Deck 13: Roots of Polynomial Equations

ملء الشاشة (f)
exit full mode
سؤال
Express f(x)f ( x ) in the form anxn+an1xn1++a1x+a0a _ { n } x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 } . Find a quadratic function that has a maximum value of 2 and that has - 2 and 4 as zeros.

A) f(x)=49x2+29x169f ( x ) = - \frac { 4 } { 9 } x ^ { 2 } + \frac { 2 } { 9 } x - \frac { 16 } { 9 }
B) f(x)=92x2169x+49f ( x ) = - \frac { 9 } { 2 } x ^ { 2 } - \frac { 16 } { 9 } x + \frac { 4 } { 9 }
C) f(x)=29x2+49x+169f ( x ) = - \frac { 2 } { 9 } x ^ { 2 } + \frac { 4 } { 9 } x + \frac { 16 } { 9 }
D) f(x)=29x294x169f ( x ) = \frac { 2 } { 9 } x ^ { 2 } - \frac { 9 } { 4 } x - \frac { 16 } { 9 }
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Determine the constants (denoted with capital letters) so that the equation is an identity. 8x+3(x+3)2=Ax+3+B(x+3)2\frac { 8 x + 3 } { ( x + 3 ) ^ { 2 } } = \frac { A } { x + 3 } + \frac { B } { ( x + 3 ) ^ { 2 } }

A) A=7B=21\begin{array} { l } A = 7 \\B = 21\end{array}
B) A=7B=22\begin{array} { l } A = 7 \\B = 22\end{array}
C) A=8B=21\begin{array} { l } A = - 8 \\B = - 21\end{array}
D) A=8B=21\begin{array} { l } A = 8 \\B = - 21\end{array}
E) A=8B=21\begin{array} { l } A = - 8 \\B = 21\end{array}
سؤال
Find a quadratic equation with rational coefficients, one of whose roots is the given number. Write your answer so that the coefficient of
x2x ^ { 2 } is 1. r1=1+2r _ { 1 } = 1 + \sqrt { 2 }

A) x23x1=0x ^ { 2 } - 3 x - 1 = 0
B) x22x8=0x ^ { 2 } - 2 x - 8 = 0
C) x22x1=0x ^ { 2 } - 2 x - 1 = 0
D) x22x9=0x ^ { 2 } - 2 x - 9 = 0
E) x22x3=0x ^ { 2 } - 2 x - 3 = 0
سؤال
List the distinct roots of the following equation. For both repeated and single roots, specify their multiplicity. Enter (r1,m1),(r2,m2)\left( r _ { 1 } , m _ { 1 } \right) , \left( r _ { 2 } , m _ { 2 } \right) , ... where r1,r2r _ { 1 } , r _ { 2 } etc. are the roots of the polynomial and m1m _ { 1 } is the multiplicity of r1,m2r _ { 1 } , m _ { 2 } is the multiplicity of r2r _ { 2 } etc. (x3)(x2)6(x9)=0( x - 3 ) ( x - 2 ) ^ { 6 } ( x - 9 ) = 0

A) (3, 1), (2, 4), (9, 1)
B) (3, 1), (2, 1), (9, 1)
C) (3, 1), (2, 5), (9, 1)
D) (3, 1), (2, 6), (9, 1)
E) (3, 4), (2, 4), (9, 4)
سؤال
Use long division to find the quotient and the remainder. 2x6+2x1\frac { 2 x ^ { 6 } + 2 } { x - 1 }

A)  quotient: 2x52x4+2x32x2+2x2; remainder: 0\text { quotient: } 2 x ^ { 5 } - 2 x ^ { 4 } + 2 x ^ { 3 } - 2 x ^ { 2 } + 2 x - 2 \text {; remainder: } 0
B)  quotient: 2x5+2x4+2x3+2x2+2x+2; remainder: 4\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 2 \text {; remainder: } 4
C)  quotient: 2x5+2x3+2x+2; remainder: 2\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 3 } + 2 x + 2 ; \text { remainder: } 2
D)  quotient: 2x5+2x42x3+2x22x+2; remainder: 4\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 4 } - 2 x ^ { 3 } + 2 x ^ { 2 } - 2 x + 2 \text {; remainder: } 4
E)  quotient: 2x5+2x4+2x3+2x2+2x+2; remainder: 0\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 2 \text {; remainder: } 0
سؤال
Find the rational roots and solve the equation. 4x 3 + x 2 - 20x - 5 = 0

