Deck 14: Using Designs With More Than One Independent Variable and Two-Way Between-Subjects Anova

ملء الشاشة (f)
exit full mode
سؤال
In a two-way factorial ANOVA, the formula for calculating SSTotal is:

A) (XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .

B) Σ(XXˉg)2 \quad \Sigma\left(X-\bar{X}_{g}\right)^{2} .

C) Σ[(XˉgXˉG)2n] \quad \Sigma\left[\left(\bar{X}_{g}-\bar{X}_{\mathrm{G}}\right)^{2} n\right] .

D) Σ[(XˉgXˉG)2] \quad \Sigma\left[\left(\bar{X}_{g}-\bar{X}_{\mathrm{G}}\right)^{2}\right] .
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
In a two-way factorial ANOVA, the formula for calculating SSFactor A is:

A) Σ(XXˉG)2 \quad \Sigma\left(X-\bar{X}_{G}\right)^{2} .

B) Σ(XXˉg)2 \quad \Sigma\left(X-\bar{X}_{g}\right)^{2} .

C) Σ[(XˉAXˉG)2nA] \quad \Sigma\left[\left(\bar{X}_{\mathrm{A}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{A}}\right] .

D) Σ[(XˉAXˉg)2] \quad \Sigma\left[\left(\bar{X}_{A}-\bar{X}_{\mathrm{g}}\right)^{2}\right] .
سؤال
In a two-way factorial ANOVA, the formula for calculating SSFactor B is:

A) (XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .

B) Σ(XXˉg)2 \quad \Sigma\left(X-\bar{X}_{g}\right)^{2} .

C) Σ[(XˉBXˉG)2nB] \quad \Sigma\left[\left(\bar{X}_{\mathrm{B}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{B}}\right] .

D) Σ[(XˉBXˉg)2] \quad \Sigma\left[\left(\bar{X}_{B}-\bar{X}_{\mathrm{g}}\right)^{2}\right] .
سؤال
In a two-way factorial ANOVA, the formula for calculating SSA×B is:

A) (XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .

B) [Σ(XˉCXˉG)2nC]SSASSB \quad\left[\Sigma\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{C}}\right]-S S_{\mathrm{A}}-S S_{\mathrm{B}}

C) Σ[(XˉAXˉG)2nB] \quad \Sigma\left[\left(\bar{X}_{\mathrm{A}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{B}}\right] .

D) [Σ(XˉCXˉG)2nC] \quad\left[\Sigma\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{C}}\right] .
سؤال
In a two-way factorial ANOVA, the formula for calculating SSError is:

A) Σ(XXˉC)2 \quad \Sigma\left(X-\bar{X}_{\mathrm{C}}\right)^{2} .

B) Σ(XXˉC)2SSS \quad \Sigma\left(X-\bar{X}_{\mathrm{C}}\right)^{2}-S S_{S} .

C) Σ[(XˉCXˉG)2n]SSS \Sigma\left[\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2} n\right]-S S_{S} .

D) Σ[(XˉCXˉG)2] \quad \Sigma\left[\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2}\right] .
سؤال
In a study with three levels of factor A, three levels of factor B, and 6 subjects in each condition, dfA and dfB would be _____ and _____, respectively.

A) 3; 3
B) 2; 3
C) 3; 2
D) 2; 2
سؤال
In a study with three levels of factor A, three levels of factor B, and 6 subjects in each condition, the dfAxB would be:

A) 9.
B) 6.
C) 4.
D) 3.
سؤال
A two-way ANOVA has _____, and a three-way ANOVA has _____.

