Deck 12: Simple Linear Regression

ملء الشاشة (f)
exit full mode
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the regression sum of squares (SSR)is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the regression sum of squares (SSR)is ________.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the estimated average change in the sales of the chocolate bar if price goes up by $1.00?

A)0.784
B)-3.810
C)161.386
D)-48.193
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the least squares estimate of the Y-intercept is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the least squares estimate of the Y-intercept is ________.
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the total sum of squares (SST)is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the total sum of squares (SST)is ________.
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the coefficient of correlation for these data?

A)0.8854
B)0.7839
C)-0.7839
D)-0.8854
سؤال
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,interpret the estimate of ?0,the Y-intercept of the line.

A)About 95% of the observed service charges fall within $2,700 of the least squares line.
B)There is no practical interpretation since a sales revenue of $0 is a nonsensical value.
C)For every $1 million increase in sales revenue,we expect a service charge to decrease $2,700.
D)All companies will be charged at least $2,700 by the bank.
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,to test whether a change in price will have any impact on average sales,what would be the critical values? Use ? = 0.05.

A)± 2.7765
B)± 3.1634
C)± 2.5706
D)± 3.4954
سؤال
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,interpret the p-value for testing whether ?1 exceeds 0.

A)There is sufficient evidence (at the ? = 0.05)to conclude that sales revenue (X)is a useful linear predictor of service charge (Y).
B)Sales revenue (X)is a poor predictor of service charge (Y).
C)There is insufficient evidence (at the ? = 0.10)to conclude that sales revenue (X)is a useful linear predictor of service charge (Y).
D)For every $1 million increase in sales revenue,we expect a service charge to increase $0.034.
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the prediction for the number of job offers for a person with two cooperative jobs is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the prediction for the number of job offers for a person with two cooperative jobs is ________.
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the estimated slope parameter for the chocolate bar price and sales data?

A)-48.193
B)-3.810
C)161.386
D)0.784
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the percentage of the total variation in chocolate bar sales explained by the regression model?

A)48.19%
B)100%
C)88.54%
D)78.39%
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,to test that the regression coefficient,?1 is not equal to 0,what would be the critical values? Use ? = 0.05.

A)± 2.7765
B)± 3.1634
C)± 2.5706
D)± 3.4954
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the error or residual sum of squares (SSE)is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the error or residual sum of squares (SSE)is ________.
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what percentage of the total variation in chocolate bar sales is explained by prices?

A)78.39%
B)88.54%
C)48.19%
D)100%
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the standard error of the estimate,SYX,for the data?

A)0.885
B)0.784
C)16.299
D)12.650
سؤال
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,interpret the estimate of ?,the standard deviation of the random error term (standard error of the estimate)in the model.

A)About 95% of the observed service charges fall within $130 of the least squares line.
B)About 95% of the observed service charges fall within $65 of the least squares line.
C)About 95% of the observed service charges equal their corresponding predicted values.
D)For every $1 million increase in sales revenue,we expect a service charge to increase $65.
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the coefficient of determination is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the coefficient of determination is ________.
سؤال
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,a 95% confidence interval for ?1 is (15,30).Interpret the interval.

A)At the ? = 0.05 level,there is no evidence of a linear relationship between service charge (Y)and sales revenue (X).
B)We are 95% confident that average service charge (Y)will increase between $15 and $30 for every $1 million increase in sales revenue (X).
C)We are 95% confident that the mean service charge will fall between $15 and $30 per month.
D)We are 95% confident that the sales revenue (X)will increase between $15 and $30 million for every $1 increase in service charge (Y).
سؤال
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,if the price of the chocolate bar is set at $2,the predicted sales will be

A)100.
B)30.
C)65.
D)90.
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the least squares estimate of the slope is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the least squares estimate of the slope is ________.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,set up a scatter diagram.<div style=padding-top: 35px>
Referring to Instruction 12-4,set up a scatter diagram.
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what are the values of the estimated intercept and slope?<div style=padding-top: 35px>
Referring to Instruction 12-10,what are the values of the estimated intercept and slope?
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,set up a scatter diagram.<div style=padding-top: 35px>
Referring to Instruction 12-3,set up a scatter diagram.
سؤال
Instruction 12-6
The following Microsoft Excel tables are obtained when "Score received on an exam (measured in percentage points)" (Y)is regressed on "percentage attendance" (X)for 22 students in a Statistics for Business and Economics course.
 Regression Statistics  Multiple R 0.142620229 R Square 0.02034053 Adjusted R Square 0.028642444 Standard Error 20.25979924 Observations 22 Coefficients  Standard Error  T Stat  P-value  Intercept 39.3902730937.243476591.0576422160.302826622 Attendance 0.3405835730.528524520.6444044890.526635689\begin{array}{l}\begin{array} { | l | r | } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.142620229 \\\hline \text { R Square } & 0.02034053 \\\hline \text { Adjusted R Square } & - 0.028642444 \\\hline \text { Standard Error } & 20.25979924 \\\hline \text { Observations } & 22 \\\hline\end{array}\\\begin{array} { | l | r | r | l | l | } \hline & \text { Coefficients } & \text { Standard Error } & { \text { T Stat } } & \text { P-value } \\\hline \text { Intercept } & 39.39027309 & 37.24347659 & 1.057642216 & 0.302826622 \\\hline \text { Attendance } & 0.340583573 & 0.52852452 & 0.644404489 & 0.526635689 \\\hline\end{array}\end{array}

-Referring to Instruction 12-6,which of the following statements is true?

A)If attendance increases by 1%,the estimated mean score received will increase by 39.39 percentage points.
B)If attendance increases by 0.341%,the estimated mean score received will increase by 1 percentage point.
C)If the score received increases by 39.39%,the estimated mean attendance will go up by 1%.
D)If attendance increases by 1%,the estimated mean score received will increase by 0.341 percentage points.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the total sum of squares (SST)is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the total sum of squares (SST)is ________.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the regression sum of squares (SSR)is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the regression sum of squares (SSR)is ________.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the error or residual sum of squares (SSE)is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the error or residual sum of squares (SSE)is ________.
سؤال
Instruction 12-9
It is believed that,the average numbers of hours spent studying per day (HOURS)during undergraduate education should have a positive linear relationship with the starting salary (SALARY,measured in thousands of dollars per month)after graduation.Given below is the Microsoft Excel output for predicting starting salary (Y)using number of hours spent studying per day (X)for a sample of 51 students.NOTE: Only partial output is shown.
 Regression Statistics  Multiple R 0.8857 R Square 0.7845 Adjusted R Square 0.7801 Standard Error 1.3704 Observations 51\begin{array}{|l|r|}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8857 \\\hline \text { R Square } & 0.7845 \\\hline \text { Adjusted R Square } & 0.7801 \\\hline \text { Standard Error } & 1.3704 \\\hline \text { Observations } & 51 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1335.0472335.0473178.3859 Residual 1.8782 Total 50427.0798\begin{array}{|l|r|r|c|c|c|}\hline & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 1 & 335.0472 & 335.0473 & 178.3859 & \\\hline \text { Residual } & & & 1.8782 & & \\\hline \text { Total } & 50 & 427.0798 & & & \\\hline\end{array}


 Coefficients  Standered Error t Stat  P-value  Lorer 95%  Upper 95%  Intercept 1.89400.40184.71342.051E052.70151.0865 Hours 0.97950.073313.35615.944E180.83211.1269\begin{array}{l|r|rr|r|r|r|} \hline& \text { Coefficients } & \text { Standered Error } & t \text { Stat } & \text { P-value } & \text { Lorer 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -1.8940 & 0.4018 & -4.7134 & 2.051 \mathrm{E}-05 & -2.7015 & -1.0865 \\\hline \text { Hours } & 0.9795 & 0.0733 & 13.3561 & 5.944 \mathrm{E}-18 & 0.8321 & 1.1269 \\\hline\end{array} Note: 2.051E-05 = 2.051 * 10-0.5 and 5.944E-18 = 5.944 * 10-18.

