Deck 15: Numerical Solutions of Partial Differential Equations

ملء الشاشة (f)
exit full mode
سؤال
In the previous two problems, let c=1c = 1 . Thesolutionforu along the line t=0.25t = 0.25 at the mesh points is Select all that apply.

A) u31=33/8u _ { 31 } = 33 / 8
B) u11=9/8u _ { 11 } = 9 / 8
C) u11=11/8u _ { 11 } = 11 / 8
D) u21=9/4u _ { 21 } = 9 / 4
E) u21=11/4u _ { 21 } = 11 / 4
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Laplace's equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux2=2uy2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } }
C) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
D) 2ux2ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0
E) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
سؤال
In the previous three problems, the values of ui,1u _ { i , - 1 } are

A) ui,1=ui,0kg(xi)u _ { i , - 1 } = u _ { i , 0 } - k g ( x i )
B) ui,1=ui,02kg(xi)u _ { i , - 1 } = u _ { i , 0 } - 2 k g ( x i )
C) ui,1=ui,1+2kg(xi)u _ { i , - 1 } = u _ { i , 1 } + 2 k g ( x i )
D) ui,1=ui,1+kg(xi)u _ { i , - 1 } = u _ { i , 1 } + k g ( x i )
E) ui,1=ui,12kg(xi)u _ { i , - 1 } = u _ { i , 1 } - 2 k g ( x i )
سؤال
The heat equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
سؤال
In the previous problem, is the value of λ\lambda such that the scheme is stable?

A) yes
B) no
C) It is right on the borderline.
D) It cannot be determined from the available data.
سؤال
The five-point approximation of the Laplacian is

A) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)4u(x,y)][ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 4 u ( x , y ) ]
B) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)2u(x,y)][ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 2 u ( x , y ) ]
C) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)4u(x,y)]/h[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 4 u ( x , y ) ] / h
D) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)4u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 4 u ( x , y ) ] / h ^ { 2 }
E) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)2u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 2 u ( x , y ) ] / h ^ { 2 }
سؤال
Consider the problem 2ux2+2uy2=0,u(0,y)=0,u(x,0)=0,u(1,y)=yy2,u(x,1)=xx2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 , u ( 0 , y ) = 0 , u ( x , 0 ) = 0 , u ( 1 , y ) = y - y ^ { 2 } , u ( x , 1 ) = x - x ^ { 2 } . A finite difference approximation of the solution is desired, using the approximation of the previous problem. Use a mesh size of h=1/3h = 1 / 3 The conditions satisfied by the mesh points on the boundary are Select all that apply.

A) u=0u = 0 at (0, 1/3) and (1/3, 0)
B) u=0u = 0 at (0, 2/3) and (2/3, 0)
C) u=0u = 0 at (1/3, 1/3) and (2/3, 2/3)
D) u=2/9u = 2 / 9 at (1, 1/3) and (1/3, 1)
E) u=2/3u = 2 / 3 at (1, 2/3) and (2/3, 1)
سؤال
Consider the problem c22ux2=2ut2,u(0,t)=0,u(1,t)=0,u(x,0)=sin(πx),ut(x,0)=g(x)c ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = \sin ( \pi x ) , u _ { t } ( x , 0 ) = g ( x ) . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/4h = 1 / 4 and 2ut2\frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } with a central difference approximation with k=1/3k = 1 / 3 The resulting equation is

A) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
B) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)2u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - 2 u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
C) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }
D) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
سؤال
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h\lambda = c k / h , the equation becomes

A) ui,j+1=λ2ui+1,j+(1+2λ2)uij+λui1,juij12u _ { i , j + 1 } = \lambda ^ { 2 } { } _ { u i } + 1 , j + \left( 1 + 2 \lambda ^ { 2 } \right) u _ { i j } + \lambda _ { u i - 1 , j - u i j - 1 } ^ { 2 }
B) ui,j+1=λ2ui+1,j+(12λ2)uij+λui1,juij12u _ { i , j + 1 } = \lambda ^ { 2 } { } _ { u i } + 1 , j + \left( 1 - 2 \lambda ^ { 2 } \right) u _ { i j } + \lambda _ { u i - 1 , j - u i j - 1 } ^ { 2 }
C) ui,j+1=λui+1,j+(1λ)uij+λui1,juij1u _ { i , j + 1 } = \lambda _ { u i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda _ { u i - 1 , j - u i j - 1 }
D) ui,j1=λ2ui+1,j+(1+2λ2)uij+λui1,j+uij12u _ { i , j - 1 } = \lambda ^ { 2 } { } _ { u i } + 1 , j + \left( 1 + 2 \lambda ^ { 2 } \right) u _ { i j } + \lambda _ { u i - 1 , j + u i j - 1 } ^ { 2 }
E) ui,j1=λui+1,j+(12λ)uij+λui1,j+uij1u _ { i , j - 1 } = \lambda _ { u i + 1 , j } + ( 1 - 2 \lambda ) u _ { i j } + \lambda _ { u i - 1 , j + u i j - 1 }
سؤال
Laplace's equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
سؤال
The wave equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
C) 2ux2=uy\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial y }
D) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
E) uxut=0\frac { \partial u } { \partial x } - \frac { \partial u } { \partial t } = 0
سؤال
In the previous two problems, using uiju _ { i j } to denote the value of uu at the i,ji , j point, the equations for the values of the unknown function at the interior points are Select all that apply.

