Deck 28: Graphs of Other Trigonometric Functions

ู…ู„ุก ุงู„ุดุงุดุฉ (f)
exit full mode
ุณุคุงู„
Determine whether the function below is even,odd,or neither.โ€‹ y=17tanโกxy = \frac { 1 } { 7 } \tan x โ€‹

A)Even
B)Odd
C)Neither
ุงุณุชุฎุฏู… ุฒุฑ ุงู„ู…ุณุงูุฉ ุฃูˆ
up arrow
down arrow
ู„ู‚ู„ุจ ุงู„ุจุทุงู‚ุฉ.
ุณุคุงู„
Consider the function given byโ€‹ y=xโˆ’cosโกxy=x-\cos x โ€‹ Use a graphing utility to select the graph of the function.
โ€‹

A)โ€‹โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹   <div style=padding-top: 35px>
D)โ€‹โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹   <div style=padding-top: 35px>
E)โ€‹โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Select the graph of the function below.Include two full periods.โ€‹ y=4cscโกฯ€xy = 4 \csc \pi x โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹ y1=2sinโกxcscโกx,y2=2\begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\y _ { 2 } = 2\end{array} โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. <div style=padding-top: 35px>  The expressions are equivalent except
Sinx = 0,y1 is undefined.
B)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. <div style=padding-top: 35px>  The expressions are equivalent except when sinx = 0,y1 is undefined.
C)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. <div style=padding-top: 35px>  The expressions are equivalent except when
Sinx = 0,y1 is undefined.
D)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. <div style=padding-top: 35px>  The expressions are equivalent except when sinx = 0,y1 is undefined.
E)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. <div style=padding-top: 35px>  The expressions are equivalent except when sinx = 0,y1 is undefined.
ุณุคุงู„
State the period of the function:โ€‹ y=18cotโกฯ€xy = \frac { 1 } { 8 } \cot \pi x โ€‹

A) 7ฯ€7 \pi
B) 5ฯ€5 \pi
C) 6ฯ€6 \pi
D) ฯ€2\frac { \pi } { 2 }
E)1
ุณุคุงู„
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=3secโกxf ( x ) = 3 \sec x โ€‹

A)Neither
B)Odd
C)Even
ุณุคุงู„
A plane flying at an altitude of a miles above a radar antenna will pass directly over the radar antenna (see figure).Let d be the ground distance from the antenna to the point directly under the plane and let x be the angle of elevation to the plane from the antenna. a=8a = 8 . โ€‹
(d is positive as the plane approaches the antenna. )
Write d as a function of x.โ€‹  <strong>A plane flying at an altitude of a miles above a radar antenna will pass directly over the radar antenna (see figure).Let d be the ground distance from the antenna to the point directly under the plane and let x be the angle of elevation to the plane from the antenna.  a = 8  . โ€‹ (d is positive as the plane approaches the antenna. ) Write d as a function of x.โ€‹  </strong> A)d = 8 csc x B)d = 8 cot x C)d = 8 cos x D)d = 8 tan x E)d = 8 sin x <div style=padding-top: 35px>

A)d = 8 csc x
B)d = 8 cot x
C)d = 8 cos x
D)d = 8 tan x
E)d = 8 sin x
ุณุคุงู„
Select the graph of the function below.Include two full periods.โ€‹ y=โˆ’2secโก2x+2y = - 2 \sec 2 x + 2 โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
State the period of the function:โ€‹ y=12secโกฯ€x5y = \frac { 1 } { 2 } \sec \frac { \pi x } { 5 } โ€‹

A)โ€‹14
B)10
C) ฯ€5\frac { \pi } { 5 }
D) 10ฯ€10 \pi
E)12
ุณุคุงู„
State the period of the function:โ€‹ y=โˆ’cscโก4xy = - \csc 4 x โ€‹

A) ฯ€5\frac { \pi } { 5 }
B) ฯ€2\frac { \pi } { 2 } โ€‹
C) ฯ€4\frac { \pi } { 4 } โ€‹
D) ฯ€3\frac { \pi } { 3 } โ€‹
E) ฯ€6\frac { \pi } { 6 } โ€‹
ุณุคุงู„
Select the graph of the function below.Include two full periods.โ€‹ y=0.4cscโกฯ€xy = 0.4 \csc \pi x โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Consider the functions given byโ€‹ f(x)=2sinโกxf ( x ) = 2 \sin x
andand
g(x)=12cscโกxg ( x ) = \frac { 1 } { 2 } \csc x on the interval (0,ฯ€). Describe the behavior of each of the functions as x approaches ฯ€.
โ€‹

A)f approaches 2 and g approaches +โˆž.
B)f approaches 0 and g approaches +โˆž.
C)f approaches +โˆž and g approaches 0.
D)f approaches 0 and g approaches 12\frac { 1 } { 2 } .
E)f approaches 2 and g approaches 12\frac { 1 } { 2 } .
ุณุคุงู„
State the period of the function:โ€‹ y=โˆ’3secโกฯ€x3y = - 3 \sec \frac { \pi x } { 3 } โ€‹