A) ±5,14\pm 5 , - \frac { 1 } { 4 }
B) 15,±4- \frac { 1 } { \sqrt { 5 } } , \pm 4
C) ±5,4\pm \sqrt { 5 } , - 4
D) ±5,14\pm \sqrt { 5 } , - \frac { 1 } { 4 }
E) ±5,14\pm \sqrt { 5 } , \frac { 1 } { 4 }
سؤال
Use synthetic division to find the quotient and the remainder. 4x4+16x3+24x2+16x+4x+1\frac { 4 x ^ { 4 } + 16 x ^ { 3 } + 24 x ^ { 2 } + 16 x + 4 } { x + 1 }

A)  quotient: 4x3+20x2+12x+4; remainder: 0\text { quotient: } 4 x ^ { 3 } + 20 x ^ { 2 } + 12 x + 4 \text {; remainder: } 0
B)  quotient: 4x3+12x2+12x+4; remainder: 0\text { quotient: } 4 x ^ { 3 } + 12 x ^ { 2 } + 12 x + 4 \text {; remainder: } 0
C)  quotient: 4x3+4x2+12x12; remainder: 3\text { quotient: } 4 x ^ { 3 } + 4 x ^ { 2 } + 12 x - 12 \text {; remainder: } 3
D)  quotient: 4x3+12x2+12x+4; remainder: 3\text { quotient: } 4 x ^ { 3 } + 12 x ^ { 2 } + 12 x + 4 \text {; remainder: } 3
E)  quotient: 4x312x2+4x+12; remainder: 0\text { quotient: } 4 x ^ { 3 } - 12 x ^ { 2 } + 4 x + 12 \text {; remainder: } 0
سؤال
Determine the constants (denoted by capital letters) so that the equation is an identity. 9x14(x2)(x+2)=Ax2+Bx+2\frac { 9 x - 14 } { ( x - 2 ) ( x + 2 ) } = \frac { A } { x - 2 } + \frac { B } { x + 2 }

A) A=1B=7\begin{array} { l } A = 1 \\B = 7\end{array}
B) A=1B=8\begin{array} { l } A = - 1 \\B = 8\end{array}
C) A=2B=8\begin{array} { l } A = 2 \\B = 8\end{array}
D) A=8B=1\begin{array} { l } A = 8 \\B = 1\end{array}
E) A=1B=8\begin{array} { l } A = 1 \\B = 8\end{array}
سؤال
Use Descartes's rule of signs to obtain information regarding the roots of the equation. x9+5=0x ^ { 9 } + 5 = 0

A) 1 negative root, 8 complex roots
B) 9 complex roots
C) 1 negative root, 9 complex roots
D) 1 positive root, 1 negative real root, 7 complex roots
E) 1 positive root, 8 complex roots
سؤال
Find the rational roots and solve the equation. 3x 3 - 19x 2 + 21x - 5 = 0

A) 13,2,5\frac { 1 } { 3 } , 2,5
B) ±13,±1\pm \frac { 1 } { 3 } , \pm 1
C) 13,1,5\frac { 1 } { 3 } , 1,5
D) 23,1,5\frac { 2 } { 3 } , 1,5
E) 13,2,5- \frac { 1 } { 3 } , 2,5
سؤال
Use synthetic division to find the quotient and the remainder. 5x2+2x1x1\frac { 5 x ^ { 2 } + 2 x - 1 } { x - 1 }

A)  quotient: 6x+5; remainder: 7\text { quotient: } - 6 x + 5 \text {; remainder: } - 7
B)  quotient: 5x+7; remainder: 6\text { quotient: } 5 x + 7 \text {; remainder: } 6
C)  quotient: 7x+6; remainder: 7\text { quotient: } 7 x + 6 \text {; remainder: } 7
D)  quotient: 7x5; remainder: 6\text { quotient: } 7 x - 5 \text {; remainder: } 6
E)  quotient: 5x+7; remainder: 8\text { quotient: } 5 x + 7 \text {; remainder: } - 8
سؤال
Use a graph to determine whether the equation has at least one real root. x23x+6.26=0x ^ { 2 } - 3 x + 6.26 = 0

A) three real roots
B) two real roots
C) no real roots
D) one real root
E) It is not possible to make this determination by graphing the equation.
سؤال
Use long division to find the quotient and the remainder. 6x33x+32x+1\frac { 6 x ^ { 3 } - 3 x + 3 } { 2 x + 1 }