A) 4u11+u21+u12=0- 4 u _ { 11 } + u _ { 21 } + u _ { 12 } = 0
B) 4u22+u21+u12=2/9- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - 2 / 9
C) 4u12+u11+u22=2/9- 4 u _ { 12 } + u _ { 11 } + u _ { 22 } = - 2 / 9
D) 4u21+u11+u22=2/9- 4 u _ { 21 } + u _ { 11 } + u _ { 22 } = - 2 / 9
E) 4u22+u21+u12=4/9- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - 4 / 9
سؤال
In the previous two problems, the values ui,1u _ { i , 1 } depend on the values ui,1u _ { i , 1 } . How do you calculate those values?

A) Use a central difference approximation in tt along the line t=0t = 0 .
B) Use a forward difference approximation in tt along the line t=0t = 0 .
C) Use a backward difference approximation in tt along the line t=0t = 0 .
D) Use a forward difference approximation in x along the line t=0t = 0 .
E) Use a backward difference approximation in x along the line t=0t = 0 .
سؤال
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h2\lambda = c k / h ^ { 2 } , the equation becomes

A) ui,j+1=λui+1,j+(1λ)uij+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
B) uij+1=λui+1,j+(12λ)uij+λui1,ju _ { i j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
C) ui,j1=λui+1,j+(1+2λ)uij+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
D) ui,j1=λui+1,j+(12λ)uij+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
E) uij+1=λui+1,j+(1+2λ)uij+λui1,ju _ { i j + 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
سؤال
The central difference approximation for ux\frac { \partial u } { \partial x } with step size hh is

A) (u(x+h,y)2u(x,y)+u(xh,y))/h( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h
B) (u(x+h,y)2u(x,y)+u(xh,y))/h2( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h ^ { 2 }
C) (u(x,y+h)2u(x,y)+u(x,yh))/h( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h
D) (u(x,y+h)2u(x,y)+u(x,yh))/h2( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h ^ { 2 }
E) (u(x+h,y)u(xh,y))/(2h)( u ( x + h , y ) - u ( x - h , y ) ) / ( 2 h )
سؤال
A Dirichlet problem is a partial differential equation with conditions specifying

A) a linear combination of the values of the unknown function along the boundary and the values of the derivative of the unknown function along the boundary
B) the values of the unknown function along the boundary
C) the values of the derivative of the unknown function along the boundary
D) none of the above
سؤال
In the four previous problems, let c=1c = 1 . The calculated values of ui,1u _ { i , 1 } are Select all that apply.

A) u11=(1672+6g(1/4))/18u _ { 11 } = ( 16 - 7 \sqrt { 2 } + 6 g ( 1 / 4 ) ) / 18
B) u21=(827+3g(1/2))/9u _ { 21 } = ( 8 \sqrt { 2 } - 7 + 3 g ( 1 / 2 ) ) / 9
C) u21=(82+7+3g(1/2))/9u _ { 21 } = ( 8 \sqrt { 2 } + 7 + 3 g ( 1 / 2 ) ) / 9
D) u31=(872/2+3g(3/4))/9u _ { 31 } = ( 8 - 7 \sqrt { 2 } / 2 + 3 g ( 3 / 4 ) ) / 9
E) u31=(8+72/2+3g(3/4))/9u _ { 31 } = ( 8 + 7 \sqrt { 2 } / 2 + 3 g ( 3 / 4 ) ) / 9
سؤال
In the previous five problems, is the value of λ\lambda such that the numerical scheme is stable?