A)โ€‹ ฯ€3\frac { \pi } { 3 }
B)6
C)8
D) 6ฯ€6 \pi
E)12
ุณุคุงู„
State the period of the function:โ€‹ y=secโก8xy = \sec 8 x โ€‹

A) ฯ€8\frac { \pi } { 8 }
B) ฯ€4\frac { \pi } { 4 } โ€‹
C) ฯ€6\frac { \pi } { 6 } โ€‹
D) ฯ€5\frac { \pi } { 5 } โ€‹
E) ฯ€7\frac { \pi } { 7 } โ€‹
ุณุคุงู„
Select the graph of the function below.Include two full periods.โ€‹ y=4tanโก(x+ฯ€)y = 4 \tan ( x + \pi ) โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
State the period of the function: โ€‹โ€‹ y=tanโกx3y = \tan \frac { x } { 3 } โ€‹

A) 5ฯ€5 \pi
B) ฯ€2\frac { \pi } { 2 }
C) 6ฯ€6 \pi
D) 3ฯ€3 \pi
E) 4ฯ€4 \pi
ุณุคุงู„
Use a graphing utility to select the graph of the function:โ€‹ y=14secโก(ฯ€x2+ฯ€2)y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right) โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Select the graph of the function below.Include two full periods.โ€‹ y=13secโกฯ€xy = \frac { 1 } { 3 } \sec \pi x โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph of the function:โ€‹ y=0.3tanโก(ฯ€x4+ฯ€4)y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right) โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Select the graph of the function below.Include two full periods.โ€‹ y=tanโกฯ€x6y = \tan \frac { \pi x } { 6 } โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹ g(x)=3eโˆ’x22sinโกxg ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Describe the behavior of the function below as x approaches ฯ€2+\frac { \pi } { 2 } ^ { + } .โ€‹ f(x)=tanโกxf ( x ) = \tan x โ€‹

A)f โ†’ +โˆž as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
B)f โ†’ 0 as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
C)f โ†’ -โˆž as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
D)f โ†’ 1 as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
E)f โ†’ -1 as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
ุณุคุงู„
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=โˆฃxโˆฃ3sinโกxf ( x ) = \frac { | x | } { 3 } \sin x โ€‹

A)f โ†’ -โˆž as x โ†’ 0.
B)f โ†’ -1 as x โ†’ 0.
C)f โ†’ 1 as x โ†’ 0.
D)f โ†’ +โˆž as x โ†’ 0.
E)f โ†’ 0 as x โ†’ 0.
ุณุคุงู„
Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹ f(x)=7โ‹…2โˆ’x4cosโกฯ€xf ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹ S=71+3tโˆ’40cosโก(ฯ€t6)S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right) โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year.
โ€‹

A)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=xsinโกxf ( x ) = x \sin x โ€‹

A)f โ†’ 0 as x โ†’ 0.
B)f โ†’ -1 as x โ†’ 0.
C)f โ†’ 1 as x โ†’ 0.
D)f โ†’ -โˆž as x โ†’ 0.
E)f โ†’ +โˆž as x โ†’ 0.
ุณุคุงู„
Use a graphing utility to select the graph of the functionโ€‹ y=6x+cosโกx,x>0y = \frac { 6 } { x } + \cos x , x > 0 โ€‹ โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹ <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹ <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹ <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹ <div style=padding-top: 35px>
E)  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹ <div style=padding-top: 35px>  โ€‹
ุณุคุงู„
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x4+tanโก(x)f ( x ) = \frac { x } { 4 } + \tan ( x ) โ€‹

A)Neither
B)Even
C)Odd
ุณุคุงู„
Describe the behavior of the function below as x approaches ฯ€-.โ€‹ f(x)=2cotโกxf ( x ) = 2 \cot x โ€‹

A)f โ†’ -โˆž as x โ†’ ฯ€-.
B)f โ†’ +โˆž as x โ†’ ฯ€-.
C)f โ†’ 1 as x โ†’ ฯ€-.
D)f โ†’ 0 as x โ†’ ฯ€-.
E)f โ†’ -1 as x โ†’ ฯ€-.
ุณุคุงู„
Determine whether the function below is even,odd,or neither. โ€‹โ€‹ f(x)=4cscโกx4f ( x ) = 4 \csc \frac { x } { 4 } โ€‹

A)Even
B)Odd
C)Neither
ุณุคุงู„
Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹ f(x)=3eโˆ’xcosโกxf ( x ) = 3 e ^ { - x } \cos x โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=โˆฃxโˆฃ5cosโก(x)f ( x ) = \frac { | x | } { 5 } \cos ( x ) โ€‹

