Deck 55: Mathematical Induction

ملء الشاشة (f)
exit full mode
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=17n5\sum _ { n = 1 } ^ { 7 } n ^ { 5 }

A)840
B)29,008
C)4,676
D)784
E)140
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 3,a1 = 3,a4 = 15

A)an = n2 - n + 15
B)an = n2 + n - 3
C)an = n2 - n - 3
D)an = n2 + n + ​3
E)an = n2 - n + 3
سؤال
Find the sum using the formulas for the sums of powers of integers.​ i=17(5i8i3)\sum _ { i = 1 } ^ { 7 } \left( 5 i - 8 i ^ { 3 } \right)

A)-784
B)-3,136
C)4,200
D)5,600
E)-6,132
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=12n4\sum _ { n = 1 } ^ { 2 } n ^ { 4 }

A)33
B)17
C)30
D)5
E)9
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=15(n2n)\sum _ { n = 1 } ^ { 5 } \left( n ^ { 2 } - n \right)

A)40
B)330
C)225
D)15
E)55
سؤال
Find pk + 1 for the given pk.​ pk=5(k+6)(k+5)p _ { k } = \frac { 5 } { ( k + 6 ) ( k + 5 ) }

A) pk+1=7(k+6)(k+6)p _ { k + 1 } = \frac { 7 } { ( k + 6 ) ( k + 6 ) }
B) pk+1=5(k+7)(k+7)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 7 ) }
C) pk+1=5(k+6)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 6 ) ( k + 6 ) }
D) pk+1=5(k+7)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 6 ) }
E) pk+1=6(k+7)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 7 ) ( k + 6 ) }
سؤال
Find pk + 1 for the given pk .​ pk=k2(k+4)28p _ { k } = \frac { k ^ { 2 } ( k + 4 ) ^ { 2 } } { 8 }

A) pk+1=(k+1)2(k+5)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
B) pk+1=k2(k+5)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
C) pk+1=(k+1)2(k+5)29p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 9 }
D) pk+1=(k+1)2(k+9)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
E) pk+1=k2(k+9)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
سؤال
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 8,a1 = 4,a3 = 10

A)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n - 8
B)an = 8n2 193- \frac { 19 } { 3 } n + 73\frac { 7 } { 3 }
C)an = 193- \frac { 19 } { 3 } n2 + 73\frac { 7 } { 3 } n - 8
D)an = 8n2 193- \frac { 19 } { 3 } n - 73\frac { 7 } { 3 }
E)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n + 8
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=122(n3n)\sum _ { n = 1 } ^ { 22 } \left( n ^ { 3 } - n \right)

A)22,770
B)3,795
C)63,756
D)256,036
E)64,009
سؤال
Find pk + 1 for the given pk.​ pk=k5(8k+1)p _ { k } = \frac { k } { 5 } ( 8 k + 1 )

A) pk+1=k+15(8k+5)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 5 )
B) pk+1=k+15(8k+6)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 6 )
C) pk+1=k+16(8k+6)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 6 )
D) pk+1=k+15(8k+9)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 9 )
E) pk+1=k+16(8k+9)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 9 )
سؤال
Find pk+1 for the given pk.? pk=k27(k+2)2p _ { k } = \frac { k ^ { 2 } } { 7 ( k + 2 ) ^ { 2 } } ?

A) pk+1=(k+1)23(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 3 ( k + 8 ) ^ { 2 } }
B) pk+1=(k+1)28(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 8 ) ^ { 2 } }
C) pk+1=(k+1)28(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 3 ) ^ { 2 } }
D) pk+1=(k+1)27(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 3 ) ^ { 2 } }
E) pk+1=(k+1)27(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 8 ) ^ { 2 } }
سؤال
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 4,a2 = 0,a6 = 38

A)an = -4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
B)an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n - 4
C)​an = 4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
D)​an = 356- \frac { 35 } { 6 } n2 + 2312\frac { 23 } { 12 } n - 4
E)​an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n + 4
سؤال
Find the sum using the formulas for the sums of powers of integers.​ j=111(412j+12j2)\sum _ { j = 1 } ^ { 11 } \left( 4 - \frac { 1 } { 2 } j + \frac { 1 } { 2 } j ^ { 2 } \right)

A)-264
B)264
C)-506
D)759
E)506
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=16n2\sum _ { n = 1 } ^ { 6 } n ^ { 2 }

A)21
B)42
C)546
D)441
E)91
سؤال
Find pk + 1 for the given pk.​ pk=14(k+2)p _ { k } = \frac { 1 } { 4 ( k + 2 ) }

A) pk+1=1k(k+3)p _ { k + 1 } = \frac { 1 } { k ( k + 3 ) }
B) pk+1=4(k+1)(k+2)p _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
C) pk+1=4k(k+3)p _ { k + 1 } = \frac { 4 } { k ( k + 3 ) }
D) pk+1=1(k+3)(k+2)p _ { k + 1 } = \frac { 1 } { ( k + 3 ) ( k + 2 ) }
E) pk+1=14(k+3)p _ { k + 1 } = \frac { 1 } { 4 ( k + 3 ) }
سؤال
Find a quadratic model for the sequence with the indicated terms. ​
A0 = -3,a2 = 2,a4 = 10