-Referring to Instruction 12-9,the estimated average change in salary (in thousands of dollars)as a result of spending an extra hour per day studying is

A)0.9795.
B)0.7845.
C)335.0473.
D)-1.8940.
سؤال
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the prediction for a quarter in which X = 120 is Y = ________.<div style=padding-top: 35px>
Referring to Instruction 12-5,the prediction for a quarter in which X = 120 is Y = ________.
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,generate the scatter plot.<div style=padding-top: 35px>
Referring to Instruction 12-10,generate the scatter plot.
سؤال
The Y-intercept (b0)represents the

A)predicted value of Y.
B)change in estimated average Y per unit change in X.
C)estimated average Y when X = 0.
D)variation around the sample regression line.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,________% of the total variation in sales generated can be explained by the number of new customers brought in.<div style=padding-top: 35px>
Referring to Instruction 12-4,________% of the total variation in sales generated can be explained by the number of new customers brought in.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the prediction for the amount of sales (in $1,000s)for a person who brings 25 new customers into the firm is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the prediction for the amount of sales (in $1,000s)for a person who brings 25 new customers into the firm is ________.
سؤال
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the estimates of the Y-intercept and slope are ________ and ________,respectively.<div style=padding-top: 35px>
Referring to Instruction 12-5,the estimates of the Y-intercept and slope are ________ and ________,respectively.
سؤال
Instruction 12-8
It is believed that average grade (based on a four -point scale)should have a positive linear relationship with university entrance exam scores.Given below is the Microsoft Excel output from regressing average grade on university entrance exam scores using a data set of eight randomly chosen students from a large university.
Regressing average grade on university entrance exam score }\\
Regression Statistics
 Multiple R 0.7598 R Square 0.5774 Adjusted R Square 0.5069 Standard Error 0.2691 Observations 8\begin{array}{|lr}\hline \text { Multiple R } & 0.7598 \\\text { R Square } & 0.5774 \\\hline \text { Adjusted R Square } & 0.5069 \\\hline \text { Standard Error } & 0.2691 \\\hline \text { Observations } & 8 \\\hline\end{array}
ANOVA
df SS  MS F Significance F  Regression 10.59400.59408.19860.0286 Residual 60.43470.0724 Total 71.0287\begin{array}{|lllll|r|r|}\hline & d f & {\text { SS }} & \text { MS } & F & \text { Significance F } \\\hline \text { Regression } & 1 & 0.5940 & 0.5940 & 8.1986 & 0.0286 \\\hline \text { Residual } & 6 & 0.4347 & 0.0724 & & \\\hline \text { Total } & 7 & 1.0287 & & & \\\hline\end{array}
 Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.56810.92840.61190.56301.70362.8398 University entrance 0.1895 exam score 0.10210.03562.86330.02860.01480.1895\begin{array}{|l|r|r|r|r|r|r}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 0.5681 & 0.9284 & 0.6119 & 0.5630 & -1.7036 & 2.8398 \\\hline \text { University entrance } & & & & & & 0.1895 \\\text { exam score } & 0.1021 & 0.0356 & 2.8633 & 0.0286 & 0.0148 & 0.1895 \\\hline\end{array}

-Referring to Instruction 12-8,the interpretation of the coefficient of determination in this regression is

A)average grade accounts for 57.74% of the variability of university entrance exam scores.
B)university entrance exam scores account for 57.74% of the total fluctuation in average grade.
C)57.74% of the total variation of university entrance exam scores can be explained by average grade.
D)None of the above.
سؤال
Instruction 12-8
It is believed that average grade (based on a four -point scale)should have a positive linear relationship with university entrance exam scores.Given below is the Microsoft Excel output from regressing average grade on university entrance exam scores using a data set of eight randomly chosen students from a large university.
Regressing average grade on university entrance exam score }\\
Regression Statistics
 Multiple R 0.7598 R Square 0.5774 Adjusted R Square 0.5069 Standard Error 0.2691 Observations 8\begin{array}{|lr}\hline \text { Multiple R } & 0.7598 \\\text { R Square } & 0.5774 \\\hline \text { Adjusted R Square } & 0.5069 \\\hline \text { Standard Error } & 0.2691 \\\hline \text { Observations } & 8 \\\hline\end{array}
ANOVA
df SS  MS F Significance F  Regression 10.59400.59408.19860.0286 Residual 60.43470.0724 Total 71.0287\begin{array}{|lllll|r|r|}\hline & d f & {\text { SS }} & \text { MS } & F & \text { Significance F } \\\hline \text { Regression } & 1 & 0.5940 & 0.5940 & 8.1986 & 0.0286 \\\hline \text { Residual } & 6 & 0.4347 & 0.0724 & & \\\hline \text { Total } & 7 & 1.0287 & & & \\\hline\end{array}
 Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.56810.92840.61190.56301.70362.8398 University entrance 0.1895 exam score 0.10210.03562.86330.02860.01480.1895\begin{array}{|l|r|r|r|r|r|r}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 0.5681 & 0.9284 & 0.6119 & 0.5630 & -1.7036 & 2.8398 \\\hline \text { University entrance } & & & & & & 0.1895 \\\text { exam score } & 0.1021 & 0.0356 & 2.8633 & 0.0286 & 0.0148 & 0.1895 \\\hline\end{array}

-Referring to Instruction 12-8,what is the predicted average value of average grade when university entrance exam score = 20?

A)2.80
B)2.61
C)2.66
D)3.12
سؤال
The slope (b1)represents

A)the estimated average change in Y per unit change in X.
B)predicted value of Y when X = 0.
C)variation around the line of regression.
D)the predicted value of Y.
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
 Customers  Sales (Thousands of Dollars) 90711.2092611.057138.217419.217809.4269810.085106.735297.024606.128729.526507.536037.25\begin{array} { | c | c | } \hline \text { Customers } & \text { Sales (Thousands of Dollars) } \\\hline 907 & 11.20 \\\hline 926 & 11.05 \\\hline 713 & 8.21 \\\hline 741 & 9.21 \\\hline 780 & 9.42 \\\hline 698 & 10.08 \\\hline 510 & 6.73 \\\hline 529 & 7.02 \\\hline 460 & 6.12 \\\hline 872 & 9.52 \\\hline 650 & 7.53 \\\hline 603 & 7.25 \\\hline\end{array}

-Referring to Instruction 12-10,93.98% of the total variation in weekly sales can be explained by the variation in the number of customers who make purchases.
سؤال
Instruction 12-9
It is believed that,the average numbers of hours spent studying per day (HOURS)during undergraduate education should have a positive linear relationship with the starting salary (SALARY,measured in thousands of dollars per month)after graduation.Given below is the Microsoft Excel output for predicting starting salary (Y)using number of hours spent studying per day (X)for a sample of 51 students.NOTE: Only partial output is shown.
 Regression Statistics  Multiple R 0.8857 R Square 0.7845 Adjusted R Square 0.7801 Standard Error 1.3704 Observations 51\begin{array}{|l|r|}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8857 \\\hline \text { R Square } & 0.7845 \\\hline \text { Adjusted R Square } & 0.7801 \\\hline \text { Standard Error } & 1.3704 \\\hline \text { Observations } & 51 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1335.0472335.0473178.3859 Residual 1.8782 Total 50427.0798\begin{array}{|l|r|r|c|c|c|}\hline & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 1 & 335.0472 & 335.0473 & 178.3859 & \\\hline \text { Residual } & & & 1.8782 & & \\\hline \text { Total } & 50 & 427.0798 & & & \\\hline\end{array}


 Coefficients  Standered Error t Stat  P-value  Lorer 95%  Upper 95%  Intercept 1.89400.40184.71342.051E052.70151.0865 Hours 0.97950.073313.35615.944E180.83211.1269\begin{array}{l|r|rr|r|r|r|} \hline& \text { Coefficients } & \text { Standered Error } & t \text { Stat } & \text { P-value } & \text { Lorer 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -1.8940 & 0.4018 & -4.7134 & 2.051 \mathrm{E}-05 & -2.7015 & -1.0865 \\\hline \text { Hours } & 0.9795 & 0.0733 & 13.3561 & 5.944 \mathrm{E}-18 & 0.8321 & 1.1269 \\\hline\end{array} Note: 2.051E-05 = 2.051 * 10-0.5 and 5.944E-18 = 5.944 * 10-18.