A)f โ†’ +โˆž as x โ†’ 0.
B)f โ†’ 1 as x โ†’ 0.
C)f โ†’ 0 as x โ†’ 0.
D)f โ†’ -1 as x โ†’ 0.
E)f โ†’ -โˆž as x โ†’ 0.
ุณุคุงู„
A television camera is on a reviewing platform a meters from the street on which a parade will be passing from left to right (see figure).Write the distance d from the camera to a particular unit in the parade as a function of the angle x. a = 26. <strong>A television camera is on a reviewing platform a meters from the street on which a parade will be passing from left to right (see figure).Write the distance d from the camera to a particular unit in the parade as a function of the angle x. a = 26.  </strong> A)d = 26tan x B)d = 26sec x C)d = 26cos x D)d = 26cot x E)d = 26sin x <div style=padding-top: 35px>

A)d = 26tan x
B)d = 26sec x
C)d = 26cos x
D)d = 26cot x
E)d = 26sin x
ุณุคุงู„
Describe the behavior of the function below as x approaches 0+.โ€‹ f(x)=3cotโกxf ( x ) = 3 \cot x โ€‹

A)f โ†’ +โˆž as x โ†’ 0+.
B)f โ†’ 0 as x โ†’ 0+.
C)f โ†’ -1 as x โ†’ 0+.
D)f โ†’ -โˆž as x โ†’ 0+.
E)f โ†’ 1 as x โ†’ 0+.
ุณุคุงู„
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=โˆฃ5xcosโกxโˆฃf ( x ) = | 5 x \cos x | โ€‹

A)f โ†’ +โˆž as x โ†’ 0.
B)f โ†’ 1 as x โ†’ 0.
C)f โ†’ 0 as x โ†’ 0.
D)f โ†’ -1 as x โ†’ 0.
E)f โ†’ -โˆž as x โ†’ 0.
ุณุคุงู„
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x8cotโกx2f ( x ) = x ^ { 8 } \cot \frac { x } { 2 } โ€‹

A)Neither
B)Odd
C)Even
ุณุคุงู„
Determine whether the function below is even,odd,or neither. โ€‹
F(x)= 0.8 cot x
โ€‹

A)Neither
B)Even
C)Odd
ุณุคุงู„
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x23โˆ’3secโกxf ( x ) = \frac { x ^ { 2 } } { 3 } - 3 \sec x โ€‹

A)Even
B)Odd
C)Neither
ุณุคุงู„
Describe the behavior of the function below as x approaches โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .โ€‹ f(x)=4tanโกxf ( x ) = 4 \tan x โ€‹

A)f โ†’ +โˆž as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
B)f โ†’ 0 as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
C)f โ†’ 1 as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
D)f โ†’ -โˆž as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
E)f โ†’ -1 as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
ุณุคุงู„
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x3cscโกx5f ( x ) = x ^ { 3 } \csc \frac { x } { 5 } โ€‹

A)Neither
B)Odd
C)Even
ุณุคุงู„
Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹ f(x)=2โˆ’x4cosโกxf ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x

A)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ 0.
B)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ 0.
C)  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ 0.
D)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. <div style=padding-top: 35px>  The function f(x)is unbounded as x โ†’ โˆž.
E)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. <div style=padding-top: 35px>  The function f(x)is unbounded as x โ†’ โˆž.
ุณุคุงู„
Select the graph of the given function.Make sure to include at least two periods. y=โˆ’3secโก(x+ฯ€)y = - 3 \sec ( x + \pi ) โ€‹

A)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹ f(x)=2โˆ’x/4cosโกxf ( x ) = 2 ^ { - x / 4 } \cos x โ€‹ โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ โˆž.
B)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ โˆž.
C)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ 0.
D)  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ 0.
E)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. <div style=padding-top: 35px>  As x โ†’ โˆž,f(x)โ†’ โˆž.
ุณุคุงู„
Select the graph of the given function.Make sure to include at least two periods.โ€‹ y=cscโก2xy = \csc 2 x โ€‹

A)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)   <div style=padding-top: 35px>
B)  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)   <div style=padding-top: 35px>  โ€‹
C)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)   <div style=padding-top: 35px>
D)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)   <div style=padding-top: 35px>
E)  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹ y=secโกx2y = \sec \frac { x } { 2 } โ€‹โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>  โ€‹ โ€‹

Xscl = ฯ€2\frac { \pi } { 2 } โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>  โ€‹
โ€‹โ€‹
Xscl = ฯ€2\frac { \pi } { 2 } โ€‹
โ€‹โ€‹
Xscl = ฯ€2\frac { \pi } { 2 } โ€‹
โ€‹
Xscl = ฯ€2\frac { \pi } { 2 }

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>  โ€‹โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>  โ€‹
C)โ€‹ โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>
D)โ€‹โ€‹ โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>
E)โ€‹ โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹ y=12cscโก(ฯ€x3โˆ’ฯ€3)y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right) โ€‹

A)  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹ y=12eโˆ’t4cosโก2t,t>0y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0 โ€‹ where y is the distance (in feet)and t is the time (in seconds).
Use a graphing utility to select the graph of the function.
โ€‹โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>  โ€‹