A)  quotient: 3x232x34; remainder: 154\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x - \frac { 3 } { 4 } ; \text { remainder: } \frac { 15 } { 4 }
B)  quotient: 3x232x+14; remainder: 154\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x + \frac { 1 } { 4 } ; \text { remainder: } \frac { 15 } { 4 }
C)  quotient: 15x2+32x14; remainder: 34\text { quotient: } 15 x ^ { 2 } + \frac { 3 } { 2 } x - \frac { 1 } { 4 } ; \text { remainder: } \frac { 3 } { 4 }
D)  quotient: 3x232x34; remainder: 154\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x - \frac { 3 } { 4 } ; \text { remainder: } - \frac { 15 } { 4 }
E)  quotient: 3x232x34; remainder: 74\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x - \frac { 3 } { 4 } ; \text { remainder: } \frac { 7 } { 4 }
سؤال
Find the rational roots and solve the equation. 4x 3 - 10x 2 - 25x + 4 = 0

A) 3±132,4\frac { - 3 \pm \sqrt { 13 } } { 2 } , 4
B) 3±154,4\frac { - 3 \pm \sqrt { 15 } } { 4 } , 4
C) 3±134,4\frac { - 3 \pm \sqrt { 13 } } { 4 } , - 4
D) 3±134,4\frac { - 3 \pm \sqrt { 13 } } { 4 } , 4
E) 3±134,4\frac { 3 \pm \sqrt { 13 } } { 4 } , 4
سؤال
Determine which of the following real numbers is a root of the equation. 12x8=13612 x - 8 = 136

A) x=812x = \frac { 8 } { 12 }
B) x=12x = 12
C) x=20x = 20
D) x=14x = 14
E) x=0x = 0
سؤال
Determine which of the following real numbers is a root of the equation. x22x3=0x ^ { 2 } - 2 x - 3 = 0

A) x=1+4x = 1 + \sqrt { 4 }
B) x=14x = 1 - \sqrt { 4 }
C) x=15x = 1 - \sqrt { 5 }
D) x=0x = 0
E) x=16x = 1 - \sqrt { 6 }
سؤال
One root of the equation is given. Determine the remaining roots. x39x2+28x40=0;x=2+2ix ^ { 3 } - 9 x ^ { 2 } + 28 x - 40 = 0 ; x = 2 + 2 i

A) x=2+2i,4x = 2 + 2 i , 4
B) x=22i,5x = 2 - 2 i , - 5
C) x=2+2i,5x = 2 + 2 i , - 5
D) x=22i,5x = 2 - 2 i , 5
E) x=2+2i,9x = 2 + 2 i , 9
سؤال
The equation has exactly one positive root. Locate the root between successive hundredths. x 3 - 3x 2 + 3x - 12 = 0

A) between 3.11 and 3.12
B) between 4.31 and 4.32
C) between 2.22 and 2.23
D) between 3.22 and 3.23
E) between 2.02 and 2.03
سؤال
Use long division to find the quotient and the remainder. x3x2+3x6x2\frac { x ^ { 3 } - x ^ { 2 } + 3 x - 6 } { x - 2 }

A)  quotient: x2x5; remainder: 2\text { quotient: } x ^ { 2 } - x - 5 \text {; remainder: } 2
B)  quotient: x2+x+5; remainder: 14\text { quotient: } x ^ { 2 } + x + 5 \text {; remainder: } 14
C)  quotient: x2+x+2; remainder: 5\text { quotient: } x ^ { 2 } + x + 2 \text {; remainder: } - 5
D)  quotient: x2+x+5; remainder: 4\text { quotient: } x ^ { 2 } + x + 5 \text {; remainder: } 4
E)  quotient: x2+x5; remainder: 6\text { quotient: } x ^ { 2 } + x - 5 \text {; remainder: } 6
سؤال
Determine upper and lower bounds for the real roots of the equation. 5x 4 - 10x - 12 = 0

A) 2 is an upper bound, - 1 is a lower bound
B) 8 is an upper bound, - 1 is a lower bound
C) 1 is an upper bound, - 2 is a lower bound
D) 2 is an upper bound, - 4 is a lower bound
E) 8 is an upper bound, - 4 is a lower bound
سؤال
Determine the constants (denoted by capital letters) so that the equation is an identity. x17x(x2+2)=Ax+Bx+Cx2+2\frac { x - 17 } { x \left( x ^ { 2 } + 2 \right) } = \frac { A } { x } + \frac { B x + C } { x ^ { 2 } + 2 }