-Referring to Instruction 12-9,the error sum of squares (SSE)of the above regression is

A)427.079804.
B)92.0325465.
C)1.878215.
D)335.047257.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the least squares estimate of the Y-intercept is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the least squares estimate of the Y-intercept is ________.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the standard error of estimate is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the standard error of estimate is ________.
سؤال
The Regression Sum of Squares (SSR)can never be greater than the Total Sum of Squares (SST).
سؤال
When using a regression model to make predictions,the term "relevant range" refers to ________.
سؤال
Instruction 12-12
The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:
 Regression Statistics  Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square  Standard 0.3342 Error 30 Observations  ANOVA df SS  MS F Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072 Coefficients  Standard  Error t Stat P-value  Lower 95%  Upper 95%  Intercept  Applications  Recorded 0.40240.12363.25590.00300.14920.6555\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.9447 \\\text { R Square } & 0.8924 \\\text { Adjusted R } & 0.8886 \\\text { Square } & \\\text { Standard } & 0.3342 \\\text { Error } & 30 \\\text { Observations } & \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r r r } \hline & d f & { \text { SS } } & { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\F\end{array} } \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.1282 & 0.1117 & & \\\text { Total } & 29 & 29.072 & & & \\\hline\end{array}\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\\text { Error }\end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \begin{array} { l } \text { Intercept } \\\text { Applications } \\\text { Recorded }\end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\hline\end{array}\end{array} Note: 4.3946E-15 is 4.3946 x 10-15.
 <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F &  { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the estimated mean amount of time it takes to record one additional loan application is</strong> A)0.4024 more hours. B)0.0126 more hours. C)0.0126 fewer hours. D)0.4024 fewer hours. <div style=padding-top: 35px>   <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F &  { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the estimated mean amount of time it takes to record one additional loan application is</strong> A)0.4024 more hours. B)0.0126 more hours. C)0.0126 fewer hours. D)0.4024 fewer hours. <div style=padding-top: 35px>

-Referring to Instruction 12-12,the estimated mean amount of time it takes to record one additional loan application is

A)0.4024 more hours.
B)0.0126 more hours.
C)0.0126 fewer hours.
D)0.4024 fewer hours.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{l|r}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\hline \text { Standard Error } & 44.4765 \\\hline \text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
dfSSMSFsignificanceF Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{|l|r|r|r|r|r|}\hline &df&SS&MS&F&significance F\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands. B)For each increase of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. C)For each decrease of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. D)For each decrease of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands. <div style=padding-top: 35px>   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands. B)For each increase of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. C)For each decrease of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. D)For each decrease of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands. <div style=padding-top: 35px>

-Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?

A)For each increase of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands.
B)For each increase of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands.
C)For each decrease of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands.
D)For each decrease of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the standard error of the estimated slope coefficient is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the standard error of the estimated slope coefficient is ________.
سؤال
The least squares method minimises which of the following?

A)SST
B)SSR
C)SSE
D)All of the above.
سؤال
A simple regression has a b0 value of 5 and a b1 value of 3.5.What is the predicted Y for an X value of -2?

A)13.5
B)12.0
C)-6.0
D)-2.0
سؤال
The coefficient of determination (r2)tells you

A)the proportion of variation in Y that is explained by the independent variable X in the model.
B)whether r has any significance.
C)that you should not partition the total variation.
D)that the coefficient of correlation (r)is larger than 1.
سؤال
When using a regression model to make predictions,you should not predict Y for values of X larger or smaller than the values used to develop the model.
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the coefficient of correlation is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the coefficient of correlation is ________.
سؤال
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the standard error of the estimate is ________.<div style=padding-top: 35px>
Referring to Instruction 12-5,the standard error of the estimate is ________.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the coefficient of determination is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the coefficient of determination is ________.
سؤال
A simple regression has a b0 value of 1.3 and a b1 value of 2.6.What is the predicted Y for an X value of 0?

A)2.6
B)3.9
C)1.3
D)3.4
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{l|r}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\hline \text { Standard Error } & 44.4765 \\\hline \text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
dfSSMSFsignificanceF Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{|l|r|r|r|r|r|}\hline &df&SS&MS&F&significance F\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units. B)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 units. C)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 units. D)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units. <div style=padding-top: 35px>   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units. B)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 units. C)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 units. D)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units. <div style=padding-top: 35px>

-Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?

A)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units.
B)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 units.
C)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 units.
D)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units.
سؤال
The standard error of the estimate is a measure of

A)total variation of the Y variable.
B)explained variation.
C)the variation of the X variable.
D)the variation around the sample regression line.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand.<div style=padding-top: 35px> Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand.<div style=padding-top: 35px> Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand.<div style=padding-top: 35px>
Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand.
سؤال
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the standard error of estimate is ________.<div style=padding-top: 35px>
Referring to Instruction 12-3,the standard error of estimate is ________.
سؤال
The coefficient of determination represents the ratio of SSR to SST.
سؤال
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the coefficient of correlation is ________.<div style=padding-top: 35px>
Referring to Instruction 12-4,the coefficient of correlation is ________.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000\end{array}
ANOVA
dfSSMSFsignificance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{|l|r|r|r|r|r|}\hline&df&SS&MS&F&\text {significance F}\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & &\\\hline\end{array}
 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513\end{array}  Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \end{array}       -Referring to Instruction 12-11,the normality of error assumption appears to have been violated.<div style=padding-top: 35px>   Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \end{array}       -Referring to Instruction 12-11,the normality of error assumption appears to have been violated.<div style=padding-top: 35px>

-Referring to Instruction 12-11,the normality of error assumption appears to have been violated.
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what is the value of the standard error of the estimate?<div style=padding-top: 35px>
Referring to Instruction 12-10,what is the value of the standard error of the estimate?
سؤال
In performing a regression analysis involving two numerical variables,you are assuming

A)the variances of X and Y are equal.
B)that X and Y are independent.
C)the variation around the line of regression is the same for each X value.
D)All of the above.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard error of estimate?<div style=padding-top: 35px> Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard error of estimate?<div style=padding-top: 35px> Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard error of estimate?<div style=padding-top: 35px>
Referring to Instruction 12-11,what is the standard error of estimate?
سؤال
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the correlation coefficient is ________.<div style=padding-top: 35px>
Referring to Instruction 12-5,the correlation coefficient is ________.
سؤال
Instruction 12-12
The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:
 Regression Statistics  Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square  Standard 0.3342 Error 30 Observations  ANOVA df SS  MS F Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072 Coefficients  Standard  Error t Stat P-value  Lower 95%  Upper 95%  Intercept  Applications  Recorded 0.40240.12363.25590.00300.14920.6555\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.9447 \\\text { R Square } & 0.8924 \\\text { Adjusted R } & 0.8886 \\\text { Square } & \\\text { Standard } & 0.3342 \\\text { Error } & 30 \\\text { Observations } & \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r r r } \hline & d f & { \text { SS } } & { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\F\end{array} } \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.1282 & 0.1117 & & \\\text { Total } & 29 & 29.072 & & & \\\hline\end{array}\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\\text { Error }\end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \begin{array} { l } \text { Intercept } \\\text { Applications } \\\text { Recorded }\end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\hline\end{array}\end{array} Note: 4.3946E-15 is 4.3946 x 10-15.
 <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the error sum of squares (SSE)of the above regression is</strong> A)0.1117. B)29.0720. C)25.9438. D)3.1282. <div style=padding-top: 35px>   <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the error sum of squares (SSE)of the above regression is</strong> A)0.1117. B)29.0720. C)25.9438. D)3.1282. <div style=padding-top: 35px>

-Referring to Instruction 12-12,the error sum of squares (SSE)of the above regression is

A)0.1117.
B)29.0720.
C)25.9438.
D)3.1282.
سؤال
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the coefficient of determination is ________.<div style=padding-top: 35px>
Referring to Instruction 12-5,the coefficient of determination is ________.
سؤال
Which of the following assumptions concerning the probability distribution of the random error term is stated incorrectly?

A)The variance of the distribution increases as X increases.
B)The mean of the distribution is 0.
C)The errors are independent.
D)The distribution is normal.
سؤال
The residuals represent

A)the square root of the slope.
B)the difference between the actual Y values and the predicted Y values.
C)the difference between the actual Y values and the mean of Y.
D)the predicted value of Y for the average X value.
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what is the value of the coefficient of determination?<div style=padding-top: 35px>
Referring to Instruction 12-10,what is the value of the coefficient of determination?
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what is the value of the coefficient of correlation?<div style=padding-top: 35px>
Referring to Instruction 12-10,what is the value of the coefficient of correlation?
سؤال
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
 Customers  Sales (Thousands of Dollars) 90711.2092611.057138.217419.217809.4269810.085106.735297.024606.128729.526507.536037.25\begin{array} { | c | c | } \hline \text { Customers } & \text { Sales (Thousands of Dollars) } \\\hline 907 & 11.20 \\\hline 926 & 11.05 \\\hline 713 & 8.21 \\\hline 741 & 9.21 \\\hline 780 & 9.42 \\\hline 698 & 10.08 \\\hline 510 & 6.73 \\\hline 529 & 7.02 \\\hline 460 & 6.12 \\\hline 872 & 9.52 \\\hline 650 & 7.53 \\\hline 603 & 7.25 \\\hline\end{array}

-Referring to Instruction 12-10,the residual plot indicates possible violation of which assumptions?