A)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use the graph shown below to determine if the function is even,odd,or neither. โ€‹โ€‹ y=sinโกxy = \sin x โ€‹  <strong>Use the graph shown below to determine if the function is even,odd,or neither. โ€‹โ€‹  y = \sin x  โ€‹  </strong> A)Even B)Odd C)Neither <div style=padding-top: 35px>

A)Even
B)Odd
C)Neither
ุณุคุงู„
Determine which of the graphs below represents โ€‹โ€‹ y=โˆฃxsinโกxโˆฃy = | x \sin x | โ€‹

A)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
B)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
C)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
D)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
E)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹   <div style=padding-top: 35px>
ุณุคุงู„
Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹ f(x)=xcosโก1xf ( x ) = x \cos \frac { 1 } { x }

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0. <div style=padding-top: 35px>  As x โ†’ 0,f(x)โ†’ 0.
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0. <div style=padding-top: 35px>  โ€‹As x โ†’ 0,f(x)โ†’ 0.
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0. <div style=padding-top: 35px>  As x โ†’ 0,f(x)โ†’ 0.
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0. <div style=padding-top: 35px>  As x โ†’ 0,f(x)โ†’ 0.
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0. <div style=padding-top: 35px>  As x โ†’ 0,f(x)โ†’ 0.
ุณุคุงู„
Which of the following functions is represented by the graph below?  <strong>Which of the following functions is represented by the graph below?  </strong> A)โ€‹  y = \frac { 1 } { 3 } \csc \frac { \pi x } { 2 }  B)โ€‹  y = \frac { 1 } { 3 } \tan \frac { \pi x } { 2 }  C)โ€‹  y = \cot ( x + \pi )  D)โ€‹  y = \frac { 1 } { 3 } \csc \pi x  E)โ€‹  y = \sec \left( \frac { x } { 3 } \right)  <div style=padding-top: 35px>

A)โ€‹ y=13cscโกฯ€x2y = \frac { 1 } { 3 } \csc \frac { \pi x } { 2 }
B)โ€‹ y=13tanโกฯ€x2y = \frac { 1 } { 3 } \tan \frac { \pi x } { 2 }
C)โ€‹ y=cotโก(x+ฯ€)y = \cot ( x + \pi )
D)โ€‹ y=13cscโกฯ€xy = \frac { 1 } { 3 } \csc \pi x
E)โ€‹ y=secโก(x3)y = \sec \left( \frac { x } { 3 } \right)
ูุชุญ ุงู„ุญุฒู…ุฉ
ู‚ู… ุจุงู„ุชุณุฌูŠู„ ู„ูุชุญ ุงู„ุจุทุงู‚ุงุช ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ!
Unlock Deck
Unlock Deck
1/51
auto play flashcards
ุงู„ุนุจ
simple tutorial
ู…ู„ุก ุงู„ุดุงุดุฉ (f)
exit full mode
Deck 28: Graphs of Other Trigonometric Functions
1
Determine whether the function below is even,odd,or neither.โ€‹ y=17tanโกxy = \frac { 1 } { 7 } \tan x โ€‹

A)Even
B)Odd
C)Neither
Odd
2
Consider the function given byโ€‹ y=xโˆ’cosโกxy=x-\cos x โ€‹ Use a graphing utility to select the graph of the function.
โ€‹

A)โ€‹โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹
B)โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹
C)โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹
D)โ€‹โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹
E)โ€‹โ€‹  <strong>Consider the function given byโ€‹  y=x-\cos x  โ€‹ Use a graphing utility to select the graph of the function. โ€‹</strong> A)โ€‹โ€‹   B)โ€‹   C)โ€‹   D)โ€‹โ€‹   E)โ€‹โ€‹
โ€‹โ€‹ โ€‹โ€‹
3
Select the graph of the function below.Include two full periods.โ€‹ y=4cscโกฯ€xy = 4 \csc \pi x โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
โ€‹ โ€‹
4
Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹ y1=2sinโกxcscโกx,y2=2\begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\y _ { 2 } = 2\end{array} โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined.  The expressions are equivalent except
Sinx = 0,y1 is undefined.
B)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined.  The expressions are equivalent except when sinx = 0,y1 is undefined.
C)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined.  The expressions are equivalent except when
Sinx = 0,y1 is undefined.
D)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined.  The expressions are equivalent except when sinx = 0,y1 is undefined.
E)โ€‹  <strong>Use a graphing utility to select the graph of the two equations in the same viewing window.Use the graphs to determine whether the expressions are equivalent.โ€‹  \begin{array} { l } y _ { 1 } = 2 \sin x \csc x , \\ y _ { 2 } = 2 \end{array}  โ€‹</strong> A)โ€‹   The expressions are equivalent except Sinx = 0,y<sub>1</sub> is undefined. B)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. C)โ€‹   The expressions are equivalent except when Sinx = 0,y<sub>1</sub> is undefined. D)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined. E)โ€‹   The expressions are equivalent except when sinx = 0,y<sub>1</sub> is undefined.  The expressions are equivalent except when sinx = 0,y1 is undefined.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
5
State the period of the function:โ€‹ y=18cotโกฯ€xy = \frac { 1 } { 8 } \cot \pi x โ€‹