A)
A=812B=1C=812\begin{array} { l } A = 8 \frac { 1 } { 2 } \\B = 1 \\C = 8 \frac { 1 } { 2 }\end{array} .
B)
A=812B=812C=1\begin{array} { l } A = - 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = 1\end{array}
C)
A=812B=812C=1\begin{array} { l } A = 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = - 1\end{array} .
D)
A=812B=812C=1\begin{array} { l } A = - 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = 1\end{array} .
E)
A=812B=812C=2\begin{array} { l } A = - 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = 2\end{array} .
سؤال
Factor the denominator of the given rational expression, and then find the partial fraction decomposition. 11x33x23\frac { 11 x - 3 \sqrt { 3 } } { x ^ { 2 } - 3 }

A) 11xx+3+33x3\frac { 11 x } { x + \sqrt { 3 } } + \frac { - 3 \sqrt { 3 } } { x - \sqrt { 3 } }
B) 4x+3+7x3\frac { 4 } { x + \sqrt { 3 } } + \frac { 7 } { x - \sqrt { 3 } }
C) 7x+3+4x3\frac { 7 } { x + 3 } + \frac { 4 } { x - 3 }
D) 7x+3+4x3\frac { 7 } { x + \sqrt { 3 } } + \frac { - 4 } { x - \sqrt { 3 } }
E) 7x+3+4x3\frac { 7 } { x + \sqrt { 3 } } + \frac { 4 } { x - \sqrt { 3 } }
سؤال
Factor the denominator of the given rational expression, and then find the partial fraction decomposition. 2x3+11x3x4+6x2+9\frac { 2 x ^ { 3 } + 11 x - 3 } { x ^ { 4 } + 6 x ^ { 2 } + 9 }

A) 5x+3(x2+3)2+2xx2+3\frac { - 5 x + 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 2 x } { x ^ { 2 } + 3 }
B) 5x3(x2+3)2+xx2+3\frac { 5 x - 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { x } { x ^ { 2 } + 3 }
C) 5x3(x2+3)2+2xx2+3\frac { 5 x - 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 2 x } { x ^ { 2 } + 3 }
D) 5x+3(x2+3)2+2xx2+3\frac { - 5 x + 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { 2 x } { x ^ { 2 } + 3 }
E) 5x3(x2+3)2+2xx2+3\frac { 5 x - 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { 2 x } { x ^ { 2 } + 3 }
سؤال
Determine which of the following polynomials is not reducible.

A) x2+18x ^ { 2 } + 18
B) x24x ^ { 2 } - 4
C) x21x ^ { 2 } - 1
D) x221x ^ { 2 } - 21
E) x218x ^ { 2 } - 18
سؤال
Factor the denominator of the given rational expression, and then find the partial fraction decomposition. 1x3+x244x+96\frac { 1 } { x ^ { 3 } + x ^ { 2 } - 44 x + 96 }

A) 111x3+112x4+1132x+8\frac { \frac { 1 } { 11 } } { x - 3 } + \frac { - \frac { 1 } { 12 } } { x - 4 } + \frac { \frac { 1 } { 132 } } { x + 8 }
B) 111x3+112x4+1132x+8\frac { - \frac { 1 } { 11 } } { x - 3 } + \frac { - \frac { 1 } { 12 } } { x - 4 } + \frac { \frac { 1 } { 132 } } { x + 8 }
C) 111x3+112x4+1132x+8\frac { \frac { 1 } { 11 } } { x - 3 } + \frac { - \frac { 1 } { 12 } } { x - 4 } + \frac { - \frac { 1 } { 132 } } { x + 8 }
D) 111x3+112x4+1132x+8\frac { - \frac { 1 } { 11 } } { x - 3 } + \frac { \frac { 1 } { 12 } } { x - 4 } + \frac { \frac { 1 } { 132 } } { x + 8 }
E) 111x3+112x4+1132x+8\frac { - \frac { 1 } { 11 } } { x - 3 } + \frac { \frac { 1 } { 12 } } { x - 4 } + \frac { - \frac { 1 } { 132 } } { x + 8 }
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 13: Roots of Polynomial Equations
1
Express f(x)f ( x ) in the form anxn+an1xn1++a1x+a0a _ { n } x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 } . Find a quadratic function that has a maximum value of 2 and that has - 2 and 4 as zeros.