A)Homoscedasticity.
B)Normality.
C)Linearity of the relationship.
D)Autocorrelation.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{lr|r|r|r|r}\hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Emor t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)74.67% of the variation in revenue can be explained by the variation in the number of downloads. B)75.54% of the variation in revenue can be explained by the variation in the number of downloads. C)75.54% of the variation in the number of downloads can be explained by the variation in revenue. D)74.67% of the variation in the number of downloads can be explained by the variation in revenue. <div style=padding-top: 35px>   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)74.67% of the variation in revenue can be explained by the variation in the number of downloads. B)75.54% of the variation in revenue can be explained by the variation in the number of downloads. C)75.54% of the variation in the number of downloads can be explained by the variation in revenue. D)74.67% of the variation in the number of downloads can be explained by the variation in revenue. <div style=padding-top: 35px>

-Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?

A)74.67% of the variation in revenue can be explained by the variation in the number of downloads.
B)75.54% of the variation in revenue can be explained by the variation in the number of downloads.
C)75.54% of the variation in the number of downloads can be explained by the variation in revenue.
D)74.67% of the variation in the number of downloads can be explained by the variation in revenue.
سؤال
Based on the residual plot below,you will conclude that there might be a violation of which of the following assumptions? <strong>Based on the residual plot below,you will conclude that there might be a violation of which of the following assumptions?  </strong> A)Homoscedasticity. B)Independence of errors. C)Linearity of the relationship. D)Normality of errors. <div style=padding-top: 35px>

A)Homoscedasticity.
B)Independence of errors.
C)Linearity of the relationship.
D)Normality of errors.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{lr|r|r|r|r}\hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Emor t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)72.8% of the variation in the video unit sales can be explained by the variation in the box office gross. B)71.8% of the variation in the video unit sales can be explained by the variation in the box office gross. C)71.8% of the variation in the box office gross can be explained by the variation in the video unit sales. D)72.8% of the variation in the box office gross can be explained by the variation in the video unit sales. <div style=padding-top: 35px>   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)72.8% of the variation in the video unit sales can be explained by the variation in the box office gross. B)71.8% of the variation in the video unit sales can be explained by the variation in the box office gross. C)71.8% of the variation in the box office gross can be explained by the variation in the video unit sales. D)72.8% of the variation in the box office gross can be explained by the variation in the video unit sales. <div style=padding-top: 35px>

-Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?

A)72.8% of the variation in the video unit sales can be explained by the variation in the box office gross.
B)71.8% of the variation in the video unit sales can be explained by the variation in the box office gross.
C)71.8% of the variation in the box office gross can be explained by the variation in the video unit sales.
D)72.8% of the variation in the box office gross can be explained by the variation in the video unit sales.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\hline \text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
dfSSMSFsignificance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{l|r|r|r|r|r|}\hline&df&SS&MS&F&\text {significance F}\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & &\\\hline\end{array}
 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{|lr|} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following assumptions appears to have been violated?</strong> A)Independence of errors. B)Normality of error. C)Homoscedasticity. D)None of the above. <div style=padding-top: 35px>   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{|lr|} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following assumptions appears to have been violated?</strong> A)Independence of errors. B)Normality of error. C)Homoscedasticity. D)None of the above. <div style=padding-top: 35px>

-Referring to Instruction 12-11,which of the following assumptions appears to have been violated?

A)Independence of errors.
B)Normality of error.
C)Homoscedasticity.
D)None of the above.
سؤال
Instruction 12-6
The following Microsoft Excel tables are obtained when "Score received on an exam (measured in percentage points)" (Y)is regressed on "percentage attendance" (X)for 22 students in a Statistics for Business and Economics course.
 Regression Statistics  Multiple R 0.142620229 R Square 0.02034053 Adjusted R Square 0.028642444 Standard Error 20.25979924 Observations 22 Coefficients  Standard Error  T Stat  P-value  Intercept 39.3902730937.243476591.0576422160.302826622 Attendance 0.3405835730.528524520.6444044890.526635689\begin{array}{l}\begin{array} { | l | r | } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.142620229 \\\hline \text { R Square } & 0.02034053 \\\hline \text { Adjusted R Square } & - 0.028642444 \\\hline \text { Standard Error } & 20.25979924 \\\hline \text { Observations } & 22 \\\hline\end{array}\\\begin{array} { | l | r | r | l | l | } \hline & \text { Coefficients } & \text { Standard Error } & { \text { T Stat } } & \text { P-value } \\\hline \text { Intercept } & 39.39027309 & 37.24347659 & 1.057642216 & 0.302826622 \\\hline \text { Attendance } & 0.340583573 & 0.52852452 & 0.644404489 & 0.526635689 \\\hline\end{array}\end{array}

-Referring to Instruction 12-6,which of the following statements is true?

A)14.2% of the total variability in percentage attendance can be explained by score received.
B)2% of the total variability in score received can be explained by percentage attendance.
C)2% of the total variability in percentage attendance can be explained by score received.
D)14.26% of the total variability in score received can be explained by percentage attendance.
سؤال
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard deviation around the regression line?<div style=padding-top: 35px> Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard deviation around the regression line?<div style=padding-top: 35px> Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard deviation around the regression line?<div style=padding-top: 35px>
Referring to Instruction 12-11,what is the standard deviation around the regression line?
سؤال
If the plot of the residuals is fan shaped,which assumption is violated?

A)Homoscedasticity.
B)Independence of errors.
C)Normality.
D)No assumptions are violated,the graph should resemble a fan.
سؤال
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the standard error of the estimated slope coefficient is ________.<div style=padding-top: 35px>
Referring to Instruction 12-5,the standard error of the estimated slope coefficient is ________.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/196
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 12: Simple Linear Regression
1
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the regression sum of squares (SSR)is ________.
Referring to Instruction 12-3,the regression sum of squares (SSR)is ________.
12.5
2
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the estimated average change in the sales of the chocolate bar if price goes up by $1.00?

A)0.784
B)-3.810
C)161.386
D)-48.193
-48.193
3
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the least squares estimate of the Y-intercept is ________.
Referring to Instruction 12-3,the least squares estimate of the Y-intercept is ________.
1.00
4
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the total sum of squares (SST)is ________.
Referring to Instruction 12-3,the total sum of squares (SST)is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
5
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the coefficient of correlation for these data?

A)0.8854
B)0.7839
C)-0.7839
D)-0.8854
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
6
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,interpret the estimate of ?0,the Y-intercept of the line.

A)About 95% of the observed service charges fall within $2,700 of the least squares line.
B)There is no practical interpretation since a sales revenue of $0 is a nonsensical value.
C)For every $1 million increase in sales revenue,we expect a service charge to decrease $2,700.
D)All companies will be charged at least $2,700 by the bank.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
7
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,to test whether a change in price will have any impact on average sales,what would be the critical values? Use ? = 0.05.

A)± 2.7765
B)± 3.1634
C)± 2.5706
D)± 3.4954
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
8
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,interpret the p-value for testing whether ?1 exceeds 0.

A)There is sufficient evidence (at the ? = 0.05)to conclude that sales revenue (X)is a useful linear predictor of service charge (Y).
B)Sales revenue (X)is a poor predictor of service charge (Y).
C)There is insufficient evidence (at the ? = 0.10)to conclude that sales revenue (X)is a useful linear predictor of service charge (Y).
D)For every $1 million increase in sales revenue,we expect a service charge to increase $0.034.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
9
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the prediction for the number of job offers for a person with two cooperative jobs is ________.
Referring to Instruction 12-3,the prediction for the number of job offers for a person with two cooperative jobs is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
10
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the estimated slope parameter for the chocolate bar price and sales data?

A)-48.193
B)-3.810
C)161.386
D)0.784
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
11
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the percentage of the total variation in chocolate bar sales explained by the regression model?

A)48.19%
B)100%
C)88.54%
D)78.39%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
12
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,to test that the regression coefficient,?1 is not equal to 0,what would be the critical values? Use ? = 0.05.

A)± 2.7765
B)± 3.1634
C)± 2.5706
D)± 3.4954
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
13
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the error or residual sum of squares (SSE)is ________.
Referring to Instruction 12-3,the error or residual sum of squares (SSE)is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
14
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what percentage of the total variation in chocolate bar sales is explained by prices?

A)78.39%
B)88.54%
C)48.19%
D)100%
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
15
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,what is the standard error of the estimate,SYX,for the data?

A)0.885
B)0.784
C)16.299
D)12.650
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
16
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,interpret the estimate of ?,the standard deviation of the random error term (standard error of the estimate)in the model.