A) yes
B) no
C) It is in the borderline.
D) It cannot be determined from the available data.
سؤال
In the previous three problems, the solution at the interior points is Select all that apply.

A) u22=1/9u _ { 22 } = 1 / 9
B) u22=1/6u _ { 22 } = 1 / 6
C) u11=1/18u _ { 11 } = 1 / 18
D) u12=1/9u _ { 12 } = 1 / 9
E) u21=1/9u _ { 21 } = 1 / 9
سؤال
The central difference approximation for c2ux2=ut,u(0,t)=0,u(2,t)=6,u(x,0)=3x2/2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 2 , t ) = 6 , u ( x , 0 ) = 3 x ^ { 2 } / 2 Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/2h = 1 / 2 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/4k = 1 / 4 . The resulting equation is

A) c[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
E) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
سؤال
The heat equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux2+uy=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial y } = 0
C) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
D) 2ux2ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0
E) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
سؤال
The central difference approximation for 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with step size hh is

A) (u(x+h,y)2u(x,y)+u(xh,y))/h( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h
B) (u(x+h,y)2u(x,y)+u(xh,y))/h2( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h ^ { 2 }
C) (u(x,y+h)2u(x,y)+u(x,yh))/h( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h
D) (u(x,y+h)2u(x,y)+u(x,yh))/h2( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h ^ { 2 }
E) (u(x+h,y)u(xh,y))/(2h)( u ( x + h , y ) - u ( x - h , y ) ) / ( 2 h )
سؤال
The wave equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux2+2uy=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y } = 0
C) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
D) 2ux2ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0
E) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
سؤال
In the four previous problems, let c=1c = 1 . The calculated values of ui,1u _ { i , 1 } are

A) u11=13/24,u21=13/24u _ { 11 } = - 13 / 24 , u _ { 21 } = - 13 / 24
B) u11=17/24,u21=17/24u _ { 11 } = - 17 / 24 , u _ { 21 } = - 17 / 24
C) u11=1/2,u21=1/2u _ { 11 } = - 1 / 2 , u _ { 21 } = - 1 / 2
D) u11=1/24,u21=1/24u _ { 11 } = - 1 / 24 , u _ { 21 } = - 1 / 24
E) u11=1/4,u21=1/4u _ { 11 } = - 1 / 4 , u _ { 21 } = - 1 / 4
سؤال
In the previous two problems, the values ui,1u _ { i , 1 } depend on the values ui,1u _ { i , - 1 } . How do you calculate those values?

A) Use a forward difference approximation in tt along the line t=0t = 0 .
B) Use a backward difference approximation in tt along the line t=0t = 0 .
C) Use a central difference approximation in tt along the line t=0t = 0 .
D) Use a forward difference approximation in xx along the line t=0t = 0 .
E) Use a backward difference approximation in xx along the line t=0t = 0 .
سؤال
The forward difference approximation of ut\frac { \partial u } { \partial t } with step size k is

A) (u(x+k,t)u(x,t))/k( u ( x + k , t ) - u ( x , t ) ) / k
B) (u(xk,t)u(x,t))/k2( u ( x - k , t ) - u ( x , t ) ) / k ^ { 2 }
C) (u(x,t+k)u(x,t))/k( u ( x , t + k ) - u ( x , t ) ) / k
D) (u(x,tk)u(x,t))/k( u ( x , t - k ) - u ( x , t ) ) / k
E) (u(x,t+k)u(x,t))/k2( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }
سؤال
In the previous three problems, the solution at the interior points is Select all that apply.

A) u22=3/8u _ { 22 } = \sqrt { 3 } / 8
B) u22=3/4u _ { 22 } = \sqrt { 3 } / 4
C) u11=3/8u _ { 11 } = \sqrt { 3 } / 8
D) u12=3/4u _ { 12 } = \sqrt { 3 } / 4
E) u21=3/4u _ { 21 } = \sqrt { 3 } / 4
سؤال
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h\lambda = c k / h , the equation becomes

A) ui,j1=λ2ui+1,j+2(1+λ2)uij+λ2ui1,j+ui,j1u _ { i , j - 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 + \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } + u _ { i , j - 1 }
B) ui,j1=λui+1,j+2(1λ)uij+λui1,j+ui,j1u _ { i , j - 1 } = \lambda u _ { i + 1 , j } + 2 ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j } + u _ { i , j - 1 }
C) ui,j+1=λ2ui+1,j+2(1+λ2)uij+λ2ui1,jui,j1u _ { i , j + 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 + \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } - u _ { i , j - 1 }
D) ui,j+1=λ2ui+1,j+2(1λ2)uij+λ2ui1,jui,j1u _ { i , j + 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 - \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } - u _ { i , j - 1 }
E) ui,j+1=λui+1,j+(1λ)uij+λui1,jui,j1u _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j } - u _ { i , j - 1 }
سؤال
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h2\lambda = c k / h ^ { 2 } , the equation becomes

