Deck 8: Differential Equations

ملء الشاشة (f)
exit full mode
سؤال
A desert preserve in the southwest is known for its populations of coyotes and road runners.The growth rate for each population can be modeled by this pair of differential equations: dRdt=2R0.2RCdCdt=1.4C+0.02RC\begin{array} { l } \frac { d R } { d t } = 2 R - 0.2 R C \\\frac { d C } { d t } = - 1.4 C + 0.02 R C\end{array} where C is the number of coyotes and R is the number of road runners.Find the equilibrium populations for this model.(Hint: These are the populations for which dRdt=dCdt=0\frac { d R } { d t } = \frac { d C } { d t } = 0 ).

A)60 coyotes,15 road runners
B)10 coyotes,70 road runners
C)15 coyotes,60 road runners
D)70 coyotes,10 road runners
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the general solution of dydx=7y\frac { d y } { d x } = 7 y .

A)y = ln x + C
B) y=e7x+Cy = e ^ { 7 x } + C
C)y = 7x + C
D) y=Ce7xy = C e ^ { 7 x }
سؤال
Solve the given first-order linear initial value problem. yn+1=yn;y0=1- y _ { n + 1 } = y _ { n } ; y _ { 0 } = 1

A) yn=1y _ { n } = 1
B) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n + 1 }
C) yn=(1)ny _ { n } = ( - 1 ) ^ { n }
D) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n } + 1
سؤال
Find the general solution of the given first-order linear differential equation. dydx+9yx=4x\frac { d y } { d x } + \frac { 9 y } { x } = 4 x

A) y=x211+Cx9y = \frac { x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
B) y=4x211+Cx11y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 11 } }
C) y=4x211+Cx9y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
D) y=11x24+Cx9y = \frac { 11 x ^ { 2 } } { 4 } + \frac { C } { x ^ { 9 } }
سؤال
The price of a certain house is currently $260,000.Suppose it is estimated that after t months,the price p(t)p ( t ) will be increasing at the rate of 0.01p(t)+1,000t0.01 p ( t ) + 1,000 t dollars per month.
In 7 months from now,to the nearest whole dollar,the price of the house will be $303,934.
سؤال
Use Euler's method with the step size h=0.2h = 0.2 to estimate the solution y(1)y ( 1 ) of the given initial value problem.Round your answer to two decimal places. y=xy4x+y;y(0)=4y ^ { \prime } = \frac { x - y } { 4 x + y } ; y ( 0 ) = 4

A)1.64
B)4.92
C)6.56
D)3.28
سؤال
Find the general solution of dydx=x3+9\frac { d y } { d x } = x ^ { 3 } + 9 .

A)y = 9x + C
B) y=4x4+9x+Cy = 4 x ^ { 4 } + 9 x + C
C) y=3x2+Cy = 3 x ^ { 2 } + C
D) y=x44+9x+Cy = \frac { x ^ { 4 } } { 4 } + 9 x + C
سؤال
Find the general solution of the given first-order linear differential equation. dydx+y20x=x1920ex\frac { d y } { d x } + \frac { y } { 20 x } = \sqrt [ 20 ] { x ^ { 19 } } e ^ { x }

A) y=exx1/20+Cy = \frac { e ^ { x } } { x ^ { 1 / 20 } } + C
B) y=ex(x1)+Cx20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 20 } }
C) y=x1/20ex(x1)+Cy = x ^ { 1 / 20 } e ^ { x } ( x - 1 ) + C
D) y=ex(x1)+Cx1/20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 1 / 20 } }
سؤال
Find the general solution of dydx=19xy2\frac { d y } { d x } = \frac { 19 x } { y ^ { 2 } } .

A) y=Cy = C
B) y=57x22+C3y = \sqrt [ 3 ] { \frac { 57 x ^ { 2 } } { 2 } + C }
C) y=(38x)23+C3y = \sqrt [ 3 ] { \frac { ( 38 x ) ^ { 2 } } { 3 } + C }
D) y=19x22+Cy = \frac { 19 x ^ { 2 } } { 2 } + C
سؤال
The first five terms of the initial value problem yn=yn12;y0=2y _ { n } = y _ { n - 1 } ^ { 2 } ; y _ { 0 } = 2 are 2,4,8,16,and 32.
سؤال
Find the particular solution of the given differential equation that satisfies the indicated condition: dydx=y26x\frac { d y } { d x } = y ^ { 2 } \sqrt { 6 - x } ; y = 1 when x = 6.

A) y=2(6x)3/233y = \frac { 2 ( 6 - x ) ^ { 3 / 2 } - 3 } { 3 }
B) y=32(6+x)3/23y = \frac { 3 } { 2 ( 6 + x ) ^ { 3 / 2 } - 3 }
C) y=32(6x)3/23y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } - 3 }
D) y=32(6x)3/2+3y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } + 3 }
سؤال
Write a differential equation describing the given situation.Define all variables you introduce.(Do not try to solve the differential equation at this time.)An investment grows at a rate of 3% of its size.