A)About 95% of the observed service charges fall within $130 of the least squares line.
B)About 95% of the observed service charges fall within $65 of the least squares line.
C)About 95% of the observed service charges equal their corresponding predicted values.
D)For every $1 million increase in sales revenue,we expect a service charge to increase $65.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
17
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the coefficient of determination is ________.
Referring to Instruction 12-3,the coefficient of determination is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
18
Instruction 12-1
A large national bank charges local companies for using their services.A bank official reported the results of a regression analysis designed to predict the bank's charges (Y)- measured in dollars per month - for services rendered to local companies.One independent variable used to predict service charge to a company is the company's sales revenue (X)- measured in millions of dollars.Data for 21 companies who use the bank's services were used to fit the model:
Y1 = ?0 + ?1X1 + ?i
The results of the simple linear regression are provided below.
Y^\hat { Y } = -2,700 + 20 X,SYX = 65,two-tailed p value = 0.034 (for testing ?1)

-Referring to Instruction 12-1,a 95% confidence interval for ?1 is (15,30).Interpret the interval.

A)At the ? = 0.05 level,there is no evidence of a linear relationship between service charge (Y)and sales revenue (X).
B)We are 95% confident that average service charge (Y)will increase between $15 and $30 for every $1 million increase in sales revenue (X).
C)We are 95% confident that the mean service charge will fall between $15 and $30 per month.
D)We are 95% confident that the sales revenue (X)will increase between $15 and $30 million for every $1 increase in service charge (Y).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
19
Instruction 12-2
A chocolate bar manufacturer is interested in trying to estimate how sales are influenced by the price of their product.To do this,the company randomly chooses six country towns and cities and offers the chocolate bar at different prices.Using chocolate bar sales as the dependent variable,the company will conduct a simple linear regression on the data below:
 City  Price ($) Sales  Toowoomba 1.30100 Broken Hill 1.6090 Bendigo 1.8090 Kalgoorlie 2.0040 Launceston 2.4038 Port Augusta 2.9032\begin{array} { l l r r } { \text { City } } & & \text { Price } ( \$ ) & \text { Sales } \\\hline \text { Toowoomba } & & 1.30 & 100 \\\text { Broken Hill } & & 1.60 & 90 \\\text { Bendigo } & & 1.80 & 90 \\\text { Kalgoorlie } & & 2.00 & 40 \\\text { Launceston } & & 2.40 & 38 \\\text { Port Augusta } & & 2.90 & 32\end{array}

-Referring to Instruction 12-2,if the price of the chocolate bar is set at $2,the predicted sales will be

A)100.
B)30.
C)65.
D)90.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
20
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the least squares estimate of the slope is ________.
Referring to Instruction 12-3,the least squares estimate of the slope is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
21
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,set up a scatter diagram.
Referring to Instruction 12-4,set up a scatter diagram.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
22
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what are the values of the estimated intercept and slope?
Referring to Instruction 12-10,what are the values of the estimated intercept and slope?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
23
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,set up a scatter diagram.
Referring to Instruction 12-3,set up a scatter diagram.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
24
Instruction 12-6
The following Microsoft Excel tables are obtained when "Score received on an exam (measured in percentage points)" (Y)is regressed on "percentage attendance" (X)for 22 students in a Statistics for Business and Economics course.
 Regression Statistics  Multiple R 0.142620229 R Square 0.02034053 Adjusted R Square 0.028642444 Standard Error 20.25979924 Observations 22 Coefficients  Standard Error  T Stat  P-value  Intercept 39.3902730937.243476591.0576422160.302826622 Attendance 0.3405835730.528524520.6444044890.526635689\begin{array}{l}\begin{array} { | l | r | } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.142620229 \\\hline \text { R Square } & 0.02034053 \\\hline \text { Adjusted R Square } & - 0.028642444 \\\hline \text { Standard Error } & 20.25979924 \\\hline \text { Observations } & 22 \\\hline\end{array}\\\begin{array} { | l | r | r | l | l | } \hline & \text { Coefficients } & \text { Standard Error } & { \text { T Stat } } & \text { P-value } \\\hline \text { Intercept } & 39.39027309 & 37.24347659 & 1.057642216 & 0.302826622 \\\hline \text { Attendance } & 0.340583573 & 0.52852452 & 0.644404489 & 0.526635689 \\\hline\end{array}\end{array}

-Referring to Instruction 12-6,which of the following statements is true?

A)If attendance increases by 1%,the estimated mean score received will increase by 39.39 percentage points.
B)If attendance increases by 0.341%,the estimated mean score received will increase by 1 percentage point.
C)If the score received increases by 39.39%,the estimated mean attendance will go up by 1%.
D)If attendance increases by 1%,the estimated mean score received will increase by 0.341 percentage points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
25
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the total sum of squares (SST)is ________.
Referring to Instruction 12-4,the total sum of squares (SST)is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
26
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the regression sum of squares (SSR)is ________.
Referring to Instruction 12-4,the regression sum of squares (SSR)is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
27
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the error or residual sum of squares (SSE)is ________.
Referring to Instruction 12-4,the error or residual sum of squares (SSE)is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
28
Instruction 12-9
It is believed that,the average numbers of hours spent studying per day (HOURS)during undergraduate education should have a positive linear relationship with the starting salary (SALARY,measured in thousands of dollars per month)after graduation.Given below is the Microsoft Excel output for predicting starting salary (Y)using number of hours spent studying per day (X)for a sample of 51 students.NOTE: Only partial output is shown.
 Regression Statistics  Multiple R 0.8857 R Square 0.7845 Adjusted R Square 0.7801 Standard Error 1.3704 Observations 51\begin{array}{|l|r|}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8857 \\\hline \text { R Square } & 0.7845 \\\hline \text { Adjusted R Square } & 0.7801 \\\hline \text { Standard Error } & 1.3704 \\\hline \text { Observations } & 51 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1335.0472335.0473178.3859 Residual 1.8782 Total 50427.0798\begin{array}{|l|r|r|c|c|c|}\hline & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 1 & 335.0472 & 335.0473 & 178.3859 & \\\hline \text { Residual } & & & 1.8782 & & \\\hline \text { Total } & 50 & 427.0798 & & & \\\hline\end{array}


 Coefficients  Standered Error t Stat  P-value  Lorer 95%  Upper 95%  Intercept 1.89400.40184.71342.051E052.70151.0865 Hours 0.97950.073313.35615.944E180.83211.1269\begin{array}{l|r|rr|r|r|r|} \hline& \text { Coefficients } & \text { Standered Error } & t \text { Stat } & \text { P-value } & \text { Lorer 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -1.8940 & 0.4018 & -4.7134 & 2.051 \mathrm{E}-05 & -2.7015 & -1.0865 \\\hline \text { Hours } & 0.9795 & 0.0733 & 13.3561 & 5.944 \mathrm{E}-18 & 0.8321 & 1.1269 \\\hline\end{array} Note: 2.051E-05 = 2.051 * 10-0.5 and 5.944E-18 = 5.944 * 10-18.

-Referring to Instruction 12-9,the estimated average change in salary (in thousands of dollars)as a result of spending an extra hour per day studying is

A)0.9795.
B)0.7845.
C)335.0473.
D)-1.8940.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
29
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the prediction for a quarter in which X = 120 is Y = ________.
Referring to Instruction 12-5,the prediction for a quarter in which X = 120 is Y = ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
30
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,generate the scatter plot.
Referring to Instruction 12-10,generate the scatter plot.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
31
The Y-intercept (b0)represents the