A) ui,j1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
B) ui,j1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
C) ui,j+1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
D) ui,j+1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
E) ui,j+1=λui+1,j+(1λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
سؤال
The wave equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
سؤال
In the previous three problems, if g(x)=0g ( x ) = 0 then the values of ui,1u _ { i , - 1 } are

A) ui,1=ui,1u _ { i , - 1 } = u _ { i , 1 }
B) ui.1=0u _ { i _ { . } - 1 } = 0
C) ui.1=1u _ { i _ { . } - 1 } = 1
D) ui,1=1u _ { i , - 1 } = - 1
E) none of the above
سؤال
Consider the problem c2ux2=ut,u(0,t)=0,u(1,t)=2,u(x,0)=2x2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 1 , t ) = 2 , u ( x , 0 ) = 2 x ^ { 2 } . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/3h = 1 / 3 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/2k = 1 / 2 . The resulting equation is

A) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
سؤال
Consider the problem c22ux2=2ut2,u(0,t)=0,u(1,t)=0,u(x,0)={x if 0<x<1/21x if 1/2<x<1}c ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = \left\{ \begin{array} { c c c } x & \text { if } & 0 < x < 1 / 2 \\1 - x & \text { if } & 1 / 2 < x < 1\end{array} \right\} , ut(x,0)=g(x)u _ { t } ( x , 0 ) = g ( x ) . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/2h = 1 / 2 and 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with k=1/2k = 1 / 2 . The resulting equation is

A) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }
B) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
E) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)2u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - 2 u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
سؤال
In the previous two problems, let c=1c = 1 . Thesolution for u along the line t=0.5t = 0.5 at the mesh points is Select all that apply.

A) u11=0u _ { 11 } = 0
B) u11=20/9u _ { 11 } = 20 / 9
C) u11=30/9u _ { 11 } = 30 / 9
D) u21=26/9u _ { 21 } = 26 / 9
E) u21=32/9u _ { 21 } = 32 / 9
سؤال
A Dirichlet problem is a partial differential equation with conditions specifying

A) the values of the unknown function along the boundary
B) the values of the derivative of the unknown function along the boundary
C) a linear combination of the values of the unknown function along the boundary and the values of the derivative of the unknown function along the boundary
D) none of the above
سؤال
Laplace's equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
سؤال
In the previous problem, is the value of λ\lambda such that the scheme is stable?

A) yes
B) no
C) It is right on the borderline.
D) It cannot be determined from the available data.
سؤال
In the previous two problems, using uiju _ { i j } to denote the value of uu at the i,ji , j point, the equations for the values of the unknown function at the interior points are Select all that apply.

A) 4u11+u21+u12=0- 4 u _ { 11 } + u _ { 21 } + u _ { 12 } = 0
B) 4u22+u21+u12=3- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - \sqrt { 3 }
C) 4u22+u21+u12=3/2- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - \sqrt { 3 } / 2
D) 4u12+u11+u22=3/2- 4 u _ { 12 } + u _ { 11 } + u _ { 22 } = - \sqrt { 3 } / 2
E) 4u21+u11+u22=3/2- 4 u _ { 21 } + u _ { 11 } + u _ { 22 } = - \sqrt { 3 } / 2
سؤال
The five point approximation of the Laplacian is

A) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)2u(x,y)]/h[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 2 u ( x , y ) ] / h
B) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)4u(x,y)]/h[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 4 u ( x , y ) ] / h
C) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)2u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 2 u ( x , y ) ] / h ^ { 2 }
D) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)4u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 4 u ( x , y ) ] / h ^ { 2 }
E) [u(x+h,y)u(x,y+h)+u(xh,y)u(x,yh)4u(x,y)]/h2[ u ( x + h , y ) - u ( x , y + h ) + u ( x - h , y ) - u ( x , y - h ) - 4 u ( x , y ) ] / h ^ { 2 }
سؤال
Consider the problem 2ux2+2uy2=0,u(0,y)=0,u(x,0)=0,u(1,y)=sin(πy),u(x,1)=sin(πx)\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 , u ( 0 , y ) = 0 , u ( x , 0 ) = 0 , u ( 1 , y ) = \sin ( \pi y ) , u ( x , 1 ) = \sin ( \pi x ) . A finite difference approximation of the solution is desired, using the approximation of the previous problem. Use a mesh size of h=1/3h = 1 / 3 The conditions satisfied by the mesh points on the boundary are Select all that apply.