A) 7ฯ€7 \pi
B) 5ฯ€5 \pi
C) 6ฯ€6 \pi
D) ฯ€2\frac { \pi } { 2 }
E)1
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
6
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=3secโกxf ( x ) = 3 \sec x โ€‹

A)Neither
B)Odd
C)Even
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
7
A plane flying at an altitude of a miles above a radar antenna will pass directly over the radar antenna (see figure).Let d be the ground distance from the antenna to the point directly under the plane and let x be the angle of elevation to the plane from the antenna. a=8a = 8 . โ€‹
(d is positive as the plane approaches the antenna. )
Write d as a function of x.โ€‹  <strong>A plane flying at an altitude of a miles above a radar antenna will pass directly over the radar antenna (see figure).Let d be the ground distance from the antenna to the point directly under the plane and let x be the angle of elevation to the plane from the antenna.  a = 8  . โ€‹ (d is positive as the plane approaches the antenna. ) Write d as a function of x.โ€‹  </strong> A)d = 8 csc x B)d = 8 cot x C)d = 8 cos x D)d = 8 tan x E)d = 8 sin x

A)d = 8 csc x
B)d = 8 cot x
C)d = 8 cos x
D)d = 8 tan x
E)d = 8 sin x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
8
Select the graph of the function below.Include two full periods.โ€‹ y=โˆ’2secโก2x+2y = - 2 \sec 2 x + 2 โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = - 2 \sec 2 x + 2  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
9
State the period of the function:โ€‹ y=12secโกฯ€x5y = \frac { 1 } { 2 } \sec \frac { \pi x } { 5 } โ€‹

A)โ€‹14
B)10
C) ฯ€5\frac { \pi } { 5 }
D) 10ฯ€10 \pi
E)12
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
10
State the period of the function:โ€‹ y=โˆ’cscโก4xy = - \csc 4 x โ€‹

A) ฯ€5\frac { \pi } { 5 }
B) ฯ€2\frac { \pi } { 2 } โ€‹
C) ฯ€4\frac { \pi } { 4 } โ€‹
D) ฯ€3\frac { \pi } { 3 } โ€‹
E) ฯ€6\frac { \pi } { 6 } โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
11
Select the graph of the function below.Include two full periods.โ€‹ y=0.4cscโกฯ€xy = 0.4 \csc \pi x โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 0.4 \csc \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
12
Consider the functions given byโ€‹ f(x)=2sinโกxf ( x ) = 2 \sin x
andand
g(x)=12cscโกxg ( x ) = \frac { 1 } { 2 } \csc x on the interval (0,ฯ€). Describe the behavior of each of the functions as x approaches ฯ€.
โ€‹

A)f approaches 2 and g approaches +โˆž.
B)f approaches 0 and g approaches +โˆž.
C)f approaches +โˆž and g approaches 0.
D)f approaches 0 and g approaches 12\frac { 1 } { 2 } .
E)f approaches 2 and g approaches 12\frac { 1 } { 2 } .
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
13
State the period of the function:โ€‹ y=โˆ’3secโกฯ€x3y = - 3 \sec \frac { \pi x } { 3 } โ€‹

A)โ€‹ ฯ€3\frac { \pi } { 3 }
B)6
C)8
D) 6ฯ€6 \pi
E)12
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
14
State the period of the function:โ€‹ y=secโก8xy = \sec 8 x โ€‹

A) ฯ€8\frac { \pi } { 8 }
B) ฯ€4\frac { \pi } { 4 } โ€‹
C) ฯ€6\frac { \pi } { 6 } โ€‹
D) ฯ€5\frac { \pi } { 5 } โ€‹
E) ฯ€7\frac { \pi } { 7 } โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
15
Select the graph of the function below.Include two full periods.โ€‹ y=4tanโก(x+ฯ€)y = 4 \tan ( x + \pi ) โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = 4 \tan ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
16
State the period of the function: โ€‹โ€‹ y=tanโกx3y = \tan \frac { x } { 3 } โ€‹

A) 5ฯ€5 \pi
B) ฯ€2\frac { \pi } { 2 }
C) 6ฯ€6 \pi
D) 3ฯ€3 \pi
E) 4ฯ€4 \pi
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
17
Use a graphing utility to select the graph of the function:โ€‹ y=14secโก(ฯ€x2+ฯ€2)y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right) โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = \frac { 1 } { 4 } \sec \left( \frac { \pi x } { 2 } + \frac { \pi } { 2 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
18
Select the graph of the function below.Include two full periods.โ€‹ y=13secโกฯ€xy = \frac { 1 } { 3 } \sec \pi x โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \frac { 1 } { 3 } \sec \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
19
Use a graphing utility to select the graph of the function:โ€‹ y=0.3tanโก(ฯ€x4+ฯ€4)y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right) โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Use a graphing utility to select the graph of the function:โ€‹  y = 0.3 \tan \left( \frac { \pi x } { 4 } + \frac { \pi } { 4 } \right)  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
20
Select the graph of the function below.Include two full periods.โ€‹ y=tanโกฯ€x6y = \tan \frac { \pi x } { 6 } โ€‹