A)predicted value of Y.
B)change in estimated average Y per unit change in X.
C)estimated average Y when X = 0.
D)variation around the sample regression line.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
32
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,________% of the total variation in sales generated can be explained by the number of new customers brought in.
Referring to Instruction 12-4,________% of the total variation in sales generated can be explained by the number of new customers brought in.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
33
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the prediction for the amount of sales (in $1,000s)for a person who brings 25 new customers into the firm is ________.
Referring to Instruction 12-4,the prediction for the amount of sales (in $1,000s)for a person who brings 25 new customers into the firm is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
34
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the estimates of the Y-intercept and slope are ________ and ________,respectively.
Referring to Instruction 12-5,the estimates of the Y-intercept and slope are ________ and ________,respectively.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
35
Instruction 12-8
It is believed that average grade (based on a four -point scale)should have a positive linear relationship with university entrance exam scores.Given below is the Microsoft Excel output from regressing average grade on university entrance exam scores using a data set of eight randomly chosen students from a large university.
Regressing average grade on university entrance exam score }\\
Regression Statistics
 Multiple R 0.7598 R Square 0.5774 Adjusted R Square 0.5069 Standard Error 0.2691 Observations 8\begin{array}{|lr}\hline \text { Multiple R } & 0.7598 \\\text { R Square } & 0.5774 \\\hline \text { Adjusted R Square } & 0.5069 \\\hline \text { Standard Error } & 0.2691 \\\hline \text { Observations } & 8 \\\hline\end{array}
ANOVA
df SS  MS F Significance F  Regression 10.59400.59408.19860.0286 Residual 60.43470.0724 Total 71.0287\begin{array}{|lllll|r|r|}\hline & d f & {\text { SS }} & \text { MS } & F & \text { Significance F } \\\hline \text { Regression } & 1 & 0.5940 & 0.5940 & 8.1986 & 0.0286 \\\hline \text { Residual } & 6 & 0.4347 & 0.0724 & & \\\hline \text { Total } & 7 & 1.0287 & & & \\\hline\end{array}
 Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.56810.92840.61190.56301.70362.8398 University entrance 0.1895 exam score 0.10210.03562.86330.02860.01480.1895\begin{array}{|l|r|r|r|r|r|r}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 0.5681 & 0.9284 & 0.6119 & 0.5630 & -1.7036 & 2.8398 \\\hline \text { University entrance } & & & & & & 0.1895 \\\text { exam score } & 0.1021 & 0.0356 & 2.8633 & 0.0286 & 0.0148 & 0.1895 \\\hline\end{array}

-Referring to Instruction 12-8,the interpretation of the coefficient of determination in this regression is

A)average grade accounts for 57.74% of the variability of university entrance exam scores.
B)university entrance exam scores account for 57.74% of the total fluctuation in average grade.
C)57.74% of the total variation of university entrance exam scores can be explained by average grade.
D)None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
36
Instruction 12-8
It is believed that average grade (based on a four -point scale)should have a positive linear relationship with university entrance exam scores.Given below is the Microsoft Excel output from regressing average grade on university entrance exam scores using a data set of eight randomly chosen students from a large university.
Regressing average grade on university entrance exam score }\\
Regression Statistics
 Multiple R 0.7598 R Square 0.5774 Adjusted R Square 0.5069 Standard Error 0.2691 Observations 8\begin{array}{|lr}\hline \text { Multiple R } & 0.7598 \\\text { R Square } & 0.5774 \\\hline \text { Adjusted R Square } & 0.5069 \\\hline \text { Standard Error } & 0.2691 \\\hline \text { Observations } & 8 \\\hline\end{array}
ANOVA
df SS  MS F Significance F  Regression 10.59400.59408.19860.0286 Residual 60.43470.0724 Total 71.0287\begin{array}{|lllll|r|r|}\hline & d f & {\text { SS }} & \text { MS } & F & \text { Significance F } \\\hline \text { Regression } & 1 & 0.5940 & 0.5940 & 8.1986 & 0.0286 \\\hline \text { Residual } & 6 & 0.4347 & 0.0724 & & \\\hline \text { Total } & 7 & 1.0287 & & & \\\hline\end{array}
 Coefficients  Standard Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.56810.92840.61190.56301.70362.8398 University entrance 0.1895 exam score 0.10210.03562.86330.02860.01480.1895\begin{array}{|l|r|r|r|r|r|r}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 0.5681 & 0.9284 & 0.6119 & 0.5630 & -1.7036 & 2.8398 \\\hline \text { University entrance } & & & & & & 0.1895 \\\text { exam score } & 0.1021 & 0.0356 & 2.8633 & 0.0286 & 0.0148 & 0.1895 \\\hline\end{array}

-Referring to Instruction 12-8,what is the predicted average value of average grade when university entrance exam score = 20?

A)2.80
B)2.61
C)2.66
D)3.12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
37
The slope (b1)represents

A)the estimated average change in Y per unit change in X.
B)predicted value of Y when X = 0.
C)variation around the line of regression.
D)the predicted value of Y.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
38
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
 Customers  Sales (Thousands of Dollars) 90711.2092611.057138.217419.217809.4269810.085106.735297.024606.128729.526507.536037.25\begin{array} { | c | c | } \hline \text { Customers } & \text { Sales (Thousands of Dollars) } \\\hline 907 & 11.20 \\\hline 926 & 11.05 \\\hline 713 & 8.21 \\\hline 741 & 9.21 \\\hline 780 & 9.42 \\\hline 698 & 10.08 \\\hline 510 & 6.73 \\\hline 529 & 7.02 \\\hline 460 & 6.12 \\\hline 872 & 9.52 \\\hline 650 & 7.53 \\\hline 603 & 7.25 \\\hline\end{array}

-Referring to Instruction 12-10,93.98% of the total variation in weekly sales can be explained by the variation in the number of customers who make purchases.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
39
Instruction 12-9
It is believed that,the average numbers of hours spent studying per day (HOURS)during undergraduate education should have a positive linear relationship with the starting salary (SALARY,measured in thousands of dollars per month)after graduation.Given below is the Microsoft Excel output for predicting starting salary (Y)using number of hours spent studying per day (X)for a sample of 51 students.NOTE: Only partial output is shown.
 Regression Statistics  Multiple R 0.8857 R Square 0.7845 Adjusted R Square 0.7801 Standard Error 1.3704 Observations 51\begin{array}{|l|r|}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8857 \\\hline \text { R Square } & 0.7845 \\\hline \text { Adjusted R Square } & 0.7801 \\\hline \text { Standard Error } & 1.3704 \\\hline \text { Observations } & 51 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1335.0472335.0473178.3859 Residual 1.8782 Total 50427.0798\begin{array}{|l|r|r|c|c|c|}\hline & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 1 & 335.0472 & 335.0473 & 178.3859 & \\\hline \text { Residual } & & & 1.8782 & & \\\hline \text { Total } & 50 & 427.0798 & & & \\\hline\end{array}


 Coefficients  Standered Error t Stat  P-value  Lorer 95%  Upper 95%  Intercept 1.89400.40184.71342.051E052.70151.0865 Hours 0.97950.073313.35615.944E180.83211.1269\begin{array}{l|r|rr|r|r|r|} \hline& \text { Coefficients } & \text { Standered Error } & t \text { Stat } & \text { P-value } & \text { Lorer 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -1.8940 & 0.4018 & -4.7134 & 2.051 \mathrm{E}-05 & -2.7015 & -1.0865 \\\hline \text { Hours } & 0.9795 & 0.0733 & 13.3561 & 5.944 \mathrm{E}-18 & 0.8321 & 1.1269 \\\hline\end{array} Note: 2.051E-05 = 2.051 * 10-0.5 and 5.944E-18 = 5.944 * 10-18.

-Referring to Instruction 12-9,the error sum of squares (SSE)of the above regression is

A)427.079804.
B)92.0325465.
C)1.878215.
D)335.047257.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
40
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the least squares estimate of the Y-intercept is ________.
Referring to Instruction 12-4,the least squares estimate of the Y-intercept is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
41
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the standard error of estimate is ________.
Referring to Instruction 12-4,the standard error of estimate is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
42
The Regression Sum of Squares (SSR)can never be greater than the Total Sum of Squares (SST).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
43
When using a regression model to make predictions,the term "relevant range" refers to ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
44
Instruction 12-12
The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:
 Regression Statistics  Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square  Standard 0.3342 Error 30 Observations  ANOVA df SS  MS F Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072 Coefficients  Standard  Error t Stat P-value  Lower 95%  Upper 95%  Intercept  Applications  Recorded 0.40240.12363.25590.00300.14920.6555\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.9447 \\\text { R Square } & 0.8924 \\\text { Adjusted R } & 0.8886 \\\text { Square } & \\\text { Standard } & 0.3342 \\\text { Error } & 30 \\\text { Observations } & \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r r r } \hline & d f & { \text { SS } } & { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\F\end{array} } \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.1282 & 0.1117 & & \\\text { Total } & 29 & 29.072 & & & \\\hline\end{array}\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\\text { Error }\end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \begin{array} { l } \text { Intercept } \\\text { Applications } \\\text { Recorded }\end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\hline\end{array}\end{array} Note: 4.3946E-15 is 4.3946 x 10-15.
 <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F &  { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the estimated mean amount of time it takes to record one additional loan application is</strong> A)0.4024 more hours. B)0.0126 more hours. C)0.0126 fewer hours. D)0.4024 fewer hours.   <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F &  { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the estimated mean amount of time it takes to record one additional loan application is</strong> A)0.4024 more hours. B)0.0126 more hours. C)0.0126 fewer hours. D)0.4024 fewer hours.