A)an = 38\frac {3 } { 8 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = 3n2 + 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
C)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n + 3
D)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n - 3
E)an = -3n2+ 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=114n\sum _ { n = 1 } ^ { 14 } n

A)11,025
B)210
C)6,090
D)105
E)1,015
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=114n3\sum _ { n = 1 } ^ { 14 } n ^ { 3 }

A)6,090
B)105
C)11,025
D)1,015
E)210
سؤال
Find the sum using the formulas for the sums of powers of integers.​ n=116n\sum _ { n = 1 } ^ { 16 } n

A)18,496
B)8,976
C)1,496
D)272
E)136
سؤال
Find pk + 1 for the given pk.​ pk=6k(k+1)p _ { k } = \frac { 6 } { k ( k + 1 ) }

A) pk+1=2k(k+2)p _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) pk+1=6(k+1)(k+1)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 1 ) }
C) pk+1=6(k+1)(k+2)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 2 ) }
D) pk+1=6(k+2)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 2 ) ( k + 6 ) }
E) pk+1=6k(k+2)p _ { k + 1 } = \frac { 6 } { k ( k + 2 ) }
سؤال
Use mathematical induction to solve for all positive integers n.​ 16+34+52+70++(18n2)=?16 + 34 + 52 + 70 + \ldots + ( 18 n - 2 ) = ?

A) n(n+16)(16n+1)6\frac { n ( n + 16 ) ( 16 n + 1 ) } { 6 }
B) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
C) n2(3n+14)\frac { n } { 2 } ( 3 n + 14 )
D) n(n+16)n ( n + 16 )
E) n(n+16)2\frac { n ( n + 16 ) } { 2 }
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A​1 = 3
An = n - an - 1

A)3,-1,4,0,5,1 First differences: -9,9,-9,9
Second differences: -4,5,-4,5,-4
Linear
B)0,3,-1,4,0,5 First differences: -4,5,-4,5,-4
Second differences: -9,-9,-9,-9
Quadratic
C)3,-1,4,0,5,1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Neither
D)3,-1,4,-0,5,-1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Linear
E)3,-1,4,0,5,1 First differences: -4,5,-4,5,-4
Second differences: 9,-9,9,-9
Neither
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 1
An = an - 1 + 2n

A)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: 2,2,2,2
Quadratic
B)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: -2,-2,-2,-2
Quadratic
C)1,5,11,19,29,41 First differences: 2,2,2,2
Second differences: 4,6,8,10,12
Linear
D)1,5,11,19,29,41 First differences: -2,-2,-2,2
Second differences: 4,6,8,10,12
Neither
E)1,5,11,19,29,41 First differences: -2,2,-2,2
Second differences: 4,6,8,10,12
Linear
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 0
An = an - 1 + 5

A)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Quadratic
B)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Linear
C)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: -1,-1,-1,-1
Quadratic
D)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Quadratic
E)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Linear
سؤال
Use mathematical induction to solve for all positive integers n.​ 4+8+12+16++2n=?4 + 8 + 12 + 16 + \ldots + 2 n = ?

A) (n+3)n( n + 3 ) n
B) n(n+2)2\frac { n ( n + 2 ) } { 2 }
C) (n+2)n( n + 2 ) n
D) (n(n+2)2)2\left( \frac { n ( n + 2 ) } { 2 } \right) ^ { 2 }
E) n(n+1)(n+2)6\frac { n ( n + 1 ) ( n + 2 ) } { 6 }
سؤال
Find a quadratic model for the sequence with the indicated terms.​ a0=3,a2=7,a6=57a _ { 0 } = - 3 , a _ { 2 } = - 7 , a _ { 6 } = - 57

A)an = 32\frac { 3 } { 2 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = -3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
C)an = 74- \frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n - 3
D)an = - 74\frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n + 3
E)an = 3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
سؤال
Use mathematical induction to solve for all positive integers n.​ 1+2+3+4++n=?1 + 2 + 3 + 4 + \ldots + n = ?

A) n(n+1)2\frac { n ( n + 1 ) } { 2 }
B) (n+1)2\frac { ( n + 1 ) } { 2 }
C) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
D) n(n+1)(1n+1)6\frac { n ( n + 1 ) ( 1 n + 1 ) } { 6 }
E) n2(n+1)23\frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 3 }
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A2 = -4
An = -2an - 1

A)-4,8,-16,32,-64,128 First differences: 12,-24,48,-96,192
Second differences: -36,72,-144,288
Neither
B)0,4,8,16,32,64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
C)0,4,-8,16,-32,64 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Linear
D)0,-4,8,-16,32,-64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
E)4,-8,16,-32,64,-128 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Neither
سؤال
Find a formula for the sum of the first n terms of the sequence.​ 9,12,15,18,21,9,12,15,18,21 , \ldots

A) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( 3 n + 15 )
B) Sn=n2(3n+3)S _ { n } = \frac { n } { 2 } ( 3 n + 3 )
C) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( - 3 n - 15 )
D) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( 3 n - 15 )
E) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( - 3 n + 15 )
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 3
​an = an - 1 - n

A)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: -1,-1,-1,-1
Quadratic
B)0,3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Linear
C)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Quadratic
D)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: -1,-1,-1,-1
Quadratic
E)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: 1,1,1,1
Quadratic
سؤال
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.200264020036552004670\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 640 \\\hline 2003 & 655 \\\hline 2004 & 670 \\\hline\end{array} 200567020066832007699\begin{array} { | l | l | } \hline 2005 & 670 \\\hline 2006 & 683 \\\hline 2007 & 699 \\\hline\end{array}

Find the first differences of the data shown in the table.

A) 15,15,0,13,1615,15,0,13,16
B) 15,13,0,15,1615,13,0,15,16
C) 16,0,15,13,1516,0,15,13,15
D) 0,15,0,13,160,15,0,13,16
E) 13,13,15,0,1613,13,15,0,16
سؤال
Use mathematical induction to solve for all positive integers n. ​
A factor of (n3+7n2+6n)\left( n ^ { 3 } + 7 n ^ { 2 } + 6 n \right) is:

A)7
B)9
C)8
D)6
E)3
سؤال
Determine whether the statement is true or false. ​If the statement P1 is true but the true statement P6 does not imply that the statement P7 is true,then Pn is not
Necessarily true for all positive integers n.


A)False
B)True
سؤال
Determine whether the statement is true or false. ​A sequence with terms has n-1 second differences.

A)False
B)True
سؤال
Use mathematical induction to solve for all positive integers n.​ 22+27+32+37++(5n17)=?22 + 27 + 32 + 37 + \ldots + ( 5 n - 17 ) = ?

A) n2(5n+5)\frac { n } { 2 } ( 5 n + 5 )
B) n(22n+1)n ( 22 n + 1 )
C) n(n+1)22\frac { n ( n + 1 ) } { 22 }
D) n(n+22)n ( n + 22 )
E) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 2
An = an - 1 + 2

A)2,4,6,8,10,12 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Quadratic
B)0,2,4,6,8,10 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Linear
C)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Quadratic
D)2,4,6,8,10,12 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Linear
E)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: -1,-1,-1,-1
Quadratic
سؤال
Use mathematical induction to solve for all positive integers n.​ 5+9+13+17++(4n+1)=?5 + 9 + 13 + 17 + \ldots + ( 4 n + 1 ) = ?

A) n(9n+3)n ( 9 n + 3 )
B) n(2n+3)2\frac { n ( 2 n + 3 ) } { 2 }
C) n(n+3)n ( n + 3 )
D) n(n+3)9\frac { n ( n + 3 ) } { 9 }
E) n(2n+3)n ( 2 n + 3 )
سؤال
Find a formula for the sum of the first n terms of the sequence.​ 17,21,25,29,33,17,21,25,29,33 , \ldots

A) Sn=n(2n+15)S _ { n } = n ( 2 n + 15 )
B) Sn=n(5n+1)S _ { n } = n ( 5 n + 1 )
C) Sn=(n+1)nS _ { n } = \frac { ( n + 1 ) } { n }
D) Sn=n(2n+1)S _ { n } = n ( 2 n + 1 )
E) Sn=n(17n1)S _ { n } = n ( 17 n - 1 )
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A0 = 1
An = an - 1 + n

A)0,1,2,-4,7,-11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Neither
B)1,-2,4,-7,11,-16 First differences: -1,1,-1,1
Second differences: 1,2,3,4,5
Neither
C)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Linear
D)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Quadratic
E)1,2,4,7,11,16 First differences: 1,2,3,4,5
Second differences: 1,1,1,1
Quadratic
سؤال
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither.​ a0=4an=(an1)2\begin{array} { l } a _ { 0 } = 4 \\a _ { n } = \left( a _ { n - 1 } \right) ^ { 2 }\end{array}

A)0,4,-16,256,-65,536,4,294,967,296 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Linear
B)0,4,16,256,65,536,4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
C)4,-16,256,-65,536,4,294,967,296,-18,446,744,073,709,600,000 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Neither
D)4,16,256,65,536,4,294,967,296,18,446,744,073,709,600,000 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: 228,65,040,4,294,836,480, 2×10192 \times 10 ^ { 19 }
Neither
E)0,-4,16,-256,65,536,-4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
سؤال
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.2002646200365720046682005679\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 646 \\\hline 2003 & 657 \\\hline 2004 & 668 \\\hline 2005 & 679 \\\hline\end{array} 20066902007701\begin{array} { | l | l | } \hline 2006 & 690 \\\hline 2007 & 701 \\\hline\end{array}
Determine whether a linear model can be used to approximate the data.
If so,find a model algebraically.Let n represent the year,with n=2n = 2 corresponding to 2002.

A)A linear model can be used. an=11n+690a _ { n } = 11 n + 690
B)A linear model can be used. an=11n+657a _ { n } = 11 n + 657
C)A linear model can be used. an=11n+701a _ { n } = 11 n + 701
D)A linear model can be used. an=11n+624a _ { n } = 11 n + 624
E)A linear model can be used. an=11n+646a _ { n } = 11 n + 646
سؤال
Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

A)729
B)285
C)4050
D)1296
E)2025
سؤال
Find Pk+1 for the given Pk. Pk=2k(k+1)P _ { k } = \frac { 2 } { k ( k + 1 ) }

A) Pk+1=2k(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) Pk+1=2k(k+1)+2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + \frac { 2 } { ( k + 1 ) ( k + 2 ) }
C) Pk+1=4(k+1)(k+2)P _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
D) Pk+1=2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { ( k + 1 ) ( k + 2 ) }
E) Pk+1=2k(k+1)+1P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + 1
سؤال
Use mathematical induction to solve for all positive integers n.​ 3+8+13+18++(5n2)=?3 + 8 + 13 + 18 + \ldots + ( 5 n - 2 ) = ?

A) n6(5n+1)\frac { n } { 6 } ( 5 n + 1 )
B) n(5n+1)n ( 5 n + 1 )
C) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
D) n4(5n+1)\frac { n } { 4 } ( 5 n + 1 )
E) 5n+15 n + 1
سؤال
Find a formula for the sum of the n terms of the sequence. 12,54,258,12516,\frac { 1 } { 2 } , \frac { 5 } { 4 } , \frac { 25 } { 8 } , \frac { 125 } { 16 } , \ldots

A) 5(5n2n)3(2n)\frac { 5 \left( 5 ^ { n } - 2 ^ { n } \right) } { 3 \left( 2 ^ { n } \right) }
B)​ 5n12\frac { 5 ^ { n - 1 } } { 2 }
C) 5n+2n7(2n)\frac { 5 ^ { n } + 2 ^ { n } } { 7 \left( 2 ^ { n } \right) }
D) 12n\frac { 1 } { 2 ^ { n } }
E) 5n2n3(2n)\frac { 5 ^ { n } - 2 ^ { n } } { 3 \left( 2 ^ { n } \right) }
سؤال
Find a quadratic model for the sequence with the indicated terms. a0=5,a2=5,a5=65a _ { 0 } = 5 , a _ { 2 } = 5 , a _ { 5 } = 65

A) an=4n2+5a _ { n } = 4 n ^ { 2 } + 5
B) an=8n+5a _ { n } = 8 n + 5
C) an=4n28n5a _ { n } = 4 n ^ { 2 } - 8 n - 5
D) an=4n28n+5a _ { n } = 4 n ^ { 2 } - 8 n + 5
سؤال
Use mathematical induction to solve for all positive integers n.​ i=1ni(i+4)=?\sum _ { i = 1 } ^ { n } i ( i + 4 ) = ?

A) n(2n+13)6\frac { n ( 2 n + 13 ) } { 6 }
B) n(n+1)(2n+13)4\frac { n ( n + 1 ) ( 2 n + 13 ) } { 4 }
C) n(n+1)(n+13)6\frac { n ( n + 1 ) ( n + 13 ) } { 6 }
D) n(n+1)(2n+13)6\frac { n ( n + 1 ) ( 2 n + 13 ) } { 6 }
E) n(n+1)(2n+13)2\frac { n ( n + 1 ) ( 2 n + 13 ) } { 2 }
سؤال
Find the sum using the formulas for the sums of powers of integers. n=1129n3n2\sum _ { n = 1 } ^ { 12 } 9 n - 3 n ^ { 2 }

A)-924
B)-1248
C)468
D)-324
E)-3744
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/48
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 55: Mathematical Induction
1
Find the sum using the formulas for the sums of powers of integers.​ n=17n5\sum _ { n = 1 } ^ { 7 } n ^ { 5 }

A)840
B)29,008
C)4,676
D)784
E)140
29,008
2
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 3,a1 = 3,a4 = 15

A)an = n2 - n + 15
B)an = n2 + n - 3
C)an = n2 - n - 3
D)an = n2 + n + ​3
E)an = n2 - n + 3
an = n2 - n + 3
3
Find the sum using the formulas for the sums of powers of integers.​ i=17(5i8i3)\sum _ { i = 1 } ^ { 7 } \left( 5 i - 8 i ^ { 3 } \right)

A)-784
B)-3,136
C)4,200
D)5,600
E)-6,132
-6,132
4
Find the sum using the formulas for the sums of powers of integers.​ n=12n4\sum _ { n = 1 } ^ { 2 } n ^ { 4 }

A)33
B)17
C)30
D)5
E)9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
5
Find the sum using the formulas for the sums of powers of integers.​ n=15(n2n)\sum _ { n = 1 } ^ { 5 } \left( n ^ { 2 } - n \right)

A)40
B)330
C)225
D)15
E)55
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find pk + 1 for the given pk.​ pk=5(k+6)(k+5)p _ { k } = \frac { 5 } { ( k + 6 ) ( k + 5 ) }

A) pk+1=7(k+6)(k+6)p _ { k + 1 } = \frac { 7 } { ( k + 6 ) ( k + 6 ) }
B) pk+1=5(k+7)(k+7)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 7 ) }
C) pk+1=5(k+6)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 6 ) ( k + 6 ) }
D) pk+1=5(k+7)(k+6)p _ { k + 1 } = \frac { 5 } { ( k + 7 ) ( k + 6 ) }
E) pk+1=6(k+7)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 7 ) ( k + 6 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find pk + 1 for the given pk .​ pk=k2(k+4)28p _ { k } = \frac { k ^ { 2 } ( k + 4 ) ^ { 2 } } { 8 }

A) pk+1=(k+1)2(k+5)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
B) pk+1=k2(k+5)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 5 ) ^ { 2 } } { 8 }
C) pk+1=(k+1)2(k+5)29p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 5 ) ^ { 2 } } { 9 }
D) pk+1=(k+1)2(k+9)28p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
E) pk+1=k2(k+9)28p _ { k + 1 } = \frac { k ^ { 2 } ( k + 9 ) ^ { 2 } } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 8,a1 = 4,a3 = 10

A)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n - 8
B)an = 8n2 193- \frac { 19 } { 3 } n + 73\frac { 7 } { 3 }
C)an = 193- \frac { 19 } { 3 } n2 + 73\frac { 7 } { 3 } n - 8
D)an = 8n2 193- \frac { 19 } { 3 } n - 73\frac { 7 } { 3 }
E)an = 73\frac { 7 } { 3 } n2 193- \frac { 19 } { 3 } n + 8
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the sum using the formulas for the sums of powers of integers.​ n=122(n3n)\sum _ { n = 1 } ^ { 22 } \left( n ^ { 3 } - n \right)

A)22,770
B)3,795
C)63,756
D)256,036
E)64,009
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find pk + 1 for the given pk.​ pk=k5(8k+1)p _ { k } = \frac { k } { 5 } ( 8 k + 1 )

A) pk+1=k+15(8k+5)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 5 )
B) pk+1=k+15(8k+6)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 6 )
C) pk+1=k+16(8k+6)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 6 )
D) pk+1=k+15(8k+9)p _ { k + 1 } = \frac { k + 1 } { 5 } ( 8 k + 9 )
E) pk+1=k+16(8k+9)p _ { k + 1 } = \frac { k + 1 } { 6 } ( 8 k + 9 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find pk+1 for the given pk.? pk=k27(k+2)2p _ { k } = \frac { k ^ { 2 } } { 7 ( k + 2 ) ^ { 2 } } ?

A) pk+1=(k+1)23(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 3 ( k + 8 ) ^ { 2 } }
B) pk+1=(k+1)28(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 8 ) ^ { 2 } }
C) pk+1=(k+1)28(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 8 ( k + 3 ) ^ { 2 } }
D) pk+1=(k+1)27(k+3)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 3 ) ^ { 2 } }
E) pk+1=(k+1)27(k+8)2p _ { k + 1 } = \frac { ( k + 1 ) ^ { 2 } } { 7 ( k + 8 ) ^ { 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find a quadratic model for the sequence with the indicated terms. ​
A0 = 4,a2 = 0,a6 = 38

A)an = -4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
B)an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n - 4
C)​an = 4n2 356- \frac { 35 } { 6 } n + 2312\frac { 23 } { 12 }
D)​an = 356- \frac { 35 } { 6 } n2 + 2312\frac { 23 } { 12 } n - 4
E)​an = 2312\frac { 23 } { 12 } n2 356- \frac { 35 } { 6 } n + 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
13
Find the sum using the formulas for the sums of powers of integers.​ j=111(412j+12j2)\sum _ { j = 1 } ^ { 11 } \left( 4 - \frac { 1 } { 2 } j + \frac { 1 } { 2 } j ^ { 2 } \right)

A)-264
B)264
C)-506
D)759
E)506
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the sum using the formulas for the sums of powers of integers.​ n=16n2\sum _ { n = 1 } ^ { 6 } n ^ { 2 }

A)21
B)42
C)546
D)441
E)91
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
15
Find pk + 1 for the given pk.​ pk=14(k+2)p _ { k } = \frac { 1 } { 4 ( k + 2 ) }

A) pk+1=1k(k+3)p _ { k + 1 } = \frac { 1 } { k ( k + 3 ) }
B) pk+1=4(k+1)(k+2)p _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
C) pk+1=4k(k+3)p _ { k + 1 } = \frac { 4 } { k ( k + 3 ) }
D) pk+1=1(k+3)(k+2)p _ { k + 1 } = \frac { 1 } { ( k + 3 ) ( k + 2 ) }
E) pk+1=14(k+3)p _ { k + 1 } = \frac { 1 } { 4 ( k + 3 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find a quadratic model for the sequence with the indicated terms. ​
A0 = -3,a2 = 2,a4 = 10

A)an = 38\frac {3 } { 8 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = 3n2 + 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
C)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n + 3
D)an = 38\frac {3 } { 8 } n2 + 74\frac { 7 } { 4 } n - 3
E)an = -3n2+ 74\frac { 7 } { 4 } n + 38\frac {3 } { 8 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the sum using the formulas for the sums of powers of integers.​ n=114n\sum _ { n = 1 } ^ { 14 } n

A)11,025
B)210
C)6,090
D)105
E)1,015
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the sum using the formulas for the sums of powers of integers.​ n=114n3\sum _ { n = 1 } ^ { 14 } n ^ { 3 }

A)6,090
B)105
C)11,025
D)1,015
E)210
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the sum using the formulas for the sums of powers of integers.​ n=116n\sum _ { n = 1 } ^ { 16 } n

A)18,496
B)8,976
C)1,496
D)272
E)136
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find pk + 1 for the given pk.​ pk=6k(k+1)p _ { k } = \frac { 6 } { k ( k + 1 ) }

A) pk+1=2k(k+2)p _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) pk+1=6(k+1)(k+1)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 1 ) }
C) pk+1=6(k+1)(k+2)p _ { k + 1 } = \frac { 6 } { ( k + 1 ) ( k + 2 ) }
D) pk+1=6(k+2)(k+6)p _ { k + 1 } = \frac { 6 } { ( k + 2 ) ( k + 6 ) }
E) pk+1=6k(k+2)p _ { k + 1 } = \frac { 6 } { k ( k + 2 ) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
21
Use mathematical induction to solve for all positive integers n.​ 16+34+52+70++(18n2)=?16 + 34 + 52 + 70 + \ldots + ( 18 n - 2 ) = ?

A) n(n+16)(16n+1)6\frac { n ( n + 16 ) ( 16 n + 1 ) } { 6 }
B) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
C) n2(3n+14)\frac { n } { 2 } ( 3 n + 14 )
D) n(n+16)n ( n + 16 )
E) n(n+16)2\frac { n ( n + 16 ) } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
22
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A​1 = 3
An = n - an - 1

A)3,-1,4,0,5,1 First differences: -9,9,-9,9
Second differences: -4,5,-4,5,-4
Linear
B)0,3,-1,4,0,5 First differences: -4,5,-4,5,-4
Second differences: -9,-9,-9,-9
Quadratic
C)3,-1,4,0,5,1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Neither
D)3,-1,4,-0,5,-1 First differences: -9,-9,-9,-9
Second differences: -4,5,-4,5,-4
Linear
E)3,-1,4,0,5,1 First differences: -4,5,-4,5,-4
Second differences: 9,-9,9,-9
Neither
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
23
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 1
An = an - 1 + 2n

A)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: 2,2,2,2
Quadratic
B)1,5,11,19,29,41 First differences: 4,6,8,10,12
Second differences: -2,-2,-2,-2
Quadratic
C)1,5,11,19,29,41 First differences: 2,2,2,2
Second differences: 4,6,8,10,12
Linear
D)1,5,11,19,29,41 First differences: -2,-2,-2,2
Second differences: 4,6,8,10,12
Neither
E)1,5,11,19,29,41 First differences: -2,2,-2,2
Second differences: 4,6,8,10,12
Linear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
24
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 0
An = an - 1 + 5

A)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Quadratic
B)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Linear
C)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: -1,-1,-1,-1
Quadratic
D)0,5,10,15,20,25 First differences: 5,5,5,5,5
Second differences: 0,0,0,0
Quadratic
E)0,5,10,15,20,25 First differences: 0,0,0,0
Second differences: 5,5,5,5,5
Linear
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
25
Use mathematical induction to solve for all positive integers n.​ 4+8+12+16++2n=?4 + 8 + 12 + 16 + \ldots + 2 n = ?

A) (n+3)n( n + 3 ) n
B) n(n+2)2\frac { n ( n + 2 ) } { 2 }
C) (n+2)n( n + 2 ) n
D) (n(n+2)2)2\left( \frac { n ( n + 2 ) } { 2 } \right) ^ { 2 }
E) n(n+1)(n+2)6\frac { n ( n + 1 ) ( n + 2 ) } { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find a quadratic model for the sequence with the indicated terms.​ a0=3,a2=7,a6=57a _ { 0 } = - 3 , a _ { 2 } = - 7 , a _ { 6 } = - 57

A)an = 32\frac { 3 } { 2 } n2 - 74\frac { 7 } { 4 } n - 3
B)an = -3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
C)an = 74- \frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n - 3
D)an = - 74\frac { 7 } { 4 } n2 + 32\frac { 3 } { 2 } n + 3
E)an = 3n2 + 32\frac { 3 } { 2 } n - 74\frac { 7 } { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use mathematical induction to solve for all positive integers n.​ 1+2+3+4++n=?1 + 2 + 3 + 4 + \ldots + n = ?

A) n(n+1)2\frac { n ( n + 1 ) } { 2 }
B) (n+1)2\frac { ( n + 1 ) } { 2 }
C) n2(3n+1)\frac { n } { 2 } ( 3 n + 1 )
D) n(n+1)(1n+1)6\frac { n ( n + 1 ) ( 1 n + 1 ) } { 6 }
E) n2(n+1)23\frac { n ^ { 2 } ( n + 1 ) ^ { 2 } } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
28
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A2 = -4
An = -2an - 1

A)-4,8,-16,32,-64,128 First differences: 12,-24,48,-96,192
Second differences: -36,72,-144,288
Neither
B)0,4,8,16,32,64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
C)0,4,-8,16,-32,64 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Linear
D)0,-4,8,-16,32,-64 First differences: 12,24,48,96,192
Second differences: -36,72,-144,288
Quadratic
E)4,-8,16,-32,64,-128 First differences: -36,72,-144,288
Second differences: 12,24,48,96,192
Neither
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find a formula for the sum of the first n terms of the sequence.​ 9,12,15,18,21,9,12,15,18,21 , \ldots

A) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( 3 n + 15 )
B) Sn=n2(3n+3)S _ { n } = \frac { n } { 2 } ( 3 n + 3 )
C) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( - 3 n - 15 )
D) Sn=n2(3n15)S _ { n } = \frac { n } { 2 } ( 3 n - 15 )
E) Sn=n2(3n+15)S _ { n } = \frac { n } { 2 } ( - 3 n + 15 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
30
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 3
​an = an - 1 - n

A)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: -1,-1,-1,-1
Quadratic
B)0,3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Linear
C)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: 1,1,1,1
Quadratic
D)3,1,-2,-6,-11,-17 First differences: -2,-3,-4,-5,-6
Second differences: -1,-1,-1,-1
Quadratic
E)0,3,1,-2,-6,-11 First differences: 3,-2,-3,-4,-5
Second differences: 1,1,1,1
Quadratic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
31
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.200264020036552004670\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 640 \\\hline 2003 & 655 \\\hline 2004 & 670 \\\hline\end{array} 200567020066832007699\begin{array} { | l | l | } \hline 2005 & 670 \\\hline 2006 & 683 \\\hline 2007 & 699 \\\hline\end{array}

Find the first differences of the data shown in the table.

A) 15,15,0,13,1615,15,0,13,16
B) 15,13,0,15,1615,13,0,15,16
C) 16,0,15,13,1516,0,15,13,15
D) 0,15,0,13,160,15,0,13,16
E) 13,13,15,0,1613,13,15,0,16
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
32
Use mathematical induction to solve for all positive integers n. ​
A factor of (n3+7n2+6n)\left( n ^ { 3 } + 7 n ^ { 2 } + 6 n \right) is:

A)7
B)9
C)8
D)6
E)3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
33
Determine whether the statement is true or false. ​If the statement P1 is true but the true statement P6 does not imply that the statement P7 is true,then Pn is not
Necessarily true for all positive integers n.


A)False
B)True
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
34
Determine whether the statement is true or false. ​A sequence with terms has n-1 second differences.

A)False
B)True
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
35
Use mathematical induction to solve for all positive integers n.​ 22+27+32+37++(5n17)=?22 + 27 + 32 + 37 + \ldots + ( 5 n - 17 ) = ?

A) n2(5n+5)\frac { n } { 2 } ( 5 n + 5 )
B) n(22n+1)n ( 22 n + 1 )
C) n(n+1)22\frac { n ( n + 1 ) } { 22 }
D) n(n+22)n ( n + 22 )
E) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
36
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A1 = 2
An = an - 1 + 2

A)2,4,6,8,10,12 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Quadratic
B)0,2,4,6,8,10 First differences: 0,0,0,0
Second differences: 2,2,2,2,2
Linear
C)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Quadratic
D)2,4,6,8,10,12 First differences: 2,2,2,2,2
Second differences: 0,0,0,0
Linear
E)0,2,4,6,8,10 First differences: 2,2,2,2,2
Second differences: -1,-1,-1,-1
Quadratic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
37
Use mathematical induction to solve for all positive integers n.​ 5+9+13+17++(4n+1)=?5 + 9 + 13 + 17 + \ldots + ( 4 n + 1 ) = ?

A) n(9n+3)n ( 9 n + 3 )
B) n(2n+3)2\frac { n ( 2 n + 3 ) } { 2 }
C) n(n+3)n ( n + 3 )
D) n(n+3)9\frac { n ( n + 3 ) } { 9 }
E) n(2n+3)n ( 2 n + 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find a formula for the sum of the first n terms of the sequence.​ 17,21,25,29,33,17,21,25,29,33 , \ldots

A) Sn=n(2n+15)S _ { n } = n ( 2 n + 15 )
B) Sn=n(5n+1)S _ { n } = n ( 5 n + 1 )
C) Sn=(n+1)nS _ { n } = \frac { ( n + 1 ) } { n }
D) Sn=n(2n+1)S _ { n } = n ( 2 n + 1 )
E) Sn=n(17n1)S _ { n } = n ( 17 n - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
39
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither. ​
A0 = 1
An = an - 1 + n

A)0,1,2,-4,7,-11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Neither
B)1,-2,4,-7,11,-16 First differences: -1,1,-1,1
Second differences: 1,2,3,4,5
Neither
C)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Linear
D)0,1,2,4,7,11 First differences: 1,1,2,3,4
Second differences: -1,1,-1,1
Quadratic
E)1,2,4,7,11,16 First differences: 1,2,3,4,5
Second differences: 1,1,1,1
Quadratic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
40
Write the first six terms of the sequence beginning with the given term.Then calculate the first and second differences of the sequence.State whether the sequence has a linear model,a quadratic model,or neither.​ a0=4an=(an1)2\begin{array} { l } a _ { 0 } = 4 \\a _ { n } = \left( a _ { n - 1 } \right) ^ { 2 }\end{array}