A) f(x)=49x2+29x169f ( x ) = - \frac { 4 } { 9 } x ^ { 2 } + \frac { 2 } { 9 } x - \frac { 16 } { 9 }
B) f(x)=92x2169x+49f ( x ) = - \frac { 9 } { 2 } x ^ { 2 } - \frac { 16 } { 9 } x + \frac { 4 } { 9 }
C) f(x)=29x2+49x+169f ( x ) = - \frac { 2 } { 9 } x ^ { 2 } + \frac { 4 } { 9 } x + \frac { 16 } { 9 }
D) f(x)=29x294x169f ( x ) = \frac { 2 } { 9 } x ^ { 2 } - \frac { 9 } { 4 } x - \frac { 16 } { 9 }
f(x)=29x2+49x+169f ( x ) = - \frac { 2 } { 9 } x ^ { 2 } + \frac { 4 } { 9 } x + \frac { 16 } { 9 }
2
Determine the constants (denoted with capital letters) so that the equation is an identity. 8x+3(x+3)2=Ax+3+B(x+3)2\frac { 8 x + 3 } { ( x + 3 ) ^ { 2 } } = \frac { A } { x + 3 } + \frac { B } { ( x + 3 ) ^ { 2 } }

A) A=7B=21\begin{array} { l } A = 7 \\B = 21\end{array}
B) A=7B=22\begin{array} { l } A = 7 \\B = 22\end{array}
C) A=8B=21\begin{array} { l } A = - 8 \\B = - 21\end{array}
D) A=8B=21\begin{array} { l } A = 8 \\B = - 21\end{array}
E) A=8B=21\begin{array} { l } A = - 8 \\B = 21\end{array}
A=8B=21\begin{array} { l } A = 8 \\B = - 21\end{array}
3
Find a quadratic equation with rational coefficients, one of whose roots is the given number. Write your answer so that the coefficient of
x2x ^ { 2 } is 1. r1=1+2r _ { 1 } = 1 + \sqrt { 2 }

A) x23x1=0x ^ { 2 } - 3 x - 1 = 0
B) x22x8=0x ^ { 2 } - 2 x - 8 = 0
C) x22x1=0x ^ { 2 } - 2 x - 1 = 0
D) x22x9=0x ^ { 2 } - 2 x - 9 = 0
E) x22x3=0x ^ { 2 } - 2 x - 3 = 0
x22x1=0x ^ { 2 } - 2 x - 1 = 0
4
List the distinct roots of the following equation. For both repeated and single roots, specify their multiplicity. Enter (r1,m1),(r2,m2)\left( r _ { 1 } , m _ { 1 } \right) , \left( r _ { 2 } , m _ { 2 } \right) , ... where r1,r2r _ { 1 } , r _ { 2 } etc. are the roots of the polynomial and m1m _ { 1 } is the multiplicity of r1,m2r _ { 1 } , m _ { 2 } is the multiplicity of r2r _ { 2 } etc. (x3)(x2)6(x9)=0( x - 3 ) ( x - 2 ) ^ { 6 } ( x - 9 ) = 0

A) (3, 1), (2, 4), (9, 1)
B) (3, 1), (2, 1), (9, 1)
C) (3, 1), (2, 5), (9, 1)
D) (3, 1), (2, 6), (9, 1)
E) (3, 4), (2, 4), (9, 4)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
5
Use long division to find the quotient and the remainder. 2x6+2x1\frac { 2 x ^ { 6 } + 2 } { x - 1 }

A)  quotient: 2x52x4+2x32x2+2x2; remainder: 0\text { quotient: } 2 x ^ { 5 } - 2 x ^ { 4 } + 2 x ^ { 3 } - 2 x ^ { 2 } + 2 x - 2 \text {; remainder: } 0
B)  quotient: 2x5+2x4+2x3+2x2+2x+2; remainder: 4\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 2 \text {; remainder: } 4
C)  quotient: 2x5+2x3+2x+2; remainder: 2\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 3 } + 2 x + 2 ; \text { remainder: } 2
D)  quotient: 2x5+2x42x3+2x22x+2; remainder: 4\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 4 } - 2 x ^ { 3 } + 2 x ^ { 2 } - 2 x + 2 \text {; remainder: } 4
E)  quotient: 2x5+2x4+2x3+2x2+2x+2; remainder: 0\text { quotient: } 2 x ^ { 5 } + 2 x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 2 \text {; remainder: } 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the rational roots and solve the equation. 4x 3 + x 2 - 20x - 5 = 0

