Deck 11: Specialized Techniques

ملء الشاشة (f)
exit full mode
سؤال
A set of pageviews requested by a single user from a Web server.

A) index page
B) common log
C) session
D) page frame
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
These can be used to help select a best subset of training data.

A) domain resemblance scores
B) class resemblance scores
C) instance typicality scores
D) standard deviation scores
سؤال
A data file that contains session information.

A) cookie
B) pageview
C) page frame
D) common log
سؤال
The automation of Web site adaptation involves creating and deleting

A) index pages
B) cookies
C) pageviews
D) clickstreams
سؤال
A data mining algorithm designed to discover frequently accessed Web pages that occur in the same order.

A) serial miner
B) association rule miner
C) sequence miner
D) decision miner
سؤال
The training phase of a textual data mining process involves

A) removing common words from a dictionary.
B) creating an attribute dictionary.
C) determining whether a document is about the topic under investigation.
D) modifying an initially created attribute dictionary.
سؤال
Which of the following is a fundamental difference between bagging and boosting?

A) Bagging is used for supervised learning. Boosting is used with unsupervised clustering.
B) Bagging gives varying weights to training instances. Boosting gives equal weight to all training instances.
C) Bagging does not take the performance of previously built models into account when building a new model. With boosting each new model is built based upon the results of previous models.
D) With boosting, each model has an equal weight in the classification of new instances. With bagging, individual models are given varying weights. Answers to Chapter 11 Questions
Multiple Choice Questions
سؤال
Which of the following problems is best solved using time-series analysis?

A) Predict whether someone is a likely candidate for having a stroke.
B) Determine if an individual should be given an unsecured loan.
C) Develop a profile of a star athlete.
D) Determine the likelihood that someone will terminate their cell phone contract.
سؤال
At least eighty percent of the time spent on a Web-based data mining project is devoted to this.

A) goal idenficiation
B) data preparation
C) data mining
D) interpretation of results
سؤال
Usage profiles for Web-based personalization contain several

A) pageviews
B) clickstreams
C) cookies
D) session files
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/10
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 11: Specialized Techniques
1
A set of pageviews requested by a single user from a Web server.

A) index page
B) common log
C) session
D) page frame
C
2
These can be used to help select a best subset of training data.

A) domain resemblance scores
B) class resemblance scores
C) instance typicality scores
D) standard deviation scores
C
3
A data file that contains session information.

A) cookie
B) pageview
C) page frame
D) common log
D
4
The automation of Web site adaptation involves creating and deleting

A) index pages
B) cookies
C) pageviews
D) clickstreams
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
5
A data mining algorithm designed to discover frequently accessed Web pages that occur in the same order.

A) serial miner
B) association rule miner
C) sequence miner
D) decision miner
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
6
The training phase of a textual data mining process involves

A) removing common words from a dictionary.
B) creating an attribute dictionary.
C) determining whether a document is about the topic under investigation.
D) modifying an initially created attribute dictionary.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
7
Which of the following is a fundamental difference between bagging and boosting?

A) Bagging is used for supervised learning. Boosting is used with unsupervised clustering.
B) Bagging gives varying weights to training instances. Boosting gives equal weight to all training instances.
C) Bagging does not take the performance of previously built models into account when building a new model. With boosting each new model is built based upon the results of previous models.
D) With boosting, each model has an equal weight in the classification of new instances. With bagging, individual models are given varying weights. Answers to Chapter 11 Questions
Multiple Choice Questions
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
8
Which of the following problems is best solved using time-series analysis?

A) Predict whether someone is a likely candidate for having a stroke.
B) Determine if an individual should be given an unsecured loan.
C) Develop a profile of a star athlete.
D) Determine the likelihood that someone will terminate their cell phone contract.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
9
At least eighty percent of the time spent on a Web-based data mining project is devoted to this.

A) goal idenficiation
B) data preparation
C) data mining
D) interpretation of results
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
10
Usage profiles for Web-based personalization contain several

A) pageviews
B) clickstreams
C) cookies
D) session files
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 10 في هذه المجموعة.