A)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the function below.Include two full periods.โ€‹  y = \tan \frac { \pi x } { 6 }  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
21
Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹ g(x)=3eโˆ’x22sinโกxg ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  g ( x ) = 3 e ^ { - \frac { x ^ { 2 } } { 2 } } \sin x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
22
Describe the behavior of the function below as x approaches ฯ€2+\frac { \pi } { 2 } ^ { + } .โ€‹ f(x)=tanโกxf ( x ) = \tan x โ€‹

A)f โ†’ +โˆž as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
B)f โ†’ 0 as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
C)f โ†’ -โˆž as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
D)f โ†’ 1 as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
E)f โ†’ -1 as x โ†’ ฯ€2+\frac { \pi } { 2 } ^ { + } .
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
23
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=โˆฃxโˆฃ3sinโกxf ( x ) = \frac { | x | } { 3 } \sin x โ€‹

A)f โ†’ -โˆž as x โ†’ 0.
B)f โ†’ -1 as x โ†’ 0.
C)f โ†’ 1 as x โ†’ 0.
D)f โ†’ +โˆž as x โ†’ 0.
E)f โ†’ 0 as x โ†’ 0.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
24
Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹ f(x)=7โ‹…2โˆ’x4cosโกฯ€xf ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 7 \cdot 2 ^ { - \frac { x } { 4 } } \cos \pi x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
25
The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹ S=71+3tโˆ’40cosโก(ฯ€t6)S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right) โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year.
โ€‹

A)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>The projected monthly sales (in thousands of units)of lawn mowers (a seasonal product)are modeled byโ€‹  S = 71 + 3 t - 40 \cos \left( \frac { \pi t } { 6 } \right)  โ€‹ where t is the time (in months),with t = 1 corresponding to January.Select the graph of the sales function over 1 year. โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
26
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=xsinโกxf ( x ) = x \sin x โ€‹

A)f โ†’ 0 as x โ†’ 0.
B)f โ†’ -1 as x โ†’ 0.
C)f โ†’ 1 as x โ†’ 0.
D)f โ†’ -โˆž as x โ†’ 0.
E)f โ†’ +โˆž as x โ†’ 0.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
27
Use a graphing utility to select the graph of the functionโ€‹ y=6x+cosโกx,x>0y = \frac { 6 } { x } + \cos x , x > 0 โ€‹ โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹
E)  <strong>Use a graphing utility to select the graph of the functionโ€‹  y = \frac { 6 } { x } + \cos x , x > 0  โ€‹ โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)   โ€‹  โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
28
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x4+tanโก(x)f ( x ) = \frac { x } { 4 } + \tan ( x ) โ€‹

A)Neither
B)Even
C)Odd
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
29
Describe the behavior of the function below as x approaches ฯ€-.โ€‹ f(x)=2cotโกxf ( x ) = 2 \cot x โ€‹

A)f โ†’ -โˆž as x โ†’ ฯ€-.
B)f โ†’ +โˆž as x โ†’ ฯ€-.
C)f โ†’ 1 as x โ†’ ฯ€-.
D)f โ†’ 0 as x โ†’ ฯ€-.
E)f โ†’ -1 as x โ†’ ฯ€-.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
30
Determine whether the function below is even,odd,or neither. โ€‹โ€‹ f(x)=4cscโกx4f ( x ) = 4 \csc \frac { x } { 4 } โ€‹

A)Even
B)Odd
C)Neither
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
31
Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹ f(x)=3eโˆ’xcosโกxf ( x ) = 3 e ^ { - x } \cos x โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below and the damping factor of the function in the same viewing window.โ€‹  f ( x ) = 3 e ^ { - x } \cos x  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
32
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=โˆฃxโˆฃ5cosโก(x)f ( x ) = \frac { | x | } { 5 } \cos ( x ) โ€‹

A)f โ†’ +โˆž as x โ†’ 0.
B)f โ†’ 1 as x โ†’ 0.
C)f โ†’ 0 as x โ†’ 0.
D)f โ†’ -1 as x โ†’ 0.
E)f โ†’ -โˆž as x โ†’ 0.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
33
A television camera is on a reviewing platform a meters from the street on which a parade will be passing from left to right (see figure).Write the distance d from the camera to a particular unit in the parade as a function of the angle x. a = 26. <strong>A television camera is on a reviewing platform a meters from the street on which a parade will be passing from left to right (see figure).Write the distance d from the camera to a particular unit in the parade as a function of the angle x. a = 26.  </strong> A)d = 26tan x B)d = 26sec x C)d = 26cos x D)d = 26cot x E)d = 26sin x