A) ±5,14\pm 5 , - \frac { 1 } { 4 }
B) 15,±4- \frac { 1 } { \sqrt { 5 } } , \pm 4
C) ±5,4\pm \sqrt { 5 } , - 4
D) ±5,14\pm \sqrt { 5 } , - \frac { 1 } { 4 }
E) ±5,14\pm \sqrt { 5 } , \frac { 1 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
7
Use synthetic division to find the quotient and the remainder. 4x4+16x3+24x2+16x+4x+1\frac { 4 x ^ { 4 } + 16 x ^ { 3 } + 24 x ^ { 2 } + 16 x + 4 } { x + 1 }

A)  quotient: 4x3+20x2+12x+4; remainder: 0\text { quotient: } 4 x ^ { 3 } + 20 x ^ { 2 } + 12 x + 4 \text {; remainder: } 0
B)  quotient: 4x3+12x2+12x+4; remainder: 0\text { quotient: } 4 x ^ { 3 } + 12 x ^ { 2 } + 12 x + 4 \text {; remainder: } 0
C)  quotient: 4x3+4x2+12x12; remainder: 3\text { quotient: } 4 x ^ { 3 } + 4 x ^ { 2 } + 12 x - 12 \text {; remainder: } 3
D)  quotient: 4x3+12x2+12x+4; remainder: 3\text { quotient: } 4 x ^ { 3 } + 12 x ^ { 2 } + 12 x + 4 \text {; remainder: } 3
E)  quotient: 4x312x2+4x+12; remainder: 0\text { quotient: } 4 x ^ { 3 } - 12 x ^ { 2 } + 4 x + 12 \text {; remainder: } 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
8
Determine the constants (denoted by capital letters) so that the equation is an identity. 9x14(x2)(x+2)=Ax2+Bx+2\frac { 9 x - 14 } { ( x - 2 ) ( x + 2 ) } = \frac { A } { x - 2 } + \frac { B } { x + 2 }

A) A=1B=7\begin{array} { l } A = 1 \\B = 7\end{array}
B) A=1B=8\begin{array} { l } A = - 1 \\B = 8\end{array}
C) A=2B=8\begin{array} { l } A = 2 \\B = 8\end{array}
D) A=8B=1\begin{array} { l } A = 8 \\B = 1\end{array}
E) A=1B=8\begin{array} { l } A = 1 \\B = 8\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
9
Use Descartes's rule of signs to obtain information regarding the roots of the equation. x9+5=0x ^ { 9 } + 5 = 0

A) 1 negative root, 8 complex roots
B) 9 complex roots
C) 1 negative root, 9 complex roots
D) 1 positive root, 1 negative real root, 7 complex roots
E) 1 positive root, 8 complex roots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the rational roots and solve the equation. 3x 3 - 19x 2 + 21x - 5 = 0

A) 13,2,5\frac { 1 } { 3 } , 2,5
B) ±13,±1\pm \frac { 1 } { 3 } , \pm 1
C) 13,1,5\frac { 1 } { 3 } , 1,5
D) 23,1,5\frac { 2 } { 3 } , 1,5
E) 13,2,5- \frac { 1 } { 3 } , 2,5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
11
Use synthetic division to find the quotient and the remainder. 5x2+2x1x1\frac { 5 x ^ { 2 } + 2 x - 1 } { x - 1 }

A)  quotient: 6x+5; remainder: 7\text { quotient: } - 6 x + 5 \text {; remainder: } - 7
B)  quotient: 5x+7; remainder: 6\text { quotient: } 5 x + 7 \text {; remainder: } 6
C)  quotient: 7x+6; remainder: 7\text { quotient: } 7 x + 6 \text {; remainder: } 7
D)  quotient: 7x5; remainder: 6\text { quotient: } 7 x - 5 \text {; remainder: } 6
E)  quotient: 5x+7; remainder: 8\text { quotient: } 5 x + 7 \text {; remainder: } - 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
12
Use a graph to determine whether the equation has at least one real root. x23x+6.26=0x ^ { 2 } - 3 x + 6.26 = 0

A) three real roots
B) two real roots
C) no real roots
D) one real root
E) It is not possible to make this determination by graphing the equation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
13
Use long division to find the quotient and the remainder. 6x33x+32x+1\frac { 6 x ^ { 3 } - 3 x + 3 } { 2 x + 1 }