A) u=1/2 at (1,2/3) and (2/3,1)u = 1 / 2 \text { at } ( 1,2 / 3 ) \text { and } ( 2 / 3,1 )
B) u=3/2 at (1,1/3) and (1/3,1)u = \sqrt { 3 } / 2 \text { at } ( 1,1 / 3 ) \text { and } ( 1 / 3,1 )
C) u=0 at (0,1/3) and (1/3,0)u = 0 \text { at } ( 0,1 / 3 ) \text { and } ( 1 / 3,0 )
D) u=0 at (0,2/3) and (2/3,0)u = 0 \text { at } ( 0,2 / 3 ) \text { and } ( 2 / 3,0 )
E) u=0 at (1/3,1/3) and (2/3,2/3)u = 0 \text { at } ( 1 / 3,1 / 3 ) \text { and } ( 2 / 3,2 / 3 )
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 15: Numerical Solutions of Partial Differential Equations
1
In the previous two problems, let c=1c = 1 . Thesolutionforu along the line t=0.25t = 0.25 at the mesh points is Select all that apply.

A) u31=33/8u _ { 31 } = 33 / 8
B) u11=9/8u _ { 11 } = 9 / 8
C) u11=11/8u _ { 11 } = 11 / 8
D) u21=9/4u _ { 21 } = 9 / 4
E) u21=11/4u _ { 21 } = 11 / 4
u31=33/8u _ { 31 } = 33 / 8
u11=9/8u _ { 11 } = 9 / 8
u21=9/4u _ { 21 } = 9 / 4
2
Laplace's equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux2=2uy2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } }
C) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
D) 2ux2ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0
E) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
3
In the previous three problems, the values of ui,1u _ { i , - 1 } are

A) ui,1=ui,0kg(xi)u _ { i , - 1 } = u _ { i , 0 } - k g ( x i )
B) ui,1=ui,02kg(xi)u _ { i , - 1 } = u _ { i , 0 } - 2 k g ( x i )
C) ui,1=ui,1+2kg(xi)u _ { i , - 1 } = u _ { i , 1 } + 2 k g ( x i )
D) ui,1=ui,1+kg(xi)u _ { i , - 1 } = u _ { i , 1 } + k g ( x i )
E) ui,1=ui,12kg(xi)u _ { i , - 1 } = u _ { i , 1 } - 2 k g ( x i )
ui,1=ui,12kg(xi)u _ { i , - 1 } = u _ { i , 1 } - 2 k g ( x i )
4
The heat equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
5
In the previous problem, is the value of λ\lambda such that the scheme is stable?

A) yes
B) no
C) It is right on the borderline.
D) It cannot be determined from the available data.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
6
The five-point approximation of the Laplacian is

A) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)4u(x,y)][ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 4 u ( x , y ) ]
B) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)2u(x,y)][ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 2 u ( x , y ) ]
C) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)4u(x,y)]/h[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 4 u ( x , y ) ] / h
D) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)4u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 4 u ( x , y ) ] / h ^ { 2 }
E) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,y+h)2u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y + h ) - 2 u ( x , y ) ] / h ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
7
Consider the problem 2ux2+2uy2=0,u(0,y)=0,u(x,0)=0,u(1,y)=yy2,u(x,1)=xx2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 , u ( 0 , y ) = 0 , u ( x , 0 ) = 0 , u ( 1 , y ) = y - y ^ { 2 } , u ( x , 1 ) = x - x ^ { 2 } . A finite difference approximation of the solution is desired, using the approximation of the previous problem. Use a mesh size of h=1/3h = 1 / 3 The conditions satisfied by the mesh points on the boundary are Select all that apply.