A) two independent variables; three dependent variables
B) two dependent variables; three dependent variables
C) two independent variables; three independent variables
D) two dependent variables; three independent variables
سؤال
The following ANOVA table corresponds to an experiment with two IV's; 1) Time of Day (Morning or Afternoon) and 2) Room Temperature (Cool, Normal, or Warm). The productivity level (on a 0-100 scale) of employees during the morning or afternoon is measured in either cool, normal, or warm working conditions. This is a completely between-subjects design. The corresponding means for each group are as follows:
Cool Temp/Afternoon - 55
Cool Temp/Morning - 100
Normal Temp/Afternoon - 60
Normal Temp/Morning - 60
Warm Temp/Afternoon - 50
Warm Temp/Morning - 10
Construct the matrix showing the means in each cell, give the factorial notation, fill in the ANOVA table, draw a graph showing the results, calculate Tukey's HSD if appropriate, and draw conclusions concerning this study. There are 10 subjects in each cell (condition).
The following ANOVA table corresponds to an experiment with two IV's; 1) Time of Day (Morning or Afternoon) and 2) Room Temperature (Cool, Normal, or Warm). The productivity level (on a 0-100 scale) of employees during the morning or afternoon is measured in either cool, normal, or warm working conditions. This is a completely between-subjects design. The corresponding means for each group are as follows: Cool Temp/Afternoon - 55 Cool Temp/Morning - 100 Normal Temp/Afternoon - 60 Normal Temp/Morning - 60 Warm Temp/Afternoon - 50 Warm Temp/Morning - 10 Construct the matrix showing the means in each cell, give the factorial notation, fill in the ANOVA table, draw a graph showing the results, calculate Tukey's HSD if appropriate, and draw conclusions concerning this study. There are 10 subjects in each cell (condition).  <div style=padding-top: 35px>
سؤال
An experiment with two variables each with three levels is a _____ factorial design.

A) 3 × 3
B) 2 × 2
C) 2 × 2 × 2
D) 3 × 3 × 3
سؤال
An experiment with four variables each with two levels is a _____ factorial design.

A) 2 × 4
B) 2 × 2
C) 2 × 2 × 2 × 2
D) 2 × 3 × 4
سؤال
When graphed, a significant interaction will definitely have _____.

A) parallel lines
B) nonparallel lines
C) a crossover interaction
D) none of the above
سؤال
According to the experiment discussed in the text [i.e., 2 IV's: Word Type (Concrete vs. Abstract) and Rehearsal Type (Elaborative vs. Rote) and one DV: % of words recalled correctly], show the graph for the experimental results of NO main effect of rehearsal, NO interaction effect, and NO main effect of Word Type. Hint: First, construct a matrix of what you think the cell means should be. It might help you.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/13
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 14: Using Designs With More Than One Independent Variable and Two-Way Between-Subjects Anova
1
In a two-way factorial ANOVA, the formula for calculating SSTotal is:

A) (XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .

B) Σ(XXˉg)2 \quad \Sigma\left(X-\bar{X}_{g}\right)^{2} .

C) Σ[(XˉgXˉG)2n] \quad \Sigma\left[\left(\bar{X}_{g}-\bar{X}_{\mathrm{G}}\right)^{2} n\right] .

D) Σ[(XˉgXˉG)2] \quad \Sigma\left[\left(\bar{X}_{g}-\bar{X}_{\mathrm{G}}\right)^{2}\right] .
(XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .
2
In a two-way factorial ANOVA, the formula for calculating SSFactor A is:

A) Σ(XXˉG)2 \quad \Sigma\left(X-\bar{X}_{G}\right)^{2} .

B) Σ(XXˉg)2 \quad \Sigma\left(X-\bar{X}_{g}\right)^{2} .

C) Σ[(XˉAXˉG)2nA] \quad \Sigma\left[\left(\bar{X}_{\mathrm{A}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{A}}\right] .

D) Σ[(XˉAXˉg)2] \quad \Sigma\left[\left(\bar{X}_{A}-\bar{X}_{\mathrm{g}}\right)^{2}\right] .
Σ[(XˉAXˉG)2nA] \quad \Sigma\left[\left(\bar{X}_{\mathrm{A}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{A}}\right] .
3
In a two-way factorial ANOVA, the formula for calculating SSFactor B is:

A) (XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .

B) Σ(XXˉg)2 \quad \Sigma\left(X-\bar{X}_{g}\right)^{2} .

C) Σ[(XˉBXˉG)2nB] \quad \Sigma\left[\left(\bar{X}_{\mathrm{B}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{B}}\right] .

D) Σ[(XˉBXˉg)2] \quad \Sigma\left[\left(\bar{X}_{B}-\bar{X}_{\mathrm{g}}\right)^{2}\right] .
Σ[(XˉBXˉG)2nB] \quad \Sigma\left[\left(\bar{X}_{\mathrm{B}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{B}}\right] .
4
In a two-way factorial ANOVA, the formula for calculating SSA×B is:

A) (XXˉG)2 \quad \sum\left(X-\bar{X}_{G}\right)^{2} .