A)  quotient: 3x232x34; remainder: 154\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x - \frac { 3 } { 4 } ; \text { remainder: } \frac { 15 } { 4 }
B)  quotient: 3x232x+14; remainder: 154\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x + \frac { 1 } { 4 } ; \text { remainder: } \frac { 15 } { 4 }
C)  quotient: 15x2+32x14; remainder: 34\text { quotient: } 15 x ^ { 2 } + \frac { 3 } { 2 } x - \frac { 1 } { 4 } ; \text { remainder: } \frac { 3 } { 4 }
D)  quotient: 3x232x34; remainder: 154\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x - \frac { 3 } { 4 } ; \text { remainder: } - \frac { 15 } { 4 }
E)  quotient: 3x232x34; remainder: 74\text { quotient: } 3 x ^ { 2 } - \frac { 3 } { 2 } x - \frac { 3 } { 4 } ; \text { remainder: } \frac { 7 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the rational roots and solve the equation. 4x 3 - 10x 2 - 25x + 4 = 0

A) 3±132,4\frac { - 3 \pm \sqrt { 13 } } { 2 } , 4
B) 3±154,4\frac { - 3 \pm \sqrt { 15 } } { 4 } , 4
C) 3±134,4\frac { - 3 \pm \sqrt { 13 } } { 4 } , - 4
D) 3±134,4\frac { - 3 \pm \sqrt { 13 } } { 4 } , 4
E) 3±134,4\frac { 3 \pm \sqrt { 13 } } { 4 } , 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
15
Determine which of the following real numbers is a root of the equation. 12x8=13612 x - 8 = 136

A) x=812x = \frac { 8 } { 12 }
B) x=12x = 12
C) x=20x = 20
D) x=14x = 14
E) x=0x = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
16
Determine which of the following real numbers is a root of the equation. x22x3=0x ^ { 2 } - 2 x - 3 = 0

A) x=1+4x = 1 + \sqrt { 4 }
B) x=14x = 1 - \sqrt { 4 }
C) x=15x = 1 - \sqrt { 5 }
D) x=0x = 0
E) x=16x = 1 - \sqrt { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
17
One root of the equation is given. Determine the remaining roots. x39x2+28x40=0;x=2+2ix ^ { 3 } - 9 x ^ { 2 } + 28 x - 40 = 0 ; x = 2 + 2 i

A) x=2+2i,4x = 2 + 2 i , 4
B) x=22i,5x = 2 - 2 i , - 5
C) x=2+2i,5x = 2 + 2 i , - 5
D) x=22i,5x = 2 - 2 i , 5
E) x=2+2i,9x = 2 + 2 i , 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
18
The equation has exactly one positive root. Locate the root between successive hundredths. x 3 - 3x 2 + 3x - 12 = 0

A) between 3.11 and 3.12
B) between 4.31 and 4.32
C) between 2.22 and 2.23
D) between 3.22 and 3.23
E) between 2.02 and 2.03
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
19
Use long division to find the quotient and the remainder. x3x2+3x6x2\frac { x ^ { 3 } - x ^ { 2 } + 3 x - 6 } { x - 2 }

A)  quotient: x2x5; remainder: 2\text { quotient: } x ^ { 2 } - x - 5 \text {; remainder: } 2
B)  quotient: x2+x+5; remainder: 14\text { quotient: } x ^ { 2 } + x + 5 \text {; remainder: } 14
C)  quotient: x2+x+2; remainder: 5\text { quotient: } x ^ { 2 } + x + 2 \text {; remainder: } - 5
D)  quotient: x2+x+5; remainder: 4\text { quotient: } x ^ { 2 } + x + 5 \text {; remainder: } 4
E)  quotient: x2+x5; remainder: 6\text { quotient: } x ^ { 2 } + x - 5 \text {; remainder: } 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
20
Determine upper and lower bounds for the real roots of the equation. 5x 4 - 10x - 12 = 0

A) 2 is an upper bound, - 1 is a lower bound
B) 8 is an upper bound, - 1 is a lower bound
C) 1 is an upper bound, - 2 is a lower bound
D) 2 is an upper bound, - 4 is a lower bound
E) 8 is an upper bound, - 4 is a lower bound
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
21
Determine the constants (denoted by capital letters) so that the equation is an identity. x17x(x2+2)=Ax+Bx+Cx2+2\frac { x - 17 } { x \left( x ^ { 2 } + 2 \right) } = \frac { A } { x } + \frac { B x + C } { x ^ { 2 } + 2 }