A) u=0u = 0 at (0, 1/3) and (1/3, 0)
B) u=0u = 0 at (0, 2/3) and (2/3, 0)
C) u=0u = 0 at (1/3, 1/3) and (2/3, 2/3)
D) u=2/9u = 2 / 9 at (1, 1/3) and (1/3, 1)
E) u=2/3u = 2 / 3 at (1, 2/3) and (2/3, 1)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
8
Consider the problem c22ux2=2ut2,u(0,t)=0,u(1,t)=0,u(x,0)=sin(πx),ut(x,0)=g(x)c ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = \sin ( \pi x ) , u _ { t } ( x , 0 ) = g ( x ) . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/4h = 1 / 4 and 2ut2\frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } with a central difference approximation with k=1/3k = 1 / 3 The resulting equation is

A) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
B) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)2u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - 2 u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
C) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }
D) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
9
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h\lambda = c k / h , the equation becomes

A) ui,j+1=λ2ui+1,j+(1+2λ2)uij+λui1,juij12u _ { i , j + 1 } = \lambda ^ { 2 } { } _ { u i } + 1 , j + \left( 1 + 2 \lambda ^ { 2 } \right) u _ { i j } + \lambda _ { u i - 1 , j - u i j - 1 } ^ { 2 }
B) ui,j+1=λ2ui+1,j+(12λ2)uij+λui1,juij12u _ { i , j + 1 } = \lambda ^ { 2 } { } _ { u i } + 1 , j + \left( 1 - 2 \lambda ^ { 2 } \right) u _ { i j } + \lambda _ { u i - 1 , j - u i j - 1 } ^ { 2 }
C) ui,j+1=λui+1,j+(1λ)uij+λui1,juij1u _ { i , j + 1 } = \lambda _ { u i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda _ { u i - 1 , j - u i j - 1 }
D) ui,j1=λ2ui+1,j+(1+2λ2)uij+λui1,j+uij12u _ { i , j - 1 } = \lambda ^ { 2 } { } _ { u i } + 1 , j + \left( 1 + 2 \lambda ^ { 2 } \right) u _ { i j } + \lambda _ { u i - 1 , j + u i j - 1 } ^ { 2 }
E) ui,j1=λui+1,j+(12λ)uij+λui1,j+uij1u _ { i , j - 1 } = \lambda _ { u i + 1 , j } + ( 1 - 2 \lambda ) u _ { i j } + \lambda _ { u i - 1 , j + u i j - 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
10
Laplace's equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
11
The wave equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
C) 2ux2=uy\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial y }
D) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
E) uxut=0\frac { \partial u } { \partial x } - \frac { \partial u } { \partial t } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
12
In the previous two problems, using uiju _ { i j } to denote the value of uu at the i,ji , j point, the equations for the values of the unknown function at the interior points are Select all that apply.

A) 4u11+u21+u12=0- 4 u _ { 11 } + u _ { 21 } + u _ { 12 } = 0
B) 4u22+u21+u12=2/9- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - 2 / 9
C) 4u12+u11+u22=2/9- 4 u _ { 12 } + u _ { 11 } + u _ { 22 } = - 2 / 9
D) 4u21+u11+u22=2/9- 4 u _ { 21 } + u _ { 11 } + u _ { 22 } = - 2 / 9
E) 4u22+u21+u12=4/9- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - 4 / 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
13
In the previous two problems, the values ui,1u _ { i , 1 } depend on the values ui,1u _ { i , 1 } . How do you calculate those values?

A) Use a central difference approximation in tt along the line t=0t = 0 .
B) Use a forward difference approximation in tt along the line t=0t = 0 .
C) Use a backward difference approximation in tt along the line t=0t = 0 .
D) Use a forward difference approximation in x along the line t=0t = 0 .
E) Use a backward difference approximation in x along the line t=0t = 0 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
14
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h2\lambda = c k / h ^ { 2 } , the equation becomes

A) ui,j+1=λui+1,j+(1λ)uij+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
B) uij+1=λui+1,j+(12λ)uij+λui1,ju _ { i j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
C) ui,j1=λui+1,j+(1+2λ)uij+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
D) ui,j1=λui+1,j+(12λ)uij+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
E) uij+1=λui+1,j+(1+2λ)uij+λui1,ju _ { i j + 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i j } + \lambda u _ { i - 1 , j }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
15
The central difference approximation for ux\frac { \partial u } { \partial x } with step size hh is

A) (u(x+h,y)2u(x,y)+u(xh,y))/h( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h
B) (u(x+h,y)2u(x,y)+u(xh,y))/h2( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h ^ { 2 }
C) (u(x,y+h)2u(x,y)+u(x,yh))/h( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h
D) (u(x,y+h)2u(x,y)+u(x,yh))/h2( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h ^ { 2 }
E) (u(x+h,y)u(xh,y))/(2h)( u ( x + h , y ) - u ( x - h , y ) ) / ( 2 h )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
16
A Dirichlet problem is a partial differential equation with conditions specifying

A) a linear combination of the values of the unknown function along the boundary and the values of the derivative of the unknown function along the boundary
B) the values of the unknown function along the boundary
C) the values of the derivative of the unknown function along the boundary
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
17
In the four previous problems, let c=1c = 1 . The calculated values of ui,1u _ { i , 1 } are Select all that apply.