A)Let Q denote the investment and let t denote time; dQdt=0.03Q\frac { d Q } { d t } = 0.03 Q
B)Let Q denote the investment and let t denote time; dQdt=0.03t\frac { d Q } { d t } = 0.03 t
C)Let Q denote the investment and let t denote time; dQdt=0.3Q\frac { d Q } { d t } = 0.3 Q
D)Let Q denote the investment and let t denote time; dQdt=3Q\frac { d Q } { d t } = 3 Q
سؤال
Find an equation for the orthogonal trajectories of the given family of curves. 8x2+y=C8 x ^ { 2 } + y = C

A) ylnx16=Cy - \ln x ^ { 16 } = C
B) yxe1/16=Cy - x e ^ { 1 / 16 } = C
C) ylnx1/6=Cy - \ln x ^ { 1 / 6 } = C
D) lnyx1/6=C\ln y - x ^ { 1 / 6 } = C
سؤال
Find the particular solution of dydx=x2y35\frac { d y } { d x } = \frac { x ^ { 2 } y ^ { 3 } } { 5 } ,given y = 6 when x = 0.

A) y=2(x36)2y = \frac { 2 } { \left( x ^ { 3 } - 6 \right) ^ { 2 } }
B) y=4x6+6y = 4 x ^ { 6 } + 6
C) y=180524x3y = \sqrt { \frac { 180 } { 5 - 24 x ^ { 3 } } }
D) y=x33+6y = \frac { x ^ { 3 } } { 3 } + 6
سؤال
Find the particular solution of the given differential equation that satisfies the given condition. dydxy=2x2;y=1 when x=3\frac { d y } { d x } - y = 2 x ^ { 2 } ; y = 1 \text { when } x = 3

A) y=35ex3x2+2x+2y = \frac { 35 e ^ { x - 3 } } { x ^ { 2 } + 2 x + 2 }
B) y=35ex32(x2+2x+2)y = 35 e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
C) y=35ex+2(x2+2x+2)y = 35 e ^ { x } + 2 \left( x ^ { 2 } + 2 x + 2 \right)
D) y=Cex32(x2+2x+2)y = C e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
سؤال
Find the general solution of dydx=e7x\frac { d y } { d x } = e ^ { 7 x } .

A) y=e7x7+Cy = \frac { e ^ { 7 x } } { 7 } + C
B) y=(7x)eCy = \frac { ( 7 x ) ^ { e } } { C }
C) y=7xe7x+Cy = 7 x e ^ { 7 x } + C
D) y=Ce7x7y = \frac { C e ^ { 7 x } } { 7 }
سؤال
A dead body is discovered at 8:00 A.M.on Tuesday in a basement where the air temperature is 60F60 ^ { \circ } \mathrm { F } The temperature of the body at the time of discovery is 72F72 ^ { \circ } \mathrm { F } and 20 minutes later,the temperature is 71F71 ^ { \circ } \mathrm { F } The time of death was 6:00 A.M.on Tuesday.
سؤال
Find constants A and B so that the given expression yny _ { n } satisfies the specified difference equation. n2yn+nyn1=4n2n3;yn=An+Bn ^ { 2 } y _ { n } + n y _ { n - 1 } = 4 n - 2 n ^ { 3 } ; y _ { n } = A n + B

A) A=2,B=2A = 2 , B = 2
B) A=2,B=2A = - 2 , B = - 2
C) A=2,B=2A = 2 , B = - 2
D) A=2,B=2A = - 2 , B = 2
سؤال
Find the particular solution of dydx=x2\frac { d y } { d x } = x ^ { 2 } ,given y = 18 when x = 1.

A) y=x3353y = \frac { x ^ { 3 } } { 3 } - 53
B) y=x33533y = \frac { x ^ { 3 } } { 3 } - \frac { 53 } { 3 }
C) y=x33+18y = \frac { x ^ { 3 } } { 3 } + 18
D) y=x33+533y = \frac { x ^ { 3 } } { 3 } + \frac { 53 } { 3 }
سؤال
The intensity of light I(d)I ( d ) at a depth d below the surface of a body of water changes at a rate proportional to I.If the intensity at a depth of d=2.4d = 2.4 feet is half of the surface intensity I0I _ { 0 } to the nearest tenth of a foot,at what depth is the intensity 15%15 \% of I0?I _ { 0 } ?

