^{\infty} \frac{(3 \mathrm{x})^{n}}{n !}=1+3 \mathrm{x}+\frac{9 \mathrm{x}^{2}}{2 !}+\frac{27 \mathrm{x}^{3}}{3 !}+\ldots
C) n=0(3x)n(3n)!=1+3x3!+9x26!+27x39!+\sum_{n=0}^{\infty} \frac{(3 x)^{n}}{(3 n) !}=1+\frac{3 x}{3 !}+\frac{9 x^{2}}{6 !}+\frac{27 x^{3}}{9 !}+\ldots
D) n=03xnn!=3+3x+3x22!+3x33!+\sum_{n=0}^{\infty} \frac{3 x^{n}}{n !}=3+3 x+\frac{3 x^{2}}{2 !}+\frac{3 x^{3}}{3 !}+\ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find a Taylor series expansion for f(x)=sinx\mathrm{f}(\mathrm{x})=\sin \mathrm{x} with a=π\mathrm{a}=\pi .

A) n=0(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!+(xπ)55!+(xπ)77!+\sum_{n=0}^{\infty} \frac{(x-\pi)^{2 n+1}}{(2 n+1) !}=(x-\pi)+\frac{(x-\pi)^{3}}{3 !}+\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}+\ldots
B) n=0(1)n(xπ)2n+1(2n)!=1(xπ)22!+(xπ)44!(xπ)66!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}) !}=1-\frac{(\mathrm{x}-\pi)^{2}}{2 !}+\frac{(\mathrm{x}-\pi)^{4}}{4 !}-\frac{(\mathrm{x}-\pi)^{6}}{6 !}+\ldots
C) n=0(1)n(xπ)2n+1(2n+1)!=(xπ)(xπ)33!+(xπ)55!(xπ)77!+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\mathrm{x}-\pi)^{2 \mathrm{n}+1}}{(2 \mathrm{n}+1) !}=(\mathrm{x}-\pi)-\frac{(\mathrm{x}-\pi)^{3}}{3 !}+\frac{(\mathrm{x}-\pi)^{5}}{5 !}-\frac{(\mathrm{x}-\pi)^{7}}{7 !}+\ldots
D) n=0(1)n+1(xπ)2n+1(2n+1)!=(xπ)+(xπ)33!(xπ)55!+(xπ)77!\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-\pi)^{2 n+1}}{(2 n+1) !}=-(x-\pi)+\frac{(x-\pi)^{3}}{3 !}-\frac{(x-\pi)^{5}}{5 !}+\frac{(x-\pi)^{7}}{7 !}-\ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
8
Use the first four non- zero terms of the Maclaurin series for f(x)=exf(x)=e^{x} to estimate e0.3e^{-0.3} .

A) .7405
B).7399
C) .7407
D).7402
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the Fourier series for the square wave (of period 2π2 \pi ) given by f(x)={1,πx<01,0xπ\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-1, & -\pi \leq \mathrm{x}<0 \\ 1, & 0 \leq \mathrm{x} \leq \pi\end{array}\right.

A) n=02πsin[(2n+1)x]2n+1=2π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
B) n=04πsin[(2n+1)x]2n+1=4π[sinx+sin3x3+sin5x5+sin7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\sin [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\sin x+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\ldots\right]
C) n=04πcos[(2n+1)x]2n+1=4π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{4}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{4}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
D) n=02πcos[(2n+1)x]2n+1=2π[cosx+cos3x3+cos5x5+cos7x7+]\sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{\cos [(2 n+1) x]}{2 n+1}=\frac{2}{\pi}\left[\cos x+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\frac{\cos 7 x}{7}+\ldots\right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
10
For the problems below, determine whether each series converges or diverges.

- 1+18+127++1n3+1+\frac{1}{8}+\frac{1}{27}+\ldots+\frac{1}{n^{3}}+\ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
11
For the problems below, determine whether each series converges or diverges.

- n=11(3n1)2\sum_{n=1}^{\infty} \frac{1}{(3 n-1)^{2}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
12
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n+4n5n\sum_{n=1}^{\infty} \frac{\mathrm{n}+4}{\mathrm{n} \cdot 5^{\mathrm{n}}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
13
For the problems below, use either the ratio test or the integral test to determine whether each series converges or diverges.

- n=1n2n3+1\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
14
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=2(1)nsinnn2\sum_{n=2}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
15
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+1n3n3+1\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{\mathrm{n}^{3}}{\mathrm{n}^{3}+1}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
16
For the problems below, determine whether each alternating series converges or diverges. If it converges, find whether it converges absolutely or converges conditionally.

- n=1(1)n+11n3\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\sqrt[3]{\mathrm{n}}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
17
For the problems below, find the interval of convergences of each series.

- n=1(6x)n(3n)!\sum_{n=1}^{\infty} \frac{(6 x)^{n}}{(3 n) !}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
18
For the problems below, find the interval of convergences of each series.

-18 n=1(1)n(x5)nn3\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}}(\mathrm{x}-5)^{\mathrm{n}}}{\sqrt[3]{\mathrm{n}}}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
19
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=e2xf(x)=e^{2 x}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
20
For the problems below, find a Maclaurin series expansion for each function. Include at least thereetarms.

- f(x)=sin3xf(x)=\sin 3 x
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
21
Find a Maclaurin series expansion for f(x)=ex1xf(x)=\frac{e^{x}-1}{x} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
22
Evaluate 01cosxdx\int_{0}^{1} \cos \sqrt{\mathrm{x}} \mathrm{dx} . (Use three non-zero terms.) Round to four significant digits.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
23
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=2x3,a=2f(x)=\frac{2}{x^{3}}, a=2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
24
For the problems below, find the Taylor series expansion for each function for the given value of a. Give at least three terms.

- f(x)=cosx,a=π4f(x)=\cos x, a=\frac{\pi}{4}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
25
Calculate the value of e1.2\mathrm{e}^{1.2} using the first four non- zero terms of a Taylor series. Round to five significant digits.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the Fourier series expansion of f(x)=3x,0x<2πf(x)=3 x, 0 \leq x<2 \pi . Write at least four terms.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 26 في هذه المجموعة.