A) u11=(1672+6g(1/4))/18u _ { 11 } = ( 16 - 7 \sqrt { 2 } + 6 g ( 1 / 4 ) ) / 18
B) u21=(827+3g(1/2))/9u _ { 21 } = ( 8 \sqrt { 2 } - 7 + 3 g ( 1 / 2 ) ) / 9
C) u21=(82+7+3g(1/2))/9u _ { 21 } = ( 8 \sqrt { 2 } + 7 + 3 g ( 1 / 2 ) ) / 9
D) u31=(872/2+3g(3/4))/9u _ { 31 } = ( 8 - 7 \sqrt { 2 } / 2 + 3 g ( 3 / 4 ) ) / 9
E) u31=(8+72/2+3g(3/4))/9u _ { 31 } = ( 8 + 7 \sqrt { 2 } / 2 + 3 g ( 3 / 4 ) ) / 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
18
In the previous five problems, is the value of λ\lambda such that the numerical scheme is stable?

A) yes
B) no
C) It is in the borderline.
D) It cannot be determined from the available data.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
19
In the previous three problems, the solution at the interior points is Select all that apply.

A) u22=1/9u _ { 22 } = 1 / 9
B) u22=1/6u _ { 22 } = 1 / 6
C) u11=1/18u _ { 11 } = 1 / 18
D) u12=1/9u _ { 12 } = 1 / 9
E) u21=1/9u _ { 21 } = 1 / 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
20
The central difference approximation for c2ux2=ut,u(0,t)=0,u(2,t)=6,u(x,0)=3x2/2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 2 , t ) = 6 , u ( x , 0 ) = 3 x ^ { 2 } / 2 Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/2h = 1 / 2 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/4k = 1 / 4 . The resulting equation is

A) c[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
E) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
21
The heat equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux2+uy=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial y } = 0
C) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
D) 2ux2ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0
E) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
22
The central difference approximation for 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with step size hh is

A) (u(x+h,y)2u(x,y)+u(xh,y))/h( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h
B) (u(x+h,y)2u(x,y)+u(xh,y))/h2( u ( x + h , y ) - 2 u ( x , y ) + u ( x - h , y ) ) / h ^ { 2 }
C) (u(x,y+h)2u(x,y)+u(x,yh))/h( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h
D) (u(x,y+h)2u(x,y)+u(x,yh))/h2( u ( x , y + h ) - 2 u ( x , y ) + u ( x , y - h ) ) / h ^ { 2 }
E) (u(x+h,y)u(xh,y))/(2h)( u ( x + h , y ) - u ( x - h , y ) ) / ( 2 h )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
23
The wave equation is

A) 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0
B) 2ux2+2uy=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y } = 0
C) 2ux2+ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0
D) 2ux2ut=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0
E) 2ux22ut2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
24
In the four previous problems, let c=1c = 1 . The calculated values of ui,1u _ { i , 1 } are

A) u11=13/24,u21=13/24u _ { 11 } = - 13 / 24 , u _ { 21 } = - 13 / 24
B) u11=17/24,u21=17/24u _ { 11 } = - 17 / 24 , u _ { 21 } = - 17 / 24
C) u11=1/2,u21=1/2u _ { 11 } = - 1 / 2 , u _ { 21 } = - 1 / 2
D) u11=1/24,u21=1/24u _ { 11 } = - 1 / 24 , u _ { 21 } = - 1 / 24
E) u11=1/4,u21=1/4u _ { 11 } = - 1 / 4 , u _ { 21 } = - 1 / 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
25
In the previous two problems, the values ui,1u _ { i , 1 } depend on the values ui,1u _ { i , - 1 } . How do you calculate those values?