-Referring to Instruction 12-12,the estimated mean amount of time it takes to record one additional loan application is

A)0.4024 more hours.
B)0.0126 more hours.
C)0.0126 fewer hours.
D)0.4024 fewer hours.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
45
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{l|r}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\hline \text { Standard Error } & 44.4765 \\\hline \text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
dfSSMSFsignificanceF Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{|l|r|r|r|r|r|}\hline &df&SS&MS&F&significance F\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands. B)For each increase of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. C)For each decrease of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. D)For each decrease of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands.   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands. B)For each increase of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. C)For each decrease of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands. D)For each decrease of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands.

-Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?

A)For each increase of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands.
B)For each increase of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands.
C)For each decrease of 1 thousand dollars in expected revenue,the expected number of downloads is estimated to increase by 3.7297 thousands.
D)For each decrease of 1 thousand downloads,the expected revenue is estimated to increase by $3.7297 thousands.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
46
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the standard error of the estimated slope coefficient is ________.
Referring to Instruction 12-4,the standard error of the estimated slope coefficient is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
47
The least squares method minimises which of the following?

A)SST
B)SSR
C)SSE
D)All of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
48
A simple regression has a b0 value of 5 and a b1 value of 3.5.What is the predicted Y for an X value of -2?

A)13.5
B)12.0
C)-6.0
D)-2.0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
49
The coefficient of determination (r2)tells you

A)the proportion of variation in Y that is explained by the independent variable X in the model.
B)whether r has any significance.
C)that you should not partition the total variation.
D)that the coefficient of correlation (r)is larger than 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
50
When using a regression model to make predictions,you should not predict Y for values of X larger or smaller than the values used to develop the model.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
51
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the coefficient of correlation is ________.
Referring to Instruction 12-3,the coefficient of correlation is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
52
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the standard error of the estimate is ________.
Referring to Instruction 12-5,the standard error of the estimate is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
53
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the coefficient of determination is ________.
Referring to Instruction 12-4,the coefficient of determination is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
54
A simple regression has a b0 value of 1.3 and a b1 value of 2.6.What is the predicted Y for an X value of 0?

A)2.6
B)3.9
C)1.3
D)3.4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
55
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{l|r}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\hline \text { Standard Error } & 44.4765 \\\hline \text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
dfSSMSFsignificanceF Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{|l|r|r|r|r|r|}\hline &df&SS&MS&F&significance F\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units. B)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 units. C)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 units. D)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units.   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{l|r} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \hline \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline &df&SS&MS&F&significance F\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?</strong> A)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units. B)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 units. C)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 units. D)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units.

-Referring to Instruction 12-11,which of the following is the correct interpretation for the slope coefficient?

A)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units.
B)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 units.
C)For each increase of 1 million dollars in box office gross,expected home video units sold are estimated to increase by 4.3331 units.
D)For each increase of 1 dollar in box office gross,expected home video units sold are estimated to increase by 4.3331 thousand units.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
56
The standard error of the estimate is a measure of

A)total variation of the Y variable.
B)explained variation.
C)the variation of the X variable.
D)the variation around the sample regression line.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
57
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand. Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand. Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand.
Referring to Instruction 12-11,predict the revenue when the number of downloads is 30 thousand.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
58
Instruction 12-3
The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.
Instruction 12-3 The director of cooperative education at a university wants to examine the effect of cooperative education job experience on marketability in the workplace.She takes a random sample of four students.For these four,she finds out how many times each had a cooperative education job and how many job offers they received upon graduation.These data are presented in the table below.   Referring to Instruction 12-3,the standard error of estimate is ________.
Referring to Instruction 12-3,the standard error of estimate is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
59
The coefficient of determination represents the ratio of SSR to SST.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
60
Instruction 12-4
The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.
Instruction 12-4 The managers of a brokerage firm are interested in finding out if the number of new customers a broker brings into the firm affects the sales generated by the broker.They sample 12 brokers and determine the number of new customers they have enrolled in the last year and their sales amounts in thousands of dollars.These data are presented in the table that follows.   Referring to Instruction 12-4,the coefficient of correlation is ________.
Referring to Instruction 12-4,the coefficient of correlation is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
61
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000\end{array}
ANOVA
dfSSMSFsignificance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{|l|r|r|r|r|r|}\hline&df&SS&MS&F&\text {significance F}\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & &\\\hline\end{array}
 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513\end{array}  Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \end{array}       -Referring to Instruction 12-11,the normality of error assumption appears to have been violated.  Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \end{array}  ANOVA  \begin{array}{|l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \end{array}       -Referring to Instruction 12-11,the normality of error assumption appears to have been violated.

-Referring to Instruction 12-11,the normality of error assumption appears to have been violated.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
62
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what is the value of the standard error of the estimate?
Referring to Instruction 12-10,what is the value of the standard error of the estimate?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
63
In performing a regression analysis involving two numerical variables,you are assuming

A)the variances of X and Y are equal.
B)that X and Y are independent.
C)the variation around the line of regression is the same for each X value.
D)All of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
64
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard error of estimate? Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard error of estimate? Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard error of estimate?
Referring to Instruction 12-11,what is the standard error of estimate?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
65
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the correlation coefficient is ________.
Referring to Instruction 12-5,the correlation coefficient is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
66
Instruction 12-12
The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:
 Regression Statistics  Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square  Standard 0.3342 Error 30 Observations  ANOVA df SS  MS F Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072 Coefficients  Standard  Error t Stat P-value  Lower 95%  Upper 95%  Intercept  Applications  Recorded 0.40240.12363.25590.00300.14920.6555\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.9447 \\\text { R Square } & 0.8924 \\\text { Adjusted R } & 0.8886 \\\text { Square } & \\\text { Standard } & 0.3342 \\\text { Error } & 30 \\\text { Observations } & \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r r r } \hline & d f & { \text { SS } } & { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\F\end{array} } \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.1282 & 0.1117 & & \\\text { Total } & 29 & 29.072 & & & \\\hline\end{array}\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\\text { Error }\end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \begin{array} { l } \text { Intercept } \\\text { Applications } \\\text { Recorded }\end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\hline\end{array}\end{array} Note: 4.3946E-15 is 4.3946 x 10-15.
 <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the error sum of squares (SSE)of the above regression is</strong> A)0.1117. B)29.0720. C)25.9438. D)3.1282.   <strong>Instruction 12-12 The manager of the purchasing department of a large savings and loan organization would like to develop a model to predict the amount of time (measured in hours)it takes to record a loan application.Data are collected from a sample of 30 days,and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r } \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & 30 \\ \text { Observations } & \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r } \hline & d f & { \text { SS } } &  { \text { MS } } & F & { \begin{array} { c } \text { Significance } \\ F \end{array} } \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r } \hline & \text { Coefficients } & \begin{array} { c } \text { Standard } \\ \text { Error } \end{array} & t \text { Stat } & P \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \begin{array} { l } \text { Intercept } \\ \text { Applications } \\ \text { Recorded } \end{array} & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \hline \end{array} \end{array}  Note: 4.3946E-15 is 4.3946 x 10<sup>-15</sup>.      -Referring to Instruction 12-12,the error sum of squares (SSE)of the above regression is</strong> A)0.1117. B)29.0720. C)25.9438. D)3.1282.

-Referring to Instruction 12-12,the error sum of squares (SSE)of the above regression is

A)0.1117.
B)29.0720.
C)25.9438.
D)3.1282.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
67
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the coefficient of determination is ________.
Referring to Instruction 12-5,the coefficient of determination is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
68
Which of the following assumptions concerning the probability distribution of the random error term is stated incorrectly?

A)The variance of the distribution increases as X increases.
B)The mean of the distribution is 0.
C)The errors are independent.
D)The distribution is normal.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
69
The residuals represent

A)the square root of the slope.
B)the difference between the actual Y values and the predicted Y values.
C)the difference between the actual Y values and the mean of Y.
D)the predicted value of Y for the average X value.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
70
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what is the value of the coefficient of determination?
Referring to Instruction 12-10,what is the value of the coefficient of determination?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
71
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
Instruction 12-10 The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:   Referring to Instruction 12-10,what is the value of the coefficient of correlation?
Referring to Instruction 12-10,what is the value of the coefficient of correlation?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
72
Instruction 12-10
The management of a chain electronic store would like to develop a model for predicting the weekly sales (in thousands of dollars)for individual stores based on the number of customers who made purchases.A random sample of 12 stores yields the following results:
 Customers  Sales (Thousands of Dollars) 90711.2092611.057138.217419.217809.4269810.085106.735297.024606.128729.526507.536037.25\begin{array} { | c | c | } \hline \text { Customers } & \text { Sales (Thousands of Dollars) } \\\hline 907 & 11.20 \\\hline 926 & 11.05 \\\hline 713 & 8.21 \\\hline 741 & 9.21 \\\hline 780 & 9.42 \\\hline 698 & 10.08 \\\hline 510 & 6.73 \\\hline 529 & 7.02 \\\hline 460 & 6.12 \\\hline 872 & 9.52 \\\hline 650 & 7.53 \\\hline 603 & 7.25 \\\hline\end{array}

-Referring to Instruction 12-10,the residual plot indicates possible violation of which assumptions?