B) [Σ(XˉCXˉG)2nC]SSASSB \quad\left[\Sigma\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{C}}\right]-S S_{\mathrm{A}}-S S_{\mathrm{B}}

C) Σ[(XˉAXˉG)2nB] \quad \Sigma\left[\left(\bar{X}_{\mathrm{A}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{B}}\right] .

D) [Σ(XˉCXˉG)2nC] \quad\left[\Sigma\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2} n_{\mathrm{C}}\right] .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
5
In a two-way factorial ANOVA, the formula for calculating SSError is:

A) Σ(XXˉC)2 \quad \Sigma\left(X-\bar{X}_{\mathrm{C}}\right)^{2} .

B) Σ(XXˉC)2SSS \quad \Sigma\left(X-\bar{X}_{\mathrm{C}}\right)^{2}-S S_{S} .

C) Σ[(XˉCXˉG)2n]SSS \Sigma\left[\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2} n\right]-S S_{S} .

D) Σ[(XˉCXˉG)2] \quad \Sigma\left[\left(\bar{X}_{\mathrm{C}}-\bar{X}_{\mathrm{G}}\right)^{2}\right] .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
6
In a study with three levels of factor A, three levels of factor B, and 6 subjects in each condition, dfA and dfB would be _____ and _____, respectively.

A) 3; 3
B) 2; 3
C) 3; 2
D) 2; 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
7
In a study with three levels of factor A, three levels of factor B, and 6 subjects in each condition, the dfAxB would be:

A) 9.
B) 6.
C) 4.
D) 3.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
8
A two-way ANOVA has _____, and a three-way ANOVA has _____.

A) two independent variables; three dependent variables
B) two dependent variables; three dependent variables
C) two independent variables; three independent variables
D) two dependent variables; three independent variables
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
9
The following ANOVA table corresponds to an experiment with two IV's; 1) Time of Day (Morning or Afternoon) and 2) Room Temperature (Cool, Normal, or Warm). The productivity level (on a 0-100 scale) of employees during the morning or afternoon is measured in either cool, normal, or warm working conditions. This is a completely between-subjects design. The corresponding means for each group are as follows:
Cool Temp/Afternoon - 55
Cool Temp/Morning - 100
Normal Temp/Afternoon - 60
Normal Temp/Morning - 60
Warm Temp/Afternoon - 50
Warm Temp/Morning - 10
Construct the matrix showing the means in each cell, give the factorial notation, fill in the ANOVA table, draw a graph showing the results, calculate Tukey's HSD if appropriate, and draw conclusions concerning this study. There are 10 subjects in each cell (condition).
The following ANOVA table corresponds to an experiment with two IV's; 1) Time of Day (Morning or Afternoon) and 2) Room Temperature (Cool, Normal, or Warm). The productivity level (on a 0-100 scale) of employees during the morning or afternoon is measured in either cool, normal, or warm working conditions. This is a completely between-subjects design. The corresponding means for each group are as follows: Cool Temp/Afternoon - 55 Cool Temp/Morning - 100 Normal Temp/Afternoon - 60 Normal Temp/Morning - 60 Warm Temp/Afternoon - 50 Warm Temp/Morning - 10 Construct the matrix showing the means in each cell, give the factorial notation, fill in the ANOVA table, draw a graph showing the results, calculate Tukey's HSD if appropriate, and draw conclusions concerning this study. There are 10 subjects in each cell (condition).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
10
An experiment with two variables each with three levels is a _____ factorial design.

A) 3 × 3
B) 2 × 2
C) 2 × 2 × 2
D) 3 × 3 × 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
11
An experiment with four variables each with two levels is a _____ factorial design.

A) 2 × 4
B) 2 × 2
C) 2 × 2 × 2 × 2
D) 2 × 3 × 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
12
When graphed, a significant interaction will definitely have _____.

A) parallel lines
B) nonparallel lines
C) a crossover interaction
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
13
According to the experiment discussed in the text [i.e., 2 IV's: Word Type (Concrete vs. Abstract) and Rehearsal Type (Elaborative vs. Rote) and one DV: % of words recalled correctly], show the graph for the experimental results of NO main effect of rehearsal, NO interaction effect, and NO main effect of Word Type. Hint: First, construct a matrix of what you think the cell means should be. It might help you.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 13 في هذه المجموعة.