A)
A=812B=1C=812\begin{array} { l } A = 8 \frac { 1 } { 2 } \\B = 1 \\C = 8 \frac { 1 } { 2 }\end{array} .
B)
A=812B=812C=1\begin{array} { l } A = - 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = 1\end{array}
C)
A=812B=812C=1\begin{array} { l } A = 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = - 1\end{array} .
D)
A=812B=812C=1\begin{array} { l } A = - 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = 1\end{array} .
E)
A=812B=812C=2\begin{array} { l } A = - 8 \frac { 1 } { 2 } \\B = 8 \frac { 1 } { 2 } \\C = 2\end{array} .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
22
Factor the denominator of the given rational expression, and then find the partial fraction decomposition. 11x33x23\frac { 11 x - 3 \sqrt { 3 } } { x ^ { 2 } - 3 }

A) 11xx+3+33x3\frac { 11 x } { x + \sqrt { 3 } } + \frac { - 3 \sqrt { 3 } } { x - \sqrt { 3 } }
B) 4x+3+7x3\frac { 4 } { x + \sqrt { 3 } } + \frac { 7 } { x - \sqrt { 3 } }
C) 7x+3+4x3\frac { 7 } { x + 3 } + \frac { 4 } { x - 3 }
D) 7x+3+4x3\frac { 7 } { x + \sqrt { 3 } } + \frac { - 4 } { x - \sqrt { 3 } }
E) 7x+3+4x3\frac { 7 } { x + \sqrt { 3 } } + \frac { 4 } { x - \sqrt { 3 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
23
Factor the denominator of the given rational expression, and then find the partial fraction decomposition. 2x3+11x3x4+6x2+9\frac { 2 x ^ { 3 } + 11 x - 3 } { x ^ { 4 } + 6 x ^ { 2 } + 9 }

A) 5x+3(x2+3)2+2xx2+3\frac { - 5 x + 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 2 x } { x ^ { 2 } + 3 }
B) 5x3(x2+3)2+xx2+3\frac { 5 x - 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { x } { x ^ { 2 } + 3 }
C) 5x3(x2+3)2+2xx2+3\frac { 5 x - 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { - 2 x } { x ^ { 2 } + 3 }
D) 5x+3(x2+3)2+2xx2+3\frac { - 5 x + 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { 2 x } { x ^ { 2 } + 3 }
E) 5x3(x2+3)2+2xx2+3\frac { 5 x - 3 } { \left( x ^ { 2 } + 3 \right) ^ { 2 } } + \frac { 2 x } { x ^ { 2 } + 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
24
Determine which of the following polynomials is not reducible.

A) x2+18x ^ { 2 } + 18
B) x24x ^ { 2 } - 4
C) x21x ^ { 2 } - 1
D) x221x ^ { 2 } - 21
E) x218x ^ { 2 } - 18
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
25
Factor the denominator of the given rational expression, and then find the partial fraction decomposition. 1x3+x244x+96\frac { 1 } { x ^ { 3 } + x ^ { 2 } - 44 x + 96 }

A) 111x3+112x4+1132x+8\frac { \frac { 1 } { 11 } } { x - 3 } + \frac { - \frac { 1 } { 12 } } { x - 4 } + \frac { \frac { 1 } { 132 } } { x + 8 }
B) 111x3+112x4+1132x+8\frac { - \frac { 1 } { 11 } } { x - 3 } + \frac { - \frac { 1 } { 12 } } { x - 4 } + \frac { \frac { 1 } { 132 } } { x + 8 }
C) 111x3+112x4+1132x+8\frac { \frac { 1 } { 11 } } { x - 3 } + \frac { - \frac { 1 } { 12 } } { x - 4 } + \frac { - \frac { 1 } { 132 } } { x + 8 }
D) 111x3+112x4+1132x+8\frac { - \frac { 1 } { 11 } } { x - 3 } + \frac { \frac { 1 } { 12 } } { x - 4 } + \frac { \frac { 1 } { 132 } } { x + 8 }
E) 111x3+112x4+1132x+8\frac { - \frac { 1 } { 11 } } { x - 3 } + \frac { \frac { 1 } { 12 } } { x - 4 } + \frac { - \frac { 1 } { 132 } } { x + 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 25 في هذه المجموعة.