A)d = 26tan x
B)d = 26sec x
C)d = 26cos x
D)d = 26cot x
E)d = 26sin x
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
34
Describe the behavior of the function below as x approaches 0+.โ€‹ f(x)=3cotโกxf ( x ) = 3 \cot x โ€‹

A)f โ†’ +โˆž as x โ†’ 0+.
B)f โ†’ 0 as x โ†’ 0+.
C)f โ†’ -1 as x โ†’ 0+.
D)f โ†’ -โˆž as x โ†’ 0+.
E)f โ†’ 1 as x โ†’ 0+.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
35
Describe the behavior of the function below as x approaches zero.โ€‹ f(x)=โˆฃ5xcosโกxโˆฃf ( x ) = | 5 x \cos x | โ€‹

A)f โ†’ +โˆž as x โ†’ 0.
B)f โ†’ 1 as x โ†’ 0.
C)f โ†’ 0 as x โ†’ 0.
D)f โ†’ -1 as x โ†’ 0.
E)f โ†’ -โˆž as x โ†’ 0.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
36
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x8cotโกx2f ( x ) = x ^ { 8 } \cot \frac { x } { 2 } โ€‹

A)Neither
B)Odd
C)Even
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
37
Determine whether the function below is even,odd,or neither. โ€‹
F(x)= 0.8 cot x
โ€‹

A)Neither
B)Even
C)Odd
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
38
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x23โˆ’3secโกxf ( x ) = \frac { x ^ { 2 } } { 3 } - 3 \sec x โ€‹

A)Even
B)Odd
C)Neither
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
39
Describe the behavior of the function below as x approaches โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .โ€‹ f(x)=4tanโกxf ( x ) = 4 \tan x โ€‹

A)f โ†’ +โˆž as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
B)f โ†’ 0 as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
C)f โ†’ 1 as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
D)f โ†’ -โˆž as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
E)f โ†’ -1 as x โ†’ โˆ’ฯ€2โˆ’- {\frac { \pi } { 2 }}^- .
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
40
Determine whether the function below is even,odd,or neither.โ€‹ f(x)=x3cscโกx5f ( x ) = x ^ { 3 } \csc \frac { x } { 5 } โ€‹

A)Neither
B)Odd
C)Even
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
41
Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹ f(x)=2โˆ’x4cosโกxf ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x

A)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ 0.
B)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ 0.
C)  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ 0.
D)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž.  The function f(x)is unbounded as x โ†’ โˆž.
E)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - \frac { x } { 4 } } \cos x </strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. C)   As x โ†’ โˆž,f(x)โ†’ 0. D)โ€‹   The function f(x)is unbounded as x โ†’ โˆž. E)โ€‹   The function f(x)is unbounded as x โ†’ โˆž.  The function f(x)is unbounded as x โ†’ โˆž.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
42
Select the graph of the given function.Make sure to include at least two periods. y=โˆ’3secโก(x+ฯ€)y = - 3 \sec ( x + \pi ) โ€‹

A)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.  y = - 3 \sec ( x + \pi )  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
43
Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹ f(x)=2โˆ’x/4cosโกxf ( x ) = 2 ^ { - x / 4 } \cos x โ€‹ โ€‹

A)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ โˆž.
B)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ โˆž.
C)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ 0.
D)  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ 0.
E)โ€‹  <strong>Use a graphing utility to select the graph the damping factor and the function below in the same viewing window.Describe the behavior of the function as x increases without bound.โ€‹  f ( x ) = 2 ^ { - x / 4 } \cos x  โ€‹ โ€‹</strong> A)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. B)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž. C)โ€‹   As x โ†’ โˆž,f(x)โ†’ 0. D)   As x โ†’ โˆž,f(x)โ†’ 0. E)โ€‹   As x โ†’ โˆž,f(x)โ†’ โˆž.  As x โ†’ โˆž,f(x)โ†’ โˆž.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
44
Select the graph of the given function.Make sure to include at least two periods.โ€‹ y=cscโก2xy = \csc 2 x โ€‹

A)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)
B)  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)    โ€‹
C)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)
D)โ€‹  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)
E)  <strong>Select the graph of the given function.Make sure to include at least two periods.โ€‹  y = \csc 2 x  โ€‹</strong> A)โ€‹   B)   โ€‹ C)โ€‹   D)โ€‹   E)
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
45
Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹ y=secโกx2y = \sec \frac { x } { 2 } โ€‹โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹    โ€‹ โ€‹

Xscl = ฯ€2\frac { \pi } { 2 } โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹    โ€‹
โ€‹โ€‹
Xscl = ฯ€2\frac { \pi } { 2 } โ€‹
โ€‹โ€‹
Xscl = ฯ€2\frac { \pi } { 2 } โ€‹
โ€‹
Xscl = ฯ€2\frac { \pi } { 2 }