A)Homoscedasticity.
B)Normality.
C)Linearity of the relationship.
D)Autocorrelation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
73
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{lr|r|r|r|r}\hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Emor t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)74.67% of the variation in revenue can be explained by the variation in the number of downloads. B)75.54% of the variation in revenue can be explained by the variation in the number of downloads. C)75.54% of the variation in the number of downloads can be explained by the variation in revenue. D)74.67% of the variation in the number of downloads can be explained by the variation in revenue.   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)74.67% of the variation in revenue can be explained by the variation in the number of downloads. B)75.54% of the variation in revenue can be explained by the variation in the number of downloads. C)75.54% of the variation in the number of downloads can be explained by the variation in revenue. D)74.67% of the variation in the number of downloads can be explained by the variation in revenue.

-Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?

A)74.67% of the variation in revenue can be explained by the variation in the number of downloads.
B)75.54% of the variation in revenue can be explained by the variation in the number of downloads.
C)75.54% of the variation in the number of downloads can be explained by the variation in revenue.
D)74.67% of the variation in the number of downloads can be explained by the variation in revenue.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
74
Based on the residual plot below,you will conclude that there might be a violation of which of the following assumptions? <strong>Based on the residual plot below,you will conclude that there might be a violation of which of the following assumptions?  </strong> A)Homoscedasticity. B)Independence of errors. C)Linearity of the relationship. D)Normality of errors.

A)Homoscedasticity.
B)Independence of errors.
C)Linearity of the relationship.
D)Normality of errors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
75
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
df SS  MS F Significance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{lr|r|r|r|r}\hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & & & \\\hline\end{array}

 Coefficients  Standard Emor t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)72.8% of the variation in the video unit sales can be explained by the variation in the box office gross. B)71.8% of the variation in the video unit sales can be explained by the variation in the box office gross. C)71.8% of the variation in the box office gross can be explained by the variation in the video unit sales. D)72.8% of the variation in the box office gross can be explained by the variation in the video unit sales.   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{lr|r|r|r|r} \hline & d f & {\text { SS }} &{\text { MS }} & F & \text { Significance } F \\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Emor } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?</strong> A)72.8% of the variation in the video unit sales can be explained by the variation in the box office gross. B)71.8% of the variation in the video unit sales can be explained by the variation in the box office gross. C)71.8% of the variation in the box office gross can be explained by the variation in the video unit sales. D)72.8% of the variation in the box office gross can be explained by the variation in the video unit sales.

-Referring to Instruction 12-11,which of the following is the correct interpretation for the coefficient of determination?

A)72.8% of the variation in the video unit sales can be explained by the variation in the box office gross.
B)71.8% of the variation in the video unit sales can be explained by the variation in the box office gross.
C)71.8% of the variation in the box office gross can be explained by the variation in the video unit sales.
D)72.8% of the variation in the box office gross can be explained by the variation in the video unit sales.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
76
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
 Regression Statistics  Multiple R 0.8691 R Square 0.7554 Adjusted R Square 0.7467 Standard Error 44.4765 Observations 30.0000\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8691 \\\hline \text { R Square } & 0.7554 \\\hline \text { Adjusted R Square } & 0.7467 \\\hline \text { Standard Error } & 44.4765 \\\text { Observations } & 30.0000 \\\hline\end{array}
ANOVA
dfSSMSFsignificance F Regression 1171062.9193171062.919386.47590.0000 Residual 2855388.43091978.1582 Total 29226451.3503\begin{array}{l|r|r|r|r|r|}\hline&df&SS&MS&F&\text {significance F}\\\hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\\hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\\hline \text { Total } & 29 & 226451.3503 & &\\\hline\end{array}
 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 95.061426.91833.53150.0015150.200939.9218 Download 3.72970.40119.29920.00002.90824.5513\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\\hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\\hline\end{array}  <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{|lr|} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following assumptions appears to have been violated?</strong> A)Independence of errors. B)Normality of error. C)Homoscedasticity. D)None of the above.   <strong>Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:  \begin{array}{|lr|} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8691 \\ \hline \text { R Square } & 0.7554 \\ \hline \text { Adjusted R Square } & 0.7467 \\ \hline \text { Standard Error } & 44.4765 \\ \text { Observations } & 30.0000 \\ \hline \end{array}  ANOVA  \begin{array}{l|r|r|r|r|r|} \hline&df&SS&MS&F&\text {significance F}\\ \hline \text { Regression } & 1 & 171062.9193 & 171062.9193 & 86.4759 & 0.0000 \\ \hline \text { Residual } & 28 & 55388.4309 & 1978.1582 & & \\ \hline \text { Total } & 29 & 226451.3503 & &\\\hline \end{array}   \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -95.0614 & 26.9183 & -3.5315 & 0.0015 & -150.2009 & -39.9218 \\ \hline \text { Download } & 3.7297 & 0.4011 & 9.2992 & 0.0000 & 2.9082 & 4.5513 \\ \hline \end{array}       -Referring to Instruction 12-11,which of the following assumptions appears to have been violated?</strong> A)Independence of errors. B)Normality of error. C)Homoscedasticity. D)None of the above.

-Referring to Instruction 12-11,which of the following assumptions appears to have been violated?

A)Independence of errors.
B)Normality of error.
C)Homoscedasticity.
D)None of the above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
77
Instruction 12-6
The following Microsoft Excel tables are obtained when "Score received on an exam (measured in percentage points)" (Y)is regressed on "percentage attendance" (X)for 22 students in a Statistics for Business and Economics course.
 Regression Statistics  Multiple R 0.142620229 R Square 0.02034053 Adjusted R Square 0.028642444 Standard Error 20.25979924 Observations 22 Coefficients  Standard Error  T Stat  P-value  Intercept 39.3902730937.243476591.0576422160.302826622 Attendance 0.3405835730.528524520.6444044890.526635689\begin{array}{l}\begin{array} { | l | r | } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.142620229 \\\hline \text { R Square } & 0.02034053 \\\hline \text { Adjusted R Square } & - 0.028642444 \\\hline \text { Standard Error } & 20.25979924 \\\hline \text { Observations } & 22 \\\hline\end{array}\\\begin{array} { | l | r | r | l | l | } \hline & \text { Coefficients } & \text { Standard Error } & { \text { T Stat } } & \text { P-value } \\\hline \text { Intercept } & 39.39027309 & 37.24347659 & 1.057642216 & 0.302826622 \\\hline \text { Attendance } & 0.340583573 & 0.52852452 & 0.644404489 & 0.526635689 \\\hline\end{array}\end{array}

-Referring to Instruction 12-6,which of the following statements is true?

A)14.2% of the total variability in percentage attendance can be explained by score received.
B)2% of the total variability in score received can be explained by percentage attendance.
C)2% of the total variability in percentage attendance can be explained by score received.
D)14.26% of the total variability in score received can be explained by percentage attendance.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
78
Instruction 12-11
A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:
Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard deviation around the regression line? Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard deviation around the regression line? Instruction 12-11 A computer software developer would like to use the number of downloads (in thousands)for the trial version of his new shareware to predict the amount of revenue (in thousands of dollars)he can make on the full version of the new shareware.Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different sharewares that he has developed:       Referring to Instruction 12-11,what is the standard deviation around the regression line?
Referring to Instruction 12-11,what is the standard deviation around the regression line?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
79
If the plot of the residuals is fan shaped,which assumption is violated?

A)Homoscedasticity.
B)Independence of errors.
C)Normality.
D)No assumptions are violated,the graph should resemble a fan.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
80
Instruction 12-5
The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:
Instruction 12-5 The managing partner of an advertising agency believes that his company's sales are related to the industry sales.He uses Microsoft<sup></sup> Excel's Data Analysis tool to analyse the last four years of quarterly data with the following results:   Referring to Instruction 12-5,the standard error of the estimated slope coefficient is ________.
Referring to Instruction 12-5,the standard error of the estimated slope coefficient is ________.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 196 في هذه المجموعة.