A)6.6 feet
B)9.9 feet
C)13.2 feet
D)7.9 feet
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/20
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 8: Differential Equations
1
A desert preserve in the southwest is known for its populations of coyotes and road runners.The growth rate for each population can be modeled by this pair of differential equations: dRdt=2R0.2RCdCdt=1.4C+0.02RC\begin{array} { l } \frac { d R } { d t } = 2 R - 0.2 R C \\\frac { d C } { d t } = - 1.4 C + 0.02 R C\end{array} where C is the number of coyotes and R is the number of road runners.Find the equilibrium populations for this model.(Hint: These are the populations for which dRdt=dCdt=0\frac { d R } { d t } = \frac { d C } { d t } = 0 ).

A)60 coyotes,15 road runners
B)10 coyotes,70 road runners
C)15 coyotes,60 road runners
D)70 coyotes,10 road runners
10 coyotes,70 road runners
2
Find the general solution of dydx=7y\frac { d y } { d x } = 7 y .

A)y = ln x + C
B) y=e7x+Cy = e ^ { 7 x } + C
C)y = 7x + C
D) y=Ce7xy = C e ^ { 7 x }
y=Ce7xy = C e ^ { 7 x }
3
Solve the given first-order linear initial value problem. yn+1=yn;y0=1- y _ { n + 1 } = y _ { n } ; y _ { 0 } = 1

A) yn=1y _ { n } = 1
B) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n + 1 }
C) yn=(1)ny _ { n } = ( - 1 ) ^ { n }
D) yn=(1)n+1y _ { n } = ( - 1 ) ^ { n } + 1
yn=(1)ny _ { n } = ( - 1 ) ^ { n }
4
Find the general solution of the given first-order linear differential equation. dydx+9yx=4x\frac { d y } { d x } + \frac { 9 y } { x } = 4 x

A) y=x211+Cx9y = \frac { x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
B) y=4x211+Cx11y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 11 } }
C) y=4x211+Cx9y = \frac { 4 x ^ { 2 } } { 11 } + \frac { C } { x ^ { 9 } }
D) y=11x24+Cx9y = \frac { 11 x ^ { 2 } } { 4 } + \frac { C } { x ^ { 9 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
5
The price of a certain house is currently $260,000.Suppose it is estimated that after t months,the price p(t)p ( t ) will be increasing at the rate of 0.01p(t)+1,000t0.01 p ( t ) + 1,000 t dollars per month.
In 7 months from now,to the nearest whole dollar,the price of the house will be $303,934.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
6
Use Euler's method with the step size h=0.2h = 0.2 to estimate the solution y(1)y ( 1 ) of the given initial value problem.Round your answer to two decimal places. y=xy4x+y;y(0)=4y ^ { \prime } = \frac { x - y } { 4 x + y } ; y ( 0 ) = 4

A)1.64
B)4.92
C)6.56
D)3.28
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the general solution of dydx=x3+9\frac { d y } { d x } = x ^ { 3 } + 9 .

A)y = 9x + C
B) y=4x4+9x+Cy = 4 x ^ { 4 } + 9 x + C
C) y=3x2+Cy = 3 x ^ { 2 } + C
D) y=x44+9x+Cy = \frac { x ^ { 4 } } { 4 } + 9 x + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find the general solution of the given first-order linear differential equation. dydx+y20x=x1920ex\frac { d y } { d x } + \frac { y } { 20 x } = \sqrt [ 20 ] { x ^ { 19 } } e ^ { x }

A) y=exx1/20+Cy = \frac { e ^ { x } } { x ^ { 1 / 20 } } + C
B) y=ex(x1)+Cx20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 20 } }
C) y=x1/20ex(x1)+Cy = x ^ { 1 / 20 } e ^ { x } ( x - 1 ) + C
D) y=ex(x1)+Cx1/20y = \frac { e ^ { x } ( x - 1 ) + C } { x ^ { 1 / 20 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the general solution of dydx=19xy2\frac { d y } { d x } = \frac { 19 x } { y ^ { 2 } } .

A) y=Cy = C
B) y=57x22+C3y = \sqrt [ 3 ] { \frac { 57 x ^ { 2 } } { 2 } + C }
C) y=(38x)23+C3y = \sqrt [ 3 ] { \frac { ( 38 x ) ^ { 2 } } { 3 } + C }
D) y=19x22+Cy = \frac { 19 x ^ { 2 } } { 2 } + C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
10
The first five terms of the initial value problem yn=yn12;y0=2y _ { n } = y _ { n - 1 } ^ { 2 } ; y _ { 0 } = 2 are 2,4,8,16,and 32.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the particular solution of the given differential equation that satisfies the indicated condition: dydx=y26x\frac { d y } { d x } = y ^ { 2 } \sqrt { 6 - x } ; y = 1 when x = 6.