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹    โ€‹โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹    โ€‹
C)โ€‹ โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹
D)โ€‹โ€‹ โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹
E)โ€‹ โ€‹  <strong>Use a graphing utility to select the graph of the function below,making sure to show at least two periods.โ€‹  y = \sec \frac { x } { 2 }  โ€‹โ€‹   โ€‹ โ€‹  Xscl =  \frac { \pi } { 2 }  โ€‹   โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹โ€‹ Xscl =  \frac { \pi } { 2 }  โ€‹ โ€‹ Xscl =  \frac { \pi } { 2 } </strong> A)โ€‹   โ€‹โ€‹ B)โ€‹   โ€‹ C)โ€‹ โ€‹   D)โ€‹โ€‹ โ€‹   E)โ€‹ โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
46
Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹ y=12cscโก(ฯ€x3โˆ’ฯ€3)y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right) โ€‹

A)  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Use a graphing utility to select the graph of the expression below,making sure to show at least two periods. โ€‹โ€‹  y = \frac { 1 } { 2 } \csc \left( \frac { \pi x } { 3 } - \frac { \pi } { 3 } \right)  โ€‹</strong> A)   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
47
An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹ y=12eโˆ’t4cosโก2t,t>0y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0 โ€‹ where y is the distance (in feet)and t is the time (in seconds).
Use a graphing utility to select the graph of the function.
โ€‹โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹    โ€‹

A)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>An object weighing W pounds is suspended from the ceiling by a steel spring (see figure).The weight is pulled downward (positive direction)from its equilibrium position and released.The resulting motion of the weight is described by the functionโ€‹  y = \frac { 1 } { 2 } e ^ { - \frac { t } { 4 } } \cos 2 t , t > 0  โ€‹ where y is the distance (in feet)and t is the time (in seconds). Use a graphing utility to select the graph of the function. โ€‹โ€‹   โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
48
Use the graph shown below to determine if the function is even,odd,or neither. โ€‹โ€‹ y=sinโกxy = \sin x โ€‹  <strong>Use the graph shown below to determine if the function is even,odd,or neither. โ€‹โ€‹  y = \sin x  โ€‹  </strong> A)Even B)Odd C)Neither

A)Even
B)Odd
C)Neither
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
49
Determine which of the graphs below represents โ€‹โ€‹ y=โˆฃxsinโกxโˆฃy = | x \sin x | โ€‹

A)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
B)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
C)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
D)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
E)โ€‹  <strong>Determine which of the graphs below represents โ€‹โ€‹  y = | x \sin x |  โ€‹</strong> A)โ€‹   B)โ€‹   C)โ€‹   D)โ€‹   E)โ€‹
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
50
Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹ f(x)=xcosโก1xf ( x ) = x \cos \frac { 1 } { x }

A)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0.  As x โ†’ 0,f(x)โ†’ 0.
B)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0.  โ€‹As x โ†’ 0,f(x)โ†’ 0.
C)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0.  As x โ†’ 0,f(x)โ†’ 0.
D)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0.  As x โ†’ 0,f(x)โ†’ 0.
E)โ€‹  <strong>Use a graphing utility to select the graph of the function below.Describe the behavior of the function as x approaches 0. โ€‹โ€‹  f ( x ) = x \cos \frac { 1 } { x } </strong> A)โ€‹   As x โ†’ 0,f(x)โ†’ 0. B)โ€‹   โ€‹As x โ†’ 0,f(x)โ†’ 0. C)โ€‹   As x โ†’ 0,f(x)โ†’ 0. D)โ€‹   As x โ†’ 0,f(x)โ†’ 0. E)โ€‹   As x โ†’ 0,f(x)โ†’ 0.  As x โ†’ 0,f(x)โ†’ 0.
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
51
Which of the following functions is represented by the graph below?  <strong>Which of the following functions is represented by the graph below?  </strong> A)โ€‹  y = \frac { 1 } { 3 } \csc \frac { \pi x } { 2 }  B)โ€‹  y = \frac { 1 } { 3 } \tan \frac { \pi x } { 2 }  C)โ€‹  y = \cot ( x + \pi )  D)โ€‹  y = \frac { 1 } { 3 } \csc \pi x  E)โ€‹  y = \sec \left( \frac { x } { 3 } \right)

A)โ€‹ y=13cscโกฯ€x2y = \frac { 1 } { 3 } \csc \frac { \pi x } { 2 }
B)โ€‹ y=13tanโกฯ€x2y = \frac { 1 } { 3 } \tan \frac { \pi x } { 2 }
C)โ€‹ y=cotโก(x+ฯ€)y = \cot ( x + \pi )
D)โ€‹ y=13cscโกฯ€xy = \frac { 1 } { 3 } \csc \pi x
E)โ€‹ y=secโก(x3)y = \sec \left( \frac { x } { 3 } \right)
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.
ูุชุญ ุงู„ุญุฒู…ุฉ
k this deck
locked card icon
ูุชุญ ุงู„ุญุฒู…ุฉ
ุงูุชุญ ุงู„ู‚ูู„ ู„ู„ูˆุตูˆู„ ุงู„ุจุทุงู‚ุงุช ุงู„ุจุงู„ุบ ุนุฏุฏู‡ุง 51 ููŠ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ.