Deck 17: Mathematical Problems and Solutions

ملء الشاشة (f)
exit full mode
سؤال
The solution of y6y+8y=0y ^ { \prime \prime } - 6 y ^ { \prime } + 8 y = 0 is

A) y=c1e2x+c2e4xy = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 4 x }
B) y=c1e2x+c2xe4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } x e ^ { 4 x }
C) y=c1e2x+c2xe4xy = c _ { 1 } e ^ { - 2 x } + c _ { 2 } x e ^ { - 4 x }
D) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { 4 x }
E) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { - 4 x }
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The solution of X=(1214)X\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 1 & - 2 \\1 & 4\end{array} \right) \mathbf { X } is

A) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 3 t }
C) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } - 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
D) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
E) X=c1(12)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } 1 \\- 2\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
سؤال
Using the convolution theorem, we find that L1{1/((s+1)(s2+1))}=\mathcal { L } ^ { - 1 } \left\{ 1 / \left( ( s + 1 ) \left( s ^ { 2 } + 1 \right) \right) \right\} =

A) (et+sintcost)/2\left( e ^ { - t } + \sin t - \cos t \right) / 2
B) (et+sintcost)/2\left( e ^ { t } + \sin t - \cos t \right) / 2
C) (et+sint+cost)/2\left( e ^ { - t } + \sin t + \cos t \right) / 2
D) (etsintcost)/2\left( e ^ { t } - \sin t - \cos t \right) / 2
E) (etsintcost)/2\left( e ^ { - t } - \sin t - \cos t \right) / 2
سؤال
Using power series methods, the solution of 2xy+y+2y=02 x y ^ { \prime \prime } + y ^ { \prime } + 2 y = 0 is

A) y=c0n=1(2)nxn/(n!(13(2n1)))+c1x1/2n=1(2)nxn/(n!(35(2n+1)))\begin{array} { l } y = c _ { 0 } \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) + \\c _ { 1 } x ^ { 1 / 2 } \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) )\end{array}
B) y=c0n=1(2)nxn/(n!(13(2n1)))+c1x1/2[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = c _ { 0 } \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) + \\c _ { 1 } x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
C) y=c0[1+n=1(2)nxn/(n!(13(2n1)))]+c1[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = c _ { 0 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\c _ { 1 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
D) y=c0[1+n=1(2)nxn/(n!(13(2n1)))]+c1x1/2[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = c _ { 0 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\c _ { 1 } x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
E) y=[1+n=1(2)nxn/(n!(13(2n1)))]+x1/2[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
سؤال
The solution of y+2y=x+exy ^ { \prime \prime } + 2 y ^ { \prime } = x + e ^ { x } is

A) y=c1+c2e2x+x2/4x/4+ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } + x ^ { 2 } / 4 - x / 4 + e ^ { x } / 3
B) y=c1+c2e2x+x2/4+x/4ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } + x ^ { 2 } / 4 + x / 4 - e ^ { x } / 3
C) y=c1+c2e2x+x2/4+x/4+ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } + x ^ { 2 } / 4 + x / 4 + e ^ { x } / 3
D) y=c1+c2e2xx2/4x/4ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } - x ^ { 2 } / 4 - x / 4 - e ^ { x } / 3
E) y=c1+c2e2xx2/4x/4+ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } - x ^ { 2 } / 4 - x / 4 + e ^ { x } / 3
سؤال
The solution of xy=(x1)y2x y ^ { \prime } = ( x - 1 ) y ^ { 2 } is

A) y=1/(x+lnx+c)y = 1 / ( x + \ln x + c )
B) y=1/(xlnx+c)y = 1 / ( x - \ln x + c )
C) y=c/(x+lnx)y = - c / ( x + \ln x )
D) y=c/(xlnx)y = - c / ( x - \ln x )
E) y=1/(xlnx+c)y = - 1 / ( x - \ln x + c )
سؤال
In the previous problem, the solution for the temperature is

A) T(t)=7038e.930tT ( t ) = 70 - 38 e ^ { - .930 t }
B) T(t)=7038e.930tT ( t ) = 70 - 38 e ^ { .930 t }
C) T(t)=5532e.930tT ( t ) = 55 - 32 e ^ { - .930 t }
D) T(t)=5532e.930tT ( t ) = 55 - 32 e ^ { .930 t }
E) T(t)=55e.930tT ( t ) = 55 e ^ { - .930 t }
سؤال
The solution of x2yxy=0x ^ { 2 } y ^ { \prime \prime } - x y ^ { \prime } = 0 is

A) y=c1+c2x1y = c _ { 1 } + c _ { 2 } x ^ { - 1 }
B) y=c1lnx+c2x1y = c _ { 1 } \ln x + c _ { 2 } x ^ { - 1 }
C) y=c1+c2x2y = c _ { 1 } + c _ { 2 } x ^ { 2 }
D) y=c1+c2lnxy = c _ { 1 } + c _ { 2 } \ln x
E) y=c1+c2x2y = c _ { 1 } + c _ { 2 } x ^ { - 2 }
سؤال
Using Laplace transform methods, the solution of y+y=2sint,y(0)=1y ^ { \prime } + y = 2 \sin t , y ( 0 ) = 1 is (Hint: the previous problem might be useful.)

A) y=2et+sint+costy = 2 e ^ { - t } + \sin t + \cos t
B) y=et+etsintcosty = e ^ { t } + e ^ { - t } - \sin t - \cos t
C) y=2etsintcosty = 2 e ^ { - t } - \sin t - \cos t
D) y=2et+sintcosty = 2 e ^ { - t } + \sin t - \cos t
E) y=et+et+sintcosty = e ^ { t } + e ^ { - t } + \sin t - \cos t
سؤال
In the previous problem, the solution for the position, x(t)x ( t ) , is

A) x=e4t(cos(4t)+sin(4t))/2x = e ^ { 4 t } ( \cos ( 4 t ) + \sin ( 4 t ) ) / 2
B) x=e4t(cos(4t)+sin(4t))/2x = e ^ { - 4 t } ( \cos ( 4 t ) + \sin ( 4 t ) ) / 2
C) x=e4t(cos(8t)+sin(8t))/2x = e ^ { - 4 t } ( \cos ( 8 t ) + \sin ( 8 t ) ) / 2
D) x=e4t(cos(8t)+sin(8t))/2x = e ^ { 4 t } ( \cos ( 8 t ) + \sin ( 8 t ) ) / 2
E) x=4e8t32te8tx = 4 e ^ { 8 t } - 32 t e ^ { 8 t }
سؤال
Using Laplace transform methods, the solution of y+y=δ(tπ/2),y(0)=1y ^ { \prime \prime } + y = \delta ( t - \pi / 2 ) , y ( 0 ) = 1 , y(0)=0y ^ { \prime } ( 0 ) = 0 is

A) y=sint+sin(tπ/2)u(tπ/2)y = \sin t + \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
B) y=sintcos(tπ/2)u(tπ/2)y = \sin t - \cos ( t - \pi / 2 ) \boldsymbol { u } ( t - \pi / 2 )
C) y=cost+sin(tπ/2)u(tπ/2)y = \cos t + \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
D) y=cost+cos(tπ/2)u(tπ/2)y = \cos t + \cos ( t - \pi / 2 ) \boldsymbol { u } ( t - \pi / 2 )
E) y=costsin(tπ/2)u(tπ/2)y = \cos t - \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
سؤال
The solution of y+3y4y=cosxy ^ { \prime \prime } + 3 y ^ { \prime } - 4 y = \cos x is

A) y=c1ex+c2e4x+(5sinx+3cosx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( 5 \sin x + 3 \cos x ) / 34
B) y=c1ex+c2e4x+(5sinx+3cosx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \sin x + 3 \cos x ) / 34
C) y=c1ex+c2e4x+(5cosx3sinx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \cos x - 3 \sin x ) / 34
D) y=c1ex+c2e4x+(5cosx+3sinx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( 5 \cos x + 3 \sin x ) / 34
E) y=c1ex+c2e4x+(5cosx+3sinx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \cos x + 3 \sin x ) / 34
سؤال
The solution of y+y=xy ^ { \prime } + y = x is

A) y=x+1+cexy = - x + 1 + c e ^ { x }
B) y=x1+cexy = - x - 1 + c e ^ { x }
C) y=x1+cexy = x - 1 + c e ^ { - x }
D) y=x1+cexy = - x - 1 + c e ^ { - x }
E) y=x+1+cexy = x + 1 + c e ^ { - x }
سؤال
A 4-pound weight is hung on a spring and stretches it 1 foot. The mass spring system is then put into motion in a medium offering a damping force numerically equal to the velocity. If the mass is pulled down 6 inches from equilibrium and released, the initial value problem describing the position, x(t)x ( t ) , of the mass at time t is

A) x8x+32x=0,x(0)=6,x(0)=0x ^ { \prime \prime } - 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 6 , x ^ { \prime } ( 0 ) = 0
B) x+8x+32x=0,x(0)=6,x(0)=0x ^ { \prime \prime } + 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 6 , x ^ { \prime } ( 0 ) = 0
C) x8x+32x=0,x(0)=1/2,x(0)=0x ^ { \prime \prime } - 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 1 / 2 , x ^ { \prime } ( 0 ) = 0
D) x+8x+32x=0,x(0)=1/2,x(0)=0x ^ { \prime \prime } + 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 1 / 2 , x ^ { \prime } ( 0 ) = 0
E) x+32x=8,x(0)=1/2,x(0)=0x ^ { \prime \prime } + 32 x = 8 , x ( 0 ) = 1 / 2 , x ^ { \prime } ( 0 ) = 0
سؤال
The solution of X=(400031011)XX ^ { \prime } = \left( \begin{array} { c c c } 4 & 0 & 0 \\0 & 3 & 1 \\0 & - 1 & 1\end{array} \right) X are

A) X=c1(010)e4t+c2(011)e2t+c3[(011)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
B) X=c1(011)e4t+c2(010)e2t+c3[(010)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
C) X=c1(100)e4t+c2(011)e2t+c3[(011)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
D) X=c1(100)e4t+c2(011)e2t+c3[(011)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { l } 0 \\1 \\1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { l } 0 \\1 \\1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
E) X=c1(100)e4t+c2(110)e2t+c3[(110)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1 \\0\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 1 \\- 1 \\0\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
سؤال
The solution of y4y+20y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 20 y = 0 is

A) y=c1e2xcos(4x)+c2e2xsin(4x)y = c _ { 1 } e ^ { - 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { - 2 x } \sin ( 4 x )
B) y=c1e2xcos(4x)+c2e2xsin(4x)y = c _ { 1 } e ^ { - 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { 2 x } \sin ( 4 x )
C) y=c1e2xcos(4x)+c2e2xsin(4x)y = c _ { 1 } e ^ { 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { 2 x } \sin ( 4 x )
D) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { 4 x }
E) y=c1cos(4x)+c2sin(4x)y = c _ { 1 } \cos ( 4 x ) + c _ { 2 } \sin ( 4 x )
سؤال
Using power series methods, the solution of xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0 is

A) y=c0x+c1[xlnx1+n=2xn/n!]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 2 } ^ { \infty } x ^ { n } / n ! \right]
B) y=c0x+c1[xlnx1+n=1xn/(n!(n+1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 1 } ^ { \infty } x ^ { n } / ( n ! ( n + 1 ) ) \right]
C) y=c0x+c1[xlnx+n=2xn/(n!(n1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x + \sum _ { n = 2 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
D) y=c0x+c1[xlnx+n=1xn/(n!(n1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x + \sum _ { n = 1 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
E) y=c0x+c1[xlnx1+n=2xn/(n!(n1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 2 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
سؤال
A frozen chicken at 32F32 ^ { \circ } \mathrm { F } is taken out of the freezer and placed on a table at 70F70 ^ { \circ } \mathrm { F } . One hour later the temperature of the chicken is 55F55 ^ { \circ } \mathrm { F } . The mathematical model for the temperature T(t)T ( t ) as a function of time tt is (assuming Newton 's law of warming)

A) dTdt=kT,T(0)=32,T(1)=55\frac { d T } { d t } = k T , T ( 0 ) = 32 , T ( 1 ) = 55
B) dTdt=k(T70),T(0)=32,T(1)=55\frac { d T } { d t } = k ( T - 70 ) , T ( 0 ) = 32 , T ( 1 ) = 55
C) dTdt=(T70),T(0)=32,T(1)=55\frac { d T } { d t } = ( T - 70 ) , T ( 0 ) = 32 , T ( 1 ) = 55
D) dTdt=T,T(0)=32,T(1)=55\frac { d T } { d t } = T , T ( 0 ) = 32 , T ( 1 ) = 55
E) dTdt=k(T55),T(0)=32,T(1)=55\frac { d T } { d t } = k ( T - 55 ) , T ( 0 ) = 32 , T ( 1 ) = 55
سؤال
The solution of y+y=tanxy ^ { \prime \prime } + y = \tan x is

A) y=c1cosx+c2sinx+cosxlnsecx+tanxy = c _ { 1 } \cos x + c _ { 2 } \sin x + \cos x \ln | \sec x + \tan x |
B) y=c1cosx+c2sinxcosxlnsecx+tanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \sec x + \tan x |
C) y=c1cosx+c2sinx+cosxlnsecxy = c _ { 1 } \cos x + c _ { 2 } \sin x + \cos x \ln | \sec x |
D) y=c1cosx+c2sinxcosxlntanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \tan x |
E) y=c1cosx+c2sinxcosxlnsecxtanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \sec x - \tan x |
سؤال
The correct form of the particular solution of y+2y+y=exy ^ { \prime \prime } + 2 y ^ { \prime } + y = e ^ { - x } is

A) yp=Aexy _ { p } = A e ^ { - x }
B) yp=Axexy _ { p } = A x e ^ { - x }
C) yp=Ax2exy _ { p } = A x ^ { 2 } e ^ { - x }
D) yp=Ax3exy _ { p } = A x ^ { 3 } e ^ { - x }
E) none of the above
سؤال
In the previous two problems, the error in the improved Euler method at x=0.1x = 0.1 is

A) 0.004670.00467
B) 0.000165
C) 0.870
D) 0.895
E) 0.0897
سؤال
Consider the problem 2ur2+1rur+1r22uθ2=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 with boundary conditions u(r,0)=0u ( r , 0 ) = 0 , u(r,π)=0,u(1,θ)=f(θ)u ( r , \pi ) = 0 , u ( 1 , \theta ) = f ( \theta ) . Separate variables using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for R and ΘR \text { and } \Theta are

A) r2R+rR+λR=0,R(0)=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
B) r2R+rR+λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
C) r2R+rRλR=0,R(0)=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , R ( 0 ) = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
D) r2R+rRλR=0,R(0) is bounded, Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , R ( 0 ) \text { is bounded, } \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
E) r2R+rRλR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
سؤال
The solutions of the eigenvalue problem and the other problem from the previous problem are

A) λ=nπ,X=cos(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n \pi , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
B) λ=nπ,X=sin(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n \pi , X = \sin ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
C) λ=n2π2,X=cos(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
D) λ=n2π2,X=sin(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , X = \sin ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
E) λ=n2π2,X=cos(nπx),Y=sinh(nπy),n=0,1,2,,(Y=y if n=0)\lambda = n ^ { 2 } \pi ^ { 2 } , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 0,1,2 , \ldots , ( Y = y \text { if } n = 0 )
سؤال
In the previous problem, the error in the classical Runge-Kutta method at x=0.1x = 0.1 is (Hint: see the previous five problems.)

A) 0.00083
B) 0.000083
C) 0.000000083
D) 0.0000083
E) 0.00000083
سؤال
In the previous problem, the solution for U(α,t)U ( \alpha , t ) is

A) U=u0(1+ekα2t)/αU = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
B) U=u0(1ekα2t)/αU = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
C) U=u0(1ekα2t)/αU = u _ { 0 } \left( 1 - e ^ { k \alpha ^ { 2 } t } \right) / \alpha
D) U=u0(1ekα2t)U = u _ { 0 } \left( 1 - e ^ { k \alpha ^ { 2 } t } \right)
E) U=u0(1+ekα2t)U = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right)
سؤال
The solution of X=(1121)XX ^ { \prime } = \left( \begin{array} { c c } 1 & 1 \\- 2 & - 1\end{array} \right) X is

A) X=c1[(11)cost(01)sint]+c2[(11)sint+(01)cost]\mathbf { X } = c _ { 1 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \cos t - \left( \begin{array} { l } 0 \\1\end{array} \right) \sin t \right] + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \sin t + \left( \begin{array} { l } 0 \\1\end{array} \right) \cos t \right]
B) X=c1(10)e3t+c2(01)e3tX = c _ { 1 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { \sqrt { 3 } t } + c _ { 2 } \left( \begin{array} { l } 0 \\1\end{array} \right) e ^ { - \sqrt { 3 } t }
C) X=c1(10)et+c2(01)et\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 0 \\1\end{array} \right) e ^ { - t }
D) X=c1[(11)cos(3t)(01)sin(3t)]+c2[(11)sin(3t)+(01)cos(3t)]\begin{array} { l } X = c _ { 1 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \cos ( \sqrt { 3 } t ) - \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( \sqrt { 3 } t ) \right] + \\c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \sin ( \sqrt { 3 } t ) + \left( \begin{array} { l } 0 \\1\end{array} \right) \cos ( \sqrt { 3 } t ) \right]\end{array}
E) X=c1[(11)cos(2t)(01)sin(2t)]+c2[(11)sin(2t)+(01)cos(2t)]\mathbf { X } = c _ { 1 } \left[ \left( \begin{array} { l } 1 \\1\end{array} \right) \cos ( 2 t ) - \left( \begin{array} { c } 0 \\- 1\end{array} \right) \sin ( 2 t ) \right] + c _ { 2 } \left[ \left( \begin{array} { l } 1 \\1\end{array} \right) \sin ( 2 t ) + \left( \begin{array} { c } 0 \\- 1\end{array} \right) \cos ( 2 t ) \right]
سؤال
Consider the non-linear system x=12xy,y=2xyyx ^ { \prime } = 1 - 2 x y , y ^ { \prime } = 2 x y - y . The linearized system about the one critical point, (1/2,1), is Xt=AX, where A=( 1 / 2,1 ) \text {, is } X ^ { t } = A X \text {, where } A =

A) (2120)\left( \begin{array} { l l } 2 & 1 \\2 & 0\end{array} \right)
B) (2120)\left( \begin{array} { c c } 2 & - 1 \\2 & 0\end{array} \right)
C) (2120)\left( \begin{array} { c c } - 2 & - 1 \\2 & 0\end{array} \right)
D) (2120)\left( \begin{array} { l l } - 2 & 1 \\- 2 & 0\end{array} \right)
E) (2120)\left( \begin{array} { c c } - 2 & - 1 \\- 2 & 0\end{array} \right)
سؤال
Consider the heat problem k2ux2=ut,0<x<,t>0,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , 0 < x < \infty , t > 0 , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 } . Apply a Fourier sine transform. The resulting problem for U(α,t)=Fs{u(x,t)}U ( \alpha , t ) = \mathcal { F } _ { s } \{ u ( x , t ) \} is

A) Ut=kαU+kαu0,U(α,0)=0U _ { t } = - k \alpha U + k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) Ut=kα2Ukαt0,U(α,0)=0U _ { t } = - k \alpha ^ { 2 } U - k \alpha t _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut=kα2U+kαt0,U(α,0)=0U _ { t } = - k \alpha ^ { 2 } U + k \alpha t _ { 0 } , U ( \alpha , 0 ) = 0
D) Ut=kα2U+kαu0,U(α,0)=0U _ { t } = k \alpha ^ { 2 } U + k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut=kα2Ukαu0,U(α,0)=0U _ { t } = k \alpha ^ { 2 } U - k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
سؤال
Let A=(4948)A = \left( \begin{array} { c c } - 4 & - 9 \\4 & 8\end{array} \right) , and consider the system X=AXX ^ { \prime } = A X . The critical point (0,0)( 0,0 ) of the system is a

A) stable node
B) unstable node
C) unstable saddle
D) stable spiral point
E) unstable spiral point
سؤال
Consider Laplace's equation on a rectangle, 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 with boundary conditions ux(0,y)=0,ux(1,y)=0,u(x,0)=0,u(x,2)=f(x)u _ { x } ( 0 , y ) = 0 , u _ { x } ( 1 , y ) = 0 , u ( x , 0 ) = 0 , u ( x , 2 ) = f ( x ) . When the variables are separated using u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for XX and YY are

A) X+λX=0,X(0)=0,X(1)=0,YλY=0,Y(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
B) X+λX=0,X(0)=0,X(1)=0,Y+λY=0,Y(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0
C) X+λX=0,X(0)=0,X(1)=0,YλY=0,Y(2)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 2 ) = 0
D) X+λX=0,X(0)=0,Y+λY=0,Y(0)=0,Y(2)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0
E) X+λX=0,X(0)=0,YλY=0,Y(0)=0,Y(2)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0
سؤال
Using the improved Euler method with a step size of h=0.1h = 0.1 , the solution of y=1+y2,y(0)=0 at x=0.1y ^ { \prime } = 1 + y ^ { 2 } , y ( 0 ) = 0 \text { at } x = 0.1 is

A) y1=0.1015y _ { 1 } = 0.1015
B) y1=0.115y _ { 1 } = 0.115
C) y1=0.105y _ { 1 } = 0.105
D) y1=0.10005y _ { 1 } = 0.10005
E) y1=0.1005y _ { 1 } = 0.1005
سؤال
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(2)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 2 ) = 0 is

A) λ=nπ/2,y=cos(nπx/2),n=1,2,3,\lambda = n \pi / 2 , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
B) λ=(nπ/2)2,y=cos(nπx/2),n=1,2,3,\lambda = ( n \pi / 2 ) ^ { 2 } , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
C) λ2=nπ/2,y=sin(nπx/2),n=1,2,3,\lambda ^ { 2 } = n \pi / 2 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
D) λ=nπ/2,y=sin(nπx/2),n=1,2,3,\lambda = n \pi / 2 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
E) λ=(nπ/2)2,y=sin(nπx/2),n=1,2,3,\lambda = ( n \pi / 2 ) ^ { 2 } , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
سؤال
In the previous problem, the exact solution of the initial value problem is

A) y=tanxy = \tan x
B) y=secxy = \sec x
C) y=(e2x1)/(e2x+1)y = \left( e ^ { - 2 x } - 1 \right) / \left( e ^ { - 2 x } + 1 \right)
D) y=(e2x+1)/(e2x1)y = - \left( e ^ { - 2 x } + 1 \right) / \left( e ^ { - 2 x } - 1 \right)
E) y=(e2x1)/(e2x+1)y = - \left( e ^ { 2 x } - 1 \right) / \left( e ^ { 2 x } + 1 \right)
سؤال
In the previous problem, for both the linearized system and the non-linear system, the critical point is a

A) unstable node
B) stable node
C) saddle point
D) unstable spiral point
E) stable spiral point
سؤال
In the previous two problems, the solution for u(x,y)u ( x , y ) is

A) u=n=1cncos(nπx)sinh(nπx), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x ) \sinh ( n \pi x ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
B) u=n=1cnsin(nπx)sinh(nπy), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x ) \sinh ( n \pi y ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
C) u=c0y+n=1cncos(nπx)sinh(nπy)u = c _ { 0 } y + \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x ) \sinh ( n \pi y ) , where cn=02f(x)dx/4c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) d x / 4 and
cn=02f(x)cos(nπx)dx/sinh(2nπ)c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
D) u=n=1cncos(nπx)cosh(nπy), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x ) \cosh ( n \pi y ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
E) u=n=1cnsin(nπx)cosh(nπy), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x ) \cosh ( n \pi y ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
سؤال
A particular solution of X=(1121)X+(2t)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 1 & 1 \\- 2 & - 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } 2 \\t\end{array} \right) is

A) Xp=(t+2t+3)X _ { p } = \left( \begin{array} { c } t + 2 \\- t + 3\end{array} \right)
B) Xp=(t+2t3)X _ { p } = \left( \begin{array} { c } t + 2 \\- t - 3\end{array} \right)
C) Xp=(t+2t3)X _ { p } = \left( \begin{array} { l } - t + 2 \\- t - 3\end{array} \right)
D) Xp=(t+2t+3)\mathbf { X } _ { p } = \left( \begin{array} { c } - t + 2 \\t + 3\end{array} \right)
E) Xp=(t2t+3)X _ { p } = \left( \begin{array} { l } - t - 2 \\- t + 3\end{array} \right)
سؤال
Let A=(1411)A = \left( \begin{array} { c c } - 1 & - 4 \\1 & - 1\end{array} \right) , and consider the system X=AXX ^ { \prime } = A X . The critical point (0,0)( 0,0 ) of the system is a spiral point. The origin is

A) unstable, and the solutions recede from the origin clockwise as tt \rightarrow \infty .
B) unstable, and the solutions recede from the origin counter-clockwise as tt \rightarrow \infty .
C) stable, and the solutions approach the origin clockwise as tt \rightarrow \infty .
D) stable, and the solutions approach the origin counter-clockwise as tt \rightarrow \infty .
E) none of the above
سؤال
In the previous two problems, the infinite series solution for u(r,θ)u ( r , \theta ) is u=n=1cnrnΘn(θ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } r ^ { n } \Theta _ { n } ( \theta ) , where Θn\Theta _ { n } is found in the previous problem, and

A) cn=20πf(θ)sin(nθ)dθ/πc _ { n } = 2 \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / \pi
B) cn=20πf(θ)cos(nθ)dθ/πc _ { n } = 2 \int _ { 0 } ^ { \pi } f ( \theta ) \cos ( n \theta ) d \theta / \pi
C) cn=0πf(θ)cos(nθ)dθ/πc _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \cos ( n \theta ) d \theta / \pi
D) cn=0πf(θ)sin(nθ)dθ/πc _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / \pi
E) cn=0πf(θ)sin(nθ)dθ/(2π)c _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / ( 2 \pi )
سؤال
The solutions for λ,R and Θ\lambda , R \text { and } \Theta from the previous problem are

A) λ=n2,R=rn,Θ=cos(nθ),n=1,2,3,\lambda = n ^ { 2 } , R = r ^ { n } , \Theta = \cos ( n \theta ) , n = 1,2,3 , \ldots
B) λ=n2,R=rn,Θ=sin(nθ),n=1,2,3,\lambda = n ^ { 2 } , R = r ^ { n } , \Theta = \sin ( n \theta ) , n = 1,2,3 , \ldots
C) λ=n2,R=rn,Θ=sin(nθ),n=0,1,2,\lambda = n ^ { 2 } , R = r ^ { n } , \Theta = \sin ( n \theta ) , n = 0,1,2 , \ldots
D) λ=n,R=rn,Θ=sin(nθ),n=1,2,3,\lambda = n , R = r ^ { n } , \Theta = \sin ( n \theta ) , n = 1,2,3 , \ldots
E) λ=n,R=rn,Θ=cos(nθ),n=1,2,3,\lambda = n , R = r ^ { n } , \Theta = \cos ( n \theta ) , n = 1,2,3 , \ldots
سؤال
Using the classical Runge-Kutta method of order 4 with a step size of h=0.1h = 0.1 , the solution of y=1+y2,y(0) at x=0.1y ^ { \prime } = 1 + y ^ { 2 } , y ( 0 ) \text { at } x = 0.1 is

A) 0.099589
B) 0.100334589
C) 0.10034589
D) 0.10334589
E) 0.1034589
سؤال
In the previous two problems, the solution for u along the line t=0.5t = 0.5 at the mesh points is Select all that apply.

A) u11=10/3u _ { 11 } = 10 / 3
B) u11=20/9u _ { 11 } = 20 / 9
C) u11=20/3u _ { 11 } = 20 / 3
D) u21=32/3u _ { 21 } = 32 / 3
E) u21=13/3u _ { 21 } = 13 / 3
سؤال
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , t ) , and letting c=1,λ=ck/h2c = 1 , \lambda = c k / h ^ { 2 } , the equation becomes

A) ui,j1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
B) ui,j1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
C) ui,j+1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
D) ui,j+1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
E) ui,j+1=λui+1,j+(1λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
سؤال
Is the value of λ\lambda in the previous problem such that the scheme is stable?

A) yes
B) no
C) It is right on the borderline.
D) It cannot be determined from the available data.
سؤال
The Fourier series of an even function can contain Select all that apply.

A) sine terms
B) cosine terms
C) a constant term
D) more than one of the above
E) none of the above
سؤال
The eigenvalue-eigenvector pairs for the matrix A=(400031011)XA = \left( \begin{array} { c c c } 4 & 0 & 0 \\0 & 3 & 1 \\0 & - 1 & 1\end{array} \right) \mathrm { X } are Select all that apply.

A) 4,(100)4 , \left( \begin{array} { l } 1 \\0 \\0\end{array} \right)
B) 2,(011)2 , \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right)
C) 2,(110)2 , \left( \begin{array} { c } 1 \\- 1 \\0\end{array} \right)
D) 2,(011)2 , \left( \begin{array} { l } 0 \\1 \\1\end{array} \right)
E) 2,(010)2 , \left( \begin{array} { l } 0 \\1 \\0\end{array} \right)
سؤال
In the previous two problem, the solution for u(x,t)u ( x , t ) is

A) u=2u00[(1ekα2t)sin(αx)/α]dα/πu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha / \pi
B) u=2u00[(1ekα2t)sin(αx)/α]dαu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha
C) u=u00[(1ekα2t)sin(αx)/α]dαu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha
D) u=u00[(1ekα2t)sin(αx)/α]dα/πu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha / \pi
E) u=u00[(1ekα2t)sin(x)/α]dα/(2π)u = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \infty x ) / \alpha \right] d \alpha / ( 2 \pi )
سؤال
The solutions of a regular Sturm-Liouville problem ((ry)+(λp+q)y=0,y(a)=0,y(b)=0)\left( \left( r y ^ { \prime } \right) ^ { \prime } + ( \lambda p + q ) y = 0 , y ( a ) = 0 , y ( b ) = 0 \right) have which of the following properties?

A) There exists an infinite number of real eigenvalues.
B) The eigenvalues are orthogonal on [a,b][ a , b ] .
C) For each eigenvalue, there is only one eigenfunction (except for non-zero constant multiples).
D) Eigenfunctions corresponding to different eigenvalues are linearly independent.
E) The set of eigenfunctions corresponding to the set of eigenvalues is orthogonal with respect to the weight function r(x)r ( x ) on the interval [a,b][ a , b ] .
سؤال
Consider the heat problem c2ux2=ut,u(0,t)=0,u(1,t)=3,u(x,0)=3x2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 1 , t ) = 3 , u ( x , 0 ) = 3 x ^ { 2 } . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/3h = 1 / 3 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/2k = 1 / 2 . The resulting equation is

A) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/48
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 17: Mathematical Problems and Solutions
1
The solution of y6y+8y=0y ^ { \prime \prime } - 6 y ^ { \prime } + 8 y = 0 is

A) y=c1e2x+c2e4xy = c _ { 1 } e ^ { - 2 x } + c _ { 2 } e ^ { - 4 x }
B) y=c1e2x+c2xe4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } x e ^ { 4 x }
C) y=c1e2x+c2xe4xy = c _ { 1 } e ^ { - 2 x } + c _ { 2 } x e ^ { - 4 x }
D) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { 4 x }
E) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { - 4 x }
y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { 4 x }
2
The solution of X=(1214)X\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 1 & - 2 \\1 & 4\end{array} \right) \mathbf { X } is

A) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 3 t }
C) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } - 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
D) X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
E) X=c1(12)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } 1 \\- 2\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
X=c1(21)e2t+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } 2 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { 3 t }
3
Using the convolution theorem, we find that L1{1/((s+1)(s2+1))}=\mathcal { L } ^ { - 1 } \left\{ 1 / \left( ( s + 1 ) \left( s ^ { 2 } + 1 \right) \right) \right\} =

A) (et+sintcost)/2\left( e ^ { - t } + \sin t - \cos t \right) / 2
B) (et+sintcost)/2\left( e ^ { t } + \sin t - \cos t \right) / 2
C) (et+sint+cost)/2\left( e ^ { - t } + \sin t + \cos t \right) / 2
D) (etsintcost)/2\left( e ^ { t } - \sin t - \cos t \right) / 2
E) (etsintcost)/2\left( e ^ { - t } - \sin t - \cos t \right) / 2
(et+sintcost)/2\left( e ^ { - t } + \sin t - \cos t \right) / 2
4
Using power series methods, the solution of 2xy+y+2y=02 x y ^ { \prime \prime } + y ^ { \prime } + 2 y = 0 is

A) y=c0n=1(2)nxn/(n!(13(2n1)))+c1x1/2n=1(2)nxn/(n!(35(2n+1)))\begin{array} { l } y = c _ { 0 } \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) + \\c _ { 1 } x ^ { 1 / 2 } \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) )\end{array}
B) y=c0n=1(2)nxn/(n!(13(2n1)))+c1x1/2[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = c _ { 0 } \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) + \\c _ { 1 } x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
C) y=c0[1+n=1(2)nxn/(n!(13(2n1)))]+c1[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = c _ { 0 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\c _ { 1 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
D) y=c0[1+n=1(2)nxn/(n!(13(2n1)))]+c1x1/2[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = c _ { 0 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\c _ { 1 } x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
E) y=[1+n=1(2)nxn/(n!(13(2n1)))]+x1/2[1+n=1(2)nxn/(n!(35(2n+1)))]\begin{array} { l } y = \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 1 \cdot 3 \cdots ( 2 n - 1 ) ) ) \right] + \\x ^ { 1 / 2 } \left[ 1 + \sum _ { n = 1 } ^ { \infty } ( - 2 ) ^ { n } x ^ { n } / ( n ! ( 3 \cdot 5 \cdots ( 2 n + 1 ) ) ) \right]\end{array}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
5
The solution of y+2y=x+exy ^ { \prime \prime } + 2 y ^ { \prime } = x + e ^ { x } is

A) y=c1+c2e2x+x2/4x/4+ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } + x ^ { 2 } / 4 - x / 4 + e ^ { x } / 3
B) y=c1+c2e2x+x2/4+x/4ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } + x ^ { 2 } / 4 + x / 4 - e ^ { x } / 3
C) y=c1+c2e2x+x2/4+x/4+ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } + x ^ { 2 } / 4 + x / 4 + e ^ { x } / 3
D) y=c1+c2e2xx2/4x/4ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } - x ^ { 2 } / 4 - x / 4 - e ^ { x } / 3
E) y=c1+c2e2xx2/4x/4+ex/3y = c _ { 1 } + c _ { 2 } e ^ { - 2 x } - x ^ { 2 } / 4 - x / 4 + e ^ { x } / 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
6
The solution of xy=(x1)y2x y ^ { \prime } = ( x - 1 ) y ^ { 2 } is

A) y=1/(x+lnx+c)y = 1 / ( x + \ln x + c )
B) y=1/(xlnx+c)y = 1 / ( x - \ln x + c )
C) y=c/(x+lnx)y = - c / ( x + \ln x )
D) y=c/(xlnx)y = - c / ( x - \ln x )
E) y=1/(xlnx+c)y = - 1 / ( x - \ln x + c )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
7
In the previous problem, the solution for the temperature is

A) T(t)=7038e.930tT ( t ) = 70 - 38 e ^ { - .930 t }
B) T(t)=7038e.930tT ( t ) = 70 - 38 e ^ { .930 t }
C) T(t)=5532e.930tT ( t ) = 55 - 32 e ^ { - .930 t }
D) T(t)=5532e.930tT ( t ) = 55 - 32 e ^ { .930 t }
E) T(t)=55e.930tT ( t ) = 55 e ^ { - .930 t }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
8
The solution of x2yxy=0x ^ { 2 } y ^ { \prime \prime } - x y ^ { \prime } = 0 is

A) y=c1+c2x1y = c _ { 1 } + c _ { 2 } x ^ { - 1 }
B) y=c1lnx+c2x1y = c _ { 1 } \ln x + c _ { 2 } x ^ { - 1 }
C) y=c1+c2x2y = c _ { 1 } + c _ { 2 } x ^ { 2 }
D) y=c1+c2lnxy = c _ { 1 } + c _ { 2 } \ln x
E) y=c1+c2x2y = c _ { 1 } + c _ { 2 } x ^ { - 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
9
Using Laplace transform methods, the solution of y+y=2sint,y(0)=1y ^ { \prime } + y = 2 \sin t , y ( 0 ) = 1 is (Hint: the previous problem might be useful.)

A) y=2et+sint+costy = 2 e ^ { - t } + \sin t + \cos t
B) y=et+etsintcosty = e ^ { t } + e ^ { - t } - \sin t - \cos t
C) y=2etsintcosty = 2 e ^ { - t } - \sin t - \cos t
D) y=2et+sintcosty = 2 e ^ { - t } + \sin t - \cos t
E) y=et+et+sintcosty = e ^ { t } + e ^ { - t } + \sin t - \cos t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
10
In the previous problem, the solution for the position, x(t)x ( t ) , is

A) x=e4t(cos(4t)+sin(4t))/2x = e ^ { 4 t } ( \cos ( 4 t ) + \sin ( 4 t ) ) / 2
B) x=e4t(cos(4t)+sin(4t))/2x = e ^ { - 4 t } ( \cos ( 4 t ) + \sin ( 4 t ) ) / 2
C) x=e4t(cos(8t)+sin(8t))/2x = e ^ { - 4 t } ( \cos ( 8 t ) + \sin ( 8 t ) ) / 2
D) x=e4t(cos(8t)+sin(8t))/2x = e ^ { 4 t } ( \cos ( 8 t ) + \sin ( 8 t ) ) / 2
E) x=4e8t32te8tx = 4 e ^ { 8 t } - 32 t e ^ { 8 t }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
11
Using Laplace transform methods, the solution of y+y=δ(tπ/2),y(0)=1y ^ { \prime \prime } + y = \delta ( t - \pi / 2 ) , y ( 0 ) = 1 , y(0)=0y ^ { \prime } ( 0 ) = 0 is

A) y=sint+sin(tπ/2)u(tπ/2)y = \sin t + \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
B) y=sintcos(tπ/2)u(tπ/2)y = \sin t - \cos ( t - \pi / 2 ) \boldsymbol { u } ( t - \pi / 2 )
C) y=cost+sin(tπ/2)u(tπ/2)y = \cos t + \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
D) y=cost+cos(tπ/2)u(tπ/2)y = \cos t + \cos ( t - \pi / 2 ) \boldsymbol { u } ( t - \pi / 2 )
E) y=costsin(tπ/2)u(tπ/2)y = \cos t - \sin ( t - \pi / 2 ) u ( t - \pi / 2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
12
The solution of y+3y4y=cosxy ^ { \prime \prime } + 3 y ^ { \prime } - 4 y = \cos x is

A) y=c1ex+c2e4x+(5sinx+3cosx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( 5 \sin x + 3 \cos x ) / 34
B) y=c1ex+c2e4x+(5sinx+3cosx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \sin x + 3 \cos x ) / 34
C) y=c1ex+c2e4x+(5cosx3sinx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \cos x - 3 \sin x ) / 34
D) y=c1ex+c2e4x+(5cosx+3sinx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( 5 \cos x + 3 \sin x ) / 34
E) y=c1ex+c2e4x+(5cosx+3sinx)/34y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - 4 x } + ( - 5 \cos x + 3 \sin x ) / 34
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
13
The solution of y+y=xy ^ { \prime } + y = x is

A) y=x+1+cexy = - x + 1 + c e ^ { x }
B) y=x1+cexy = - x - 1 + c e ^ { x }
C) y=x1+cexy = x - 1 + c e ^ { - x }
D) y=x1+cexy = - x - 1 + c e ^ { - x }
E) y=x+1+cexy = x + 1 + c e ^ { - x }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
14
A 4-pound weight is hung on a spring and stretches it 1 foot. The mass spring system is then put into motion in a medium offering a damping force numerically equal to the velocity. If the mass is pulled down 6 inches from equilibrium and released, the initial value problem describing the position, x(t)x ( t ) , of the mass at time t is

A) x8x+32x=0,x(0)=6,x(0)=0x ^ { \prime \prime } - 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 6 , x ^ { \prime } ( 0 ) = 0
B) x+8x+32x=0,x(0)=6,x(0)=0x ^ { \prime \prime } + 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 6 , x ^ { \prime } ( 0 ) = 0
C) x8x+32x=0,x(0)=1/2,x(0)=0x ^ { \prime \prime } - 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 1 / 2 , x ^ { \prime } ( 0 ) = 0
D) x+8x+32x=0,x(0)=1/2,x(0)=0x ^ { \prime \prime } + 8 x ^ { \prime } + 32 x = 0 , x ( 0 ) = 1 / 2 , x ^ { \prime } ( 0 ) = 0
E) x+32x=8,x(0)=1/2,x(0)=0x ^ { \prime \prime } + 32 x = 8 , x ( 0 ) = 1 / 2 , x ^ { \prime } ( 0 ) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
15
The solution of X=(400031011)XX ^ { \prime } = \left( \begin{array} { c c c } 4 & 0 & 0 \\0 & 3 & 1 \\0 & - 1 & 1\end{array} \right) X are

A) X=c1(010)e4t+c2(011)e2t+c3[(011)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
B) X=c1(011)e4t+c2(010)e2t+c3[(010)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
C) X=c1(100)e4t+c2(011)e2t+c3[(011)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
D) X=c1(100)e4t+c2(011)e2t+c3[(011)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { l } 0 \\1 \\1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { l } 0 \\1 \\1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
E) X=c1(100)e4t+c2(110)e2t+c3[(110)te2t+(010)e2t]X = c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 4 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1 \\0\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 1 \\- 1 \\0\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
16
The solution of y4y+20y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 20 y = 0 is

A) y=c1e2xcos(4x)+c2e2xsin(4x)y = c _ { 1 } e ^ { - 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { - 2 x } \sin ( 4 x )
B) y=c1e2xcos(4x)+c2e2xsin(4x)y = c _ { 1 } e ^ { - 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { 2 x } \sin ( 4 x )
C) y=c1e2xcos(4x)+c2e2xsin(4x)y = c _ { 1 } e ^ { 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { 2 x } \sin ( 4 x )
D) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { 4 x }
E) y=c1cos(4x)+c2sin(4x)y = c _ { 1 } \cos ( 4 x ) + c _ { 2 } \sin ( 4 x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
17
Using power series methods, the solution of xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0 is

A) y=c0x+c1[xlnx1+n=2xn/n!]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 2 } ^ { \infty } x ^ { n } / n ! \right]
B) y=c0x+c1[xlnx1+n=1xn/(n!(n+1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 1 } ^ { \infty } x ^ { n } / ( n ! ( n + 1 ) ) \right]
C) y=c0x+c1[xlnx+n=2xn/(n!(n1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x + \sum _ { n = 2 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
D) y=c0x+c1[xlnx+n=1xn/(n!(n1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x + \sum _ { n = 1 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
E) y=c0x+c1[xlnx1+n=2xn/(n!(n1))]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 2 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
18
A frozen chicken at 32F32 ^ { \circ } \mathrm { F } is taken out of the freezer and placed on a table at 70F70 ^ { \circ } \mathrm { F } . One hour later the temperature of the chicken is 55F55 ^ { \circ } \mathrm { F } . The mathematical model for the temperature T(t)T ( t ) as a function of time tt is (assuming Newton 's law of warming)

A) dTdt=kT,T(0)=32,T(1)=55\frac { d T } { d t } = k T , T ( 0 ) = 32 , T ( 1 ) = 55
B) dTdt=k(T70),T(0)=32,T(1)=55\frac { d T } { d t } = k ( T - 70 ) , T ( 0 ) = 32 , T ( 1 ) = 55
C) dTdt=(T70),T(0)=32,T(1)=55\frac { d T } { d t } = ( T - 70 ) , T ( 0 ) = 32 , T ( 1 ) = 55
D) dTdt=T,T(0)=32,T(1)=55\frac { d T } { d t } = T , T ( 0 ) = 32 , T ( 1 ) = 55
E) dTdt=k(T55),T(0)=32,T(1)=55\frac { d T } { d t } = k ( T - 55 ) , T ( 0 ) = 32 , T ( 1 ) = 55
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
19
The solution of y+y=tanxy ^ { \prime \prime } + y = \tan x is

A) y=c1cosx+c2sinx+cosxlnsecx+tanxy = c _ { 1 } \cos x + c _ { 2 } \sin x + \cos x \ln | \sec x + \tan x |
B) y=c1cosx+c2sinxcosxlnsecx+tanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \sec x + \tan x |
C) y=c1cosx+c2sinx+cosxlnsecxy = c _ { 1 } \cos x + c _ { 2 } \sin x + \cos x \ln | \sec x |
D) y=c1cosx+c2sinxcosxlntanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \tan x |
E) y=c1cosx+c2sinxcosxlnsecxtanxy = c _ { 1 } \cos x + c _ { 2 } \sin x - \cos x \ln | \sec x - \tan x |
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
20
The correct form of the particular solution of y+2y+y=exy ^ { \prime \prime } + 2 y ^ { \prime } + y = e ^ { - x } is

A) yp=Aexy _ { p } = A e ^ { - x }
B) yp=Axexy _ { p } = A x e ^ { - x }
C) yp=Ax2exy _ { p } = A x ^ { 2 } e ^ { - x }
D) yp=Ax3exy _ { p } = A x ^ { 3 } e ^ { - x }
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
21
In the previous two problems, the error in the improved Euler method at x=0.1x = 0.1 is

A) 0.004670.00467
B) 0.000165
C) 0.870
D) 0.895
E) 0.0897
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
22
Consider the problem 2ur2+1rur+1r22uθ2=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 with boundary conditions u(r,0)=0u ( r , 0 ) = 0 , u(r,π)=0,u(1,θ)=f(θ)u ( r , \pi ) = 0 , u ( 1 , \theta ) = f ( \theta ) . Separate variables using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for R and ΘR \text { and } \Theta are

A) r2R+rR+λR=0,R(0)=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
B) r2R+rR+λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
C) r2R+rRλR=0,R(0)=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , R ( 0 ) = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
D) r2R+rRλR=0,R(0) is bounded, Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , R ( 0 ) \text { is bounded, } \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
E) r2R+rRλR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
23
The solutions of the eigenvalue problem and the other problem from the previous problem are

A) λ=nπ,X=cos(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n \pi , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
B) λ=nπ,X=sin(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n \pi , X = \sin ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
C) λ=n2π2,X=cos(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
D) λ=n2π2,X=sin(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , X = \sin ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
E) λ=n2π2,X=cos(nπx),Y=sinh(nπy),n=0,1,2,,(Y=y if n=0)\lambda = n ^ { 2 } \pi ^ { 2 } , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 0,1,2 , \ldots , ( Y = y \text { if } n = 0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
24
In the previous problem, the error in the classical Runge-Kutta method at x=0.1x = 0.1 is (Hint: see the previous five problems.)

A) 0.00083
B) 0.000083
C) 0.000000083
D) 0.0000083
E) 0.00000083
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
25
In the previous problem, the solution for U(α,t)U ( \alpha , t ) is

A) U=u0(1+ekα2t)/αU = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
B) U=u0(1ekα2t)/αU = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
C) U=u0(1ekα2t)/αU = u _ { 0 } \left( 1 - e ^ { k \alpha ^ { 2 } t } \right) / \alpha
D) U=u0(1ekα2t)U = u _ { 0 } \left( 1 - e ^ { k \alpha ^ { 2 } t } \right)
E) U=u0(1+ekα2t)U = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
26
The solution of X=(1121)XX ^ { \prime } = \left( \begin{array} { c c } 1 & 1 \\- 2 & - 1\end{array} \right) X is

A) X=c1[(11)cost(01)sint]+c2[(11)sint+(01)cost]\mathbf { X } = c _ { 1 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \cos t - \left( \begin{array} { l } 0 \\1\end{array} \right) \sin t \right] + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \sin t + \left( \begin{array} { l } 0 \\1\end{array} \right) \cos t \right]
B) X=c1(10)e3t+c2(01)e3tX = c _ { 1 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { \sqrt { 3 } t } + c _ { 2 } \left( \begin{array} { l } 0 \\1\end{array} \right) e ^ { - \sqrt { 3 } t }
C) X=c1(10)et+c2(01)et\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 0 \\1\end{array} \right) e ^ { - t }
D) X=c1[(11)cos(3t)(01)sin(3t)]+c2[(11)sin(3t)+(01)cos(3t)]\begin{array} { l } X = c _ { 1 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \cos ( \sqrt { 3 } t ) - \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( \sqrt { 3 } t ) \right] + \\c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) \sin ( \sqrt { 3 } t ) + \left( \begin{array} { l } 0 \\1\end{array} \right) \cos ( \sqrt { 3 } t ) \right]\end{array}
E) X=c1[(11)cos(2t)(01)sin(2t)]+c2[(11)sin(2t)+(01)cos(2t)]\mathbf { X } = c _ { 1 } \left[ \left( \begin{array} { l } 1 \\1\end{array} \right) \cos ( 2 t ) - \left( \begin{array} { c } 0 \\- 1\end{array} \right) \sin ( 2 t ) \right] + c _ { 2 } \left[ \left( \begin{array} { l } 1 \\1\end{array} \right) \sin ( 2 t ) + \left( \begin{array} { c } 0 \\- 1\end{array} \right) \cos ( 2 t ) \right]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
27
Consider the non-linear system x=12xy,y=2xyyx ^ { \prime } = 1 - 2 x y , y ^ { \prime } = 2 x y - y . The linearized system about the one critical point, (1/2,1), is Xt=AX, where A=( 1 / 2,1 ) \text {, is } X ^ { t } = A X \text {, where } A =

A) (2120)\left( \begin{array} { l l } 2 & 1 \\2 & 0\end{array} \right)
B) (2120)\left( \begin{array} { c c } 2 & - 1 \\2 & 0\end{array} \right)
C) (2120)\left( \begin{array} { c c } - 2 & - 1 \\2 & 0\end{array} \right)
D) (2120)\left( \begin{array} { l l } - 2 & 1 \\- 2 & 0\end{array} \right)
E) (2120)\left( \begin{array} { c c } - 2 & - 1 \\- 2 & 0\end{array} \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
28
Consider the heat problem k2ux2=ut,0<x<,t>0,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , 0 < x < \infty , t > 0 , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 } . Apply a Fourier sine transform. The resulting problem for U(α,t)=Fs{u(x,t)}U ( \alpha , t ) = \mathcal { F } _ { s } \{ u ( x , t ) \} is

A) Ut=kαU+kαu0,U(α,0)=0U _ { t } = - k \alpha U + k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) Ut=kα2Ukαt0,U(α,0)=0U _ { t } = - k \alpha ^ { 2 } U - k \alpha t _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut=kα2U+kαt0,U(α,0)=0U _ { t } = - k \alpha ^ { 2 } U + k \alpha t _ { 0 } , U ( \alpha , 0 ) = 0
D) Ut=kα2U+kαu0,U(α,0)=0U _ { t } = k \alpha ^ { 2 } U + k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut=kα2Ukαu0,U(α,0)=0U _ { t } = k \alpha ^ { 2 } U - k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
29
Let A=(4948)A = \left( \begin{array} { c c } - 4 & - 9 \\4 & 8\end{array} \right) , and consider the system X=AXX ^ { \prime } = A X . The critical point (0,0)( 0,0 ) of the system is a

A) stable node
B) unstable node
C) unstable saddle
D) stable spiral point
E) unstable spiral point
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
30
Consider Laplace's equation on a rectangle, 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 with boundary conditions ux(0,y)=0,ux(1,y)=0,u(x,0)=0,u(x,2)=f(x)u _ { x } ( 0 , y ) = 0 , u _ { x } ( 1 , y ) = 0 , u ( x , 0 ) = 0 , u ( x , 2 ) = f ( x ) . When the variables are separated using u(x,y)=X(x)Y(y)u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for XX and YY are

A) X+λX=0,X(0)=0,X(1)=0,YλY=0,Y(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
B) X+λX=0,X(0)=0,X(1)=0,Y+λY=0,Y(0)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0
C) X+λX=0,X(0)=0,X(1)=0,YλY=0,Y(2)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 2 ) = 0
D) X+λX=0,X(0)=0,Y+λY=0,Y(0)=0,Y(2)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0
E) X+λX=0,X(0)=0,YλY=0,Y(0)=0,Y(2)=0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
31
Using the improved Euler method with a step size of h=0.1h = 0.1 , the solution of y=1+y2,y(0)=0 at x=0.1y ^ { \prime } = 1 + y ^ { 2 } , y ( 0 ) = 0 \text { at } x = 0.1 is

A) y1=0.1015y _ { 1 } = 0.1015
B) y1=0.115y _ { 1 } = 0.115
C) y1=0.105y _ { 1 } = 0.105
D) y1=0.10005y _ { 1 } = 0.10005
E) y1=0.1005y _ { 1 } = 0.1005
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
32
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(2)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 2 ) = 0 is

A) λ=nπ/2,y=cos(nπx/2),n=1,2,3,\lambda = n \pi / 2 , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
B) λ=(nπ/2)2,y=cos(nπx/2),n=1,2,3,\lambda = ( n \pi / 2 ) ^ { 2 } , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
C) λ2=nπ/2,y=sin(nπx/2),n=1,2,3,\lambda ^ { 2 } = n \pi / 2 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
D) λ=nπ/2,y=sin(nπx/2),n=1,2,3,\lambda = n \pi / 2 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
E) λ=(nπ/2)2,y=sin(nπx/2),n=1,2,3,\lambda = ( n \pi / 2 ) ^ { 2 } , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
33
In the previous problem, the exact solution of the initial value problem is

A) y=tanxy = \tan x
B) y=secxy = \sec x
C) y=(e2x1)/(e2x+1)y = \left( e ^ { - 2 x } - 1 \right) / \left( e ^ { - 2 x } + 1 \right)
D) y=(e2x+1)/(e2x1)y = - \left( e ^ { - 2 x } + 1 \right) / \left( e ^ { - 2 x } - 1 \right)
E) y=(e2x1)/(e2x+1)y = - \left( e ^ { 2 x } - 1 \right) / \left( e ^ { 2 x } + 1 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
34
In the previous problem, for both the linearized system and the non-linear system, the critical point is a

A) unstable node
B) stable node
C) saddle point
D) unstable spiral point
E) stable spiral point
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
35
In the previous two problems, the solution for u(x,y)u ( x , y ) is

A) u=n=1cncos(nπx)sinh(nπx), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x ) \sinh ( n \pi x ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
B) u=n=1cnsin(nπx)sinh(nπy), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x ) \sinh ( n \pi y ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
C) u=c0y+n=1cncos(nπx)sinh(nπy)u = c _ { 0 } y + \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x ) \sinh ( n \pi y ) , where cn=02f(x)dx/4c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) d x / 4 and
cn=02f(x)cos(nπx)dx/sinh(2nπ)c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
D) u=n=1cncos(nπx)cosh(nπy), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \cos ( n \pi x ) \cosh ( n \pi y ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
E) u=n=1cnsin(nπx)cosh(nπy), where cn=02f(x)cos(nπx)dx/sinh(2nπ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } \sin ( n \pi x ) \cosh ( n \pi y ) , \text { where } c _ { n } = \int _ { 0 } ^ { 2 } f ( x ) \cos ( n \pi x ) d x / \sinh ( 2 n \pi )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
36
A particular solution of X=(1121)X+(2t)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 1 & 1 \\- 2 & - 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } 2 \\t\end{array} \right) is

A) Xp=(t+2t+3)X _ { p } = \left( \begin{array} { c } t + 2 \\- t + 3\end{array} \right)
B) Xp=(t+2t3)X _ { p } = \left( \begin{array} { c } t + 2 \\- t - 3\end{array} \right)
C) Xp=(t+2t3)X _ { p } = \left( \begin{array} { l } - t + 2 \\- t - 3\end{array} \right)
D) Xp=(t+2t+3)\mathbf { X } _ { p } = \left( \begin{array} { c } - t + 2 \\t + 3\end{array} \right)
E) Xp=(t2t+3)X _ { p } = \left( \begin{array} { l } - t - 2 \\- t + 3\end{array} \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
37
Let A=(1411)A = \left( \begin{array} { c c } - 1 & - 4 \\1 & - 1\end{array} \right) , and consider the system X=AXX ^ { \prime } = A X . The critical point (0,0)( 0,0 ) of the system is a spiral point. The origin is

A) unstable, and the solutions recede from the origin clockwise as tt \rightarrow \infty .
B) unstable, and the solutions recede from the origin counter-clockwise as tt \rightarrow \infty .
C) stable, and the solutions approach the origin clockwise as tt \rightarrow \infty .
D) stable, and the solutions approach the origin counter-clockwise as tt \rightarrow \infty .
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
38
In the previous two problems, the infinite series solution for u(r,θ)u ( r , \theta ) is u=n=1cnrnΘn(θ)u = \sum _ { n = 1 } ^ { \infty } c _ { n } r ^ { n } \Theta _ { n } ( \theta ) , where Θn\Theta _ { n } is found in the previous problem, and

A) cn=20πf(θ)sin(nθ)dθ/πc _ { n } = 2 \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / \pi
B) cn=20πf(θ)cos(nθ)dθ/πc _ { n } = 2 \int _ { 0 } ^ { \pi } f ( \theta ) \cos ( n \theta ) d \theta / \pi
C) cn=0πf(θ)cos(nθ)dθ/πc _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \cos ( n \theta ) d \theta / \pi
D) cn=0πf(θ)sin(nθ)dθ/πc _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / \pi
E) cn=0πf(θ)sin(nθ)dθ/(2π)c _ { n } = \int _ { 0 } ^ { \pi } f ( \theta ) \sin ( n \theta ) d \theta / ( 2 \pi )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
39
The solutions for λ,R and Θ\lambda , R \text { and } \Theta from the previous problem are

A) λ=n2,R=rn,Θ=cos(nθ),n=1,2,3,\lambda = n ^ { 2 } , R = r ^ { n } , \Theta = \cos ( n \theta ) , n = 1,2,3 , \ldots
B) λ=n2,R=rn,Θ=sin(nθ),n=1,2,3,\lambda = n ^ { 2 } , R = r ^ { n } , \Theta = \sin ( n \theta ) , n = 1,2,3 , \ldots
C) λ=n2,R=rn,Θ=sin(nθ),n=0,1,2,\lambda = n ^ { 2 } , R = r ^ { n } , \Theta = \sin ( n \theta ) , n = 0,1,2 , \ldots
D) λ=n,R=rn,Θ=sin(nθ),n=1,2,3,\lambda = n , R = r ^ { n } , \Theta = \sin ( n \theta ) , n = 1,2,3 , \ldots
E) λ=n,R=rn,Θ=cos(nθ),n=1,2,3,\lambda = n , R = r ^ { n } , \Theta = \cos ( n \theta ) , n = 1,2,3 , \ldots
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
40
Using the classical Runge-Kutta method of order 4 with a step size of h=0.1h = 0.1 , the solution of y=1+y2,y(0) at x=0.1y ^ { \prime } = 1 + y ^ { 2 } , y ( 0 ) \text { at } x = 0.1 is

A) 0.099589
B) 0.100334589
C) 0.10034589
D) 0.10334589
E) 0.1034589
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
41
In the previous two problems, the solution for u along the line t=0.5t = 0.5 at the mesh points is Select all that apply.

A) u11=10/3u _ { 11 } = 10 / 3
B) u11=20/9u _ { 11 } = 20 / 9
C) u11=20/3u _ { 11 } = 20 / 3
D) u21=32/3u _ { 21 } = 32 / 3
E) u21=13/3u _ { 21 } = 13 / 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
42
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , t ) , and letting c=1,λ=ck/h2c = 1 , \lambda = c k / h ^ { 2 } , the equation becomes

A) ui,j1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
B) ui,j1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
C) ui,j+1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
D) ui,j+1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
E) ui,j+1=λui+1,j+(1λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
43
Is the value of λ\lambda in the previous problem such that the scheme is stable?

A) yes
B) no
C) It is right on the borderline.
D) It cannot be determined from the available data.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
44
The Fourier series of an even function can contain Select all that apply.

A) sine terms
B) cosine terms
C) a constant term
D) more than one of the above
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
45
The eigenvalue-eigenvector pairs for the matrix A=(400031011)XA = \left( \begin{array} { c c c } 4 & 0 & 0 \\0 & 3 & 1 \\0 & - 1 & 1\end{array} \right) \mathrm { X } are Select all that apply.

A) 4,(100)4 , \left( \begin{array} { l } 1 \\0 \\0\end{array} \right)
B) 2,(011)2 , \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right)
C) 2,(110)2 , \left( \begin{array} { c } 1 \\- 1 \\0\end{array} \right)
D) 2,(011)2 , \left( \begin{array} { l } 0 \\1 \\1\end{array} \right)
E) 2,(010)2 , \left( \begin{array} { l } 0 \\1 \\0\end{array} \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
46
In the previous two problem, the solution for u(x,t)u ( x , t ) is

A) u=2u00[(1ekα2t)sin(αx)/α]dα/πu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha / \pi
B) u=2u00[(1ekα2t)sin(αx)/α]dαu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha
C) u=u00[(1ekα2t)sin(αx)/α]dαu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha
D) u=u00[(1ekα2t)sin(αx)/α]dα/πu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \alpha x ) / \alpha \right] d \alpha / \pi
E) u=u00[(1ekα2t)sin(x)/α]dα/(2π)u = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) \sin ( \infty x ) / \alpha \right] d \alpha / ( 2 \pi )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
47
The solutions of a regular Sturm-Liouville problem ((ry)+(λp+q)y=0,y(a)=0,y(b)=0)\left( \left( r y ^ { \prime } \right) ^ { \prime } + ( \lambda p + q ) y = 0 , y ( a ) = 0 , y ( b ) = 0 \right) have which of the following properties?

A) There exists an infinite number of real eigenvalues.
B) The eigenvalues are orthogonal on [a,b][ a , b ] .
C) For each eigenvalue, there is only one eigenfunction (except for non-zero constant multiples).
D) Eigenfunctions corresponding to different eigenvalues are linearly independent.
E) The set of eigenfunctions corresponding to the set of eigenvalues is orthogonal with respect to the weight function r(x)r ( x ) on the interval [a,b][ a , b ] .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
48
Consider the heat problem c2ux2=ut,u(0,t)=0,u(1,t)=3,u(x,0)=3x2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 1 , t ) = 3 , u ( x , 0 ) = 3 x ^ { 2 } . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/3h = 1 / 3 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/2k = 1 / 2 . The resulting equation is

A) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 48 في هذه المجموعة.