A) y=2(6x)3/233y = \frac { 2 ( 6 - x ) ^ { 3 / 2 } - 3 } { 3 }
B) y=32(6+x)3/23y = \frac { 3 } { 2 ( 6 + x ) ^ { 3 / 2 } - 3 }
C) y=32(6x)3/23y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } - 3 }
D) y=32(6x)3/2+3y = \frac { 3 } { 2 ( 6 - x ) ^ { 3 / 2 } + 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
12
Write a differential equation describing the given situation.Define all variables you introduce.(Do not try to solve the differential equation at this time.)An investment grows at a rate of 3% of its size.

A)Let Q denote the investment and let t denote time; dQdt=0.03Q\frac { d Q } { d t } = 0.03 Q
B)Let Q denote the investment and let t denote time; dQdt=0.03t\frac { d Q } { d t } = 0.03 t
C)Let Q denote the investment and let t denote time; dQdt=0.3Q\frac { d Q } { d t } = 0.3 Q
D)Let Q denote the investment and let t denote time; dQdt=3Q\frac { d Q } { d t } = 3 Q
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find an equation for the orthogonal trajectories of the given family of curves. 8x2+y=C8 x ^ { 2 } + y = C

A) ylnx16=Cy - \ln x ^ { 16 } = C
B) yxe1/16=Cy - x e ^ { 1 / 16 } = C
C) ylnx1/6=Cy - \ln x ^ { 1 / 6 } = C
D) lnyx1/6=C\ln y - x ^ { 1 / 6 } = C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the particular solution of dydx=x2y35\frac { d y } { d x } = \frac { x ^ { 2 } y ^ { 3 } } { 5 } ,given y = 6 when x = 0.

A) y=2(x36)2y = \frac { 2 } { \left( x ^ { 3 } - 6 \right) ^ { 2 } }
B) y=4x6+6y = 4 x ^ { 6 } + 6
C) y=180524x3y = \sqrt { \frac { 180 } { 5 - 24 x ^ { 3 } } }
D) y=x33+6y = \frac { x ^ { 3 } } { 3 } + 6
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find the particular solution of the given differential equation that satisfies the given condition. dydxy=2x2;y=1 when x=3\frac { d y } { d x } - y = 2 x ^ { 2 } ; y = 1 \text { when } x = 3

A) y=35ex3x2+2x+2y = \frac { 35 e ^ { x - 3 } } { x ^ { 2 } + 2 x + 2 }
B) y=35ex32(x2+2x+2)y = 35 e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
C) y=35ex+2(x2+2x+2)y = 35 e ^ { x } + 2 \left( x ^ { 2 } + 2 x + 2 \right)
D) y=Cex32(x2+2x+2)y = C e ^ { x - 3 } - 2 \left( x ^ { 2 } + 2 x + 2 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the general solution of dydx=e7x\frac { d y } { d x } = e ^ { 7 x } .

A) y=e7x7+Cy = \frac { e ^ { 7 x } } { 7 } + C
B) y=(7x)eCy = \frac { ( 7 x ) ^ { e } } { C }
C) y=7xe7x+Cy = 7 x e ^ { 7 x } + C
D) y=Ce7x7y = \frac { C e ^ { 7 x } } { 7 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
17
A dead body is discovered at 8:00 A.M.on Tuesday in a basement where the air temperature is 60F60 ^ { \circ } \mathrm { F } The temperature of the body at the time of discovery is 72F72 ^ { \circ } \mathrm { F } and 20 minutes later,the temperature is 71F71 ^ { \circ } \mathrm { F } The time of death was 6:00 A.M.on Tuesday.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find constants A and B so that the given expression yny _ { n } satisfies the specified difference equation. n2yn+nyn1=4n2n3;yn=An+Bn ^ { 2 } y _ { n } + n y _ { n - 1 } = 4 n - 2 n ^ { 3 } ; y _ { n } = A n + B

A) A=2,B=2A = 2 , B = 2
B) A=2,B=2A = - 2 , B = - 2
C) A=2,B=2A = 2 , B = - 2
D) A=2,B=2A = - 2 , B = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the particular solution of dydx=x2\frac { d y } { d x } = x ^ { 2 } ,given y = 18 when x = 1.

A) y=x3353y = \frac { x ^ { 3 } } { 3 } - 53
B) y=x33533y = \frac { x ^ { 3 } } { 3 } - \frac { 53 } { 3 }
C) y=x33+18y = \frac { x ^ { 3 } } { 3 } + 18
D) y=x33+533y = \frac { x ^ { 3 } } { 3 } + \frac { 53 } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
20
The intensity of light I(d)I ( d ) at a depth d below the surface of a body of water changes at a rate proportional to I.If the intensity at a depth of d=2.4d = 2.4 feet is half of the surface intensity I0I _ { 0 } to the nearest tenth of a foot,at what depth is the intensity 15%15 \% of I0?I _ { 0 } ?

A)6.6 feet
B)9.9 feet
C)13.2 feet
D)7.9 feet
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 20 في هذه المجموعة.