A)0,4,-16,256,-65,536,4,294,967,296 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Linear
B)0,4,16,256,65,536,4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
C)4,-16,256,-65,536,4,294,967,296,-18,446,744,073,709,600,000 First differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Second differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Neither
D)4,16,256,65,536,4,294,967,296,18,446,744,073,709,600,000 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: 228,65,040,4,294,836,480, 2×10192 \times 10 ^ { 19 }
Neither
E)0,-4,16,-256,65,536,-4,294,967,296 First differences: 12,240,65,280,4,294,901,760, 2×10192 \times 10 ^ { 19 }
Second differences: -228,65,040,-4,294,836,480, 2×10192 \times 10 ^ { 19 }
Quadratic
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
41
The table shows the numbers ana _ { n } (in thousands)of residents from 2002 through 2007.  Number of residents, . Year an.2002646200365720046682005679\begin{array} { | c | l | } \hline & \text { Number of residents, } \\&.\\{ \text { Year } }& a _ { n } \\&.\\\hline 2002 & 646 \\\hline 2003 & 657 \\\hline 2004 & 668 \\\hline 2005 & 679 \\\hline\end{array} 20066902007701\begin{array} { | l | l | } \hline 2006 & 690 \\\hline 2007 & 701 \\\hline\end{array}
Determine whether a linear model can be used to approximate the data.
If so,find a model algebraically.Let n represent the year,with n=2n = 2 corresponding to 2002.

A)A linear model can be used. an=11n+690a _ { n } = 11 n + 690
B)A linear model can be used. an=11n+657a _ { n } = 11 n + 657
C)A linear model can be used. an=11n+701a _ { n } = 11 n + 701
D)A linear model can be used. an=11n+624a _ { n } = 11 n + 624
E)A linear model can be used. an=11n+646a _ { n } = 11 n + 646
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the sum using the formulas for the sums of powers of integers. n=19n3\sum _ { n = 1 } ^ { 9 } n ^ { 3 }

A)729
B)285
C)4050
D)1296
E)2025
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find Pk+1 for the given Pk. Pk=2k(k+1)P _ { k } = \frac { 2 } { k ( k + 1 ) }

A) Pk+1=2k(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 2 ) }
B) Pk+1=2k(k+1)+2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + \frac { 2 } { ( k + 1 ) ( k + 2 ) }
C) Pk+1=4(k+1)(k+2)P _ { k + 1 } = \frac { 4 } { ( k + 1 ) ( k + 2 ) }
D) Pk+1=2(k+1)(k+2)P _ { k + 1 } = \frac { 2 } { ( k + 1 ) ( k + 2 ) }
E) Pk+1=2k(k+1)+1P _ { k + 1 } = \frac { 2 } { k ( k + 1 ) } + 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
44
Use mathematical induction to solve for all positive integers n.​ 3+8+13+18++(5n2)=?3 + 8 + 13 + 18 + \ldots + ( 5 n - 2 ) = ?

A) n6(5n+1)\frac { n } { 6 } ( 5 n + 1 )
B) n(5n+1)n ( 5 n + 1 )
C) n2(5n+1)\frac { n } { 2 } ( 5 n + 1 )
D) n4(5n+1)\frac { n } { 4 } ( 5 n + 1 )
E) 5n+15 n + 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find a formula for the sum of the n terms of the sequence. 12,54,258,12516,\frac { 1 } { 2 } , \frac { 5 } { 4 } , \frac { 25 } { 8 } , \frac { 125 } { 16 } , \ldots

A) 5(5n2n)3(2n)\frac { 5 \left( 5 ^ { n } - 2 ^ { n } \right) } { 3 \left( 2 ^ { n } \right) }
B)​ 5n12\frac { 5 ^ { n - 1 } } { 2 }
C) 5n+2n7(2n)\frac { 5 ^ { n } + 2 ^ { n } } { 7 \left( 2 ^ { n } \right) }
D) 12n\frac { 1 } { 2 ^ { n } }
E) 5n2n3(2n)\frac { 5 ^ { n } - 2 ^ { n } } { 3 \left( 2 ^ { n } \right) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find a quadratic model for the sequence with the indicated terms. a0=5,a2=5,a5=65a _ { 0 } = 5 , a _ { 2 } = 5 , a _ { 5 } = 65

A) an=4n2+5a _ { n } = 4 n ^ { 2 } + 5
B) an=8n+5a _ { n } = 8 n + 5
C) an=4n28n5a _ { n } = 4 n ^ { 2 } - 8 n - 5
D) an=4n28n+5a _ { n } = 4 n ^ { 2 } - 8 n + 5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
47
Use mathematical induction to solve for all positive integers n.​ i=1ni(i+4)=?\sum _ { i = 1 } ^ { n } i ( i + 4 ) = ?

A) n(2n+13)6\frac { n ( 2 n + 13 ) } { 6 }
B) n(n+1)(2n+13)4\frac { n ( n + 1 ) ( 2 n + 13 ) } { 4 }
C) n(n+1)(n+13)6\frac { n ( n + 1 ) ( n + 13 ) } { 6 }
D) n(n+1)(2n+13)6\frac { n ( n + 1 ) ( 2 n + 13 ) } { 6 }
E) n(n+1)(2n+13)2\frac { n ( n + 1 ) ( 2 n + 13 ) } { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the sum using the formulas for the sums of powers of integers. n=1129n3n2\sum _ { n = 1 } ^ { 12 } 9 n - 3 n ^ { 2 }

A)-924
B)-1248
C)468
D)-324
E)-3744
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.