A) Use a forward difference approximation in tt along the line t=0t = 0 .
B) Use a backward difference approximation in tt along the line t=0t = 0 .
C) Use a central difference approximation in tt along the line t=0t = 0 .
D) Use a forward difference approximation in xx along the line t=0t = 0 .
E) Use a backward difference approximation in xx along the line t=0t = 0 .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
26
The forward difference approximation of ut\frac { \partial u } { \partial t } with step size k is

A) (u(x+k,t)u(x,t))/k( u ( x + k , t ) - u ( x , t ) ) / k
B) (u(xk,t)u(x,t))/k2( u ( x - k , t ) - u ( x , t ) ) / k ^ { 2 }
C) (u(x,t+k)u(x,t))/k( u ( x , t + k ) - u ( x , t ) ) / k
D) (u(x,tk)u(x,t))/k( u ( x , t - k ) - u ( x , t ) ) / k
E) (u(x,t+k)u(x,t))/k2( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
27
In the previous three problems, the solution at the interior points is Select all that apply.

A) u22=3/8u _ { 22 } = \sqrt { 3 } / 8
B) u22=3/4u _ { 22 } = \sqrt { 3 } / 4
C) u11=3/8u _ { 11 } = \sqrt { 3 } / 8
D) u12=3/4u _ { 12 } = \sqrt { 3 } / 4
E) u21=3/4u _ { 21 } = \sqrt { 3 } / 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
28
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h\lambda = c k / h , the equation becomes

A) ui,j1=λ2ui+1,j+2(1+λ2)uij+λ2ui1,j+ui,j1u _ { i , j - 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 + \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } + u _ { i , j - 1 }
B) ui,j1=λui+1,j+2(1λ)uij+λui1,j+ui,j1u _ { i , j - 1 } = \lambda u _ { i + 1 , j } + 2 ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j } + u _ { i , j - 1 }
C) ui,j+1=λ2ui+1,j+2(1+λ2)uij+λ2ui1,jui,j1u _ { i , j + 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 + \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } - u _ { i , j - 1 }
D) ui,j+1=λ2ui+1,j+2(1λ2)uij+λ2ui1,jui,j1u _ { i , j + 1 } = \lambda ^ { 2 } u _ { i + 1 , j } + 2 \left( 1 - \lambda ^ { 2 } \right) u _ { i j } + \lambda ^ { 2 } u _ { i - 1 , j } - u _ { i , j - 1 }
E) ui,j+1=λui+1,j+(1λ)uij+λui1,jui,j1u _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i j } + \lambda u _ { i - 1 , j } - u _ { i , j - 1 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
29
In the previous problem, using the notation uij=u(x,t)u _ { i j } = u ( x , \mathrm { t } ) , and letting λ=ck/h2\lambda = c k / h ^ { 2 } , the equation becomes

A) ui,j1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
B) ui,j1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j - 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
C) ui,j+1=λui+1,j+(1+2λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 + 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
D) ui,j+1=λui+1,j+(12λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - 2 \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
E) ui,j+1=λui+1,j+(1λ)ui,j+λui1,ju _ { i , j + 1 } = \lambda u _ { i + 1 , j } + ( 1 - \lambda ) u _ { i , j } + \lambda u _ { i - 1 , j }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
30
The wave equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
31
In the previous three problems, if g(x)=0g ( x ) = 0 then the values of ui,1u _ { i , - 1 } are

A) ui,1=ui,1u _ { i , - 1 } = u _ { i , 1 }
B) ui.1=0u _ { i _ { . } - 1 } = 0
C) ui.1=1u _ { i _ { . } - 1 } = 1
D) ui,1=1u _ { i , - 1 } = - 1
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
32
Consider the problem c2ux2=ut,u(0,t)=0,u(1,t)=2,u(x,0)=2x2c \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = 0 , u ( 1 , t ) = 2 , u ( x , 0 ) = 2 x ^ { 2 } . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/3h = 1 / 3 and ut\frac { \partial u } { \partial t } with a forward difference approximation with k=1/2k = 1 / 2 . The resulting equation is

A) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
B) c[u(x+h,t)+2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) + 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
E) c[u(x+h,t)4u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc [ u ( x + h , t ) - 4 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
33
Consider the problem c22ux2=2ut2,u(0,t)=0,u(1,t)=0,u(x,0)={x if 0<x<1/21x if 1/2<x<1}c ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , u ( x , 0 ) = \left\{ \begin{array} { c c c } x & \text { if } & 0 < x < 1 / 2 \\1 - x & \text { if } & 1 / 2 < x < 1\end{array} \right\} , ut(x,0)=g(x)u _ { t } ( x , 0 ) = g ( x ) . Replace 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with h=1/2h = 1 / 2 and 2ux2\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } with a central difference approximation with k=1/2k = 1 / 2 . The resulting equation is

A) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k ^ { 2 }
B) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)+u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) + u ( x , t ) ) / k
C) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t))/kc ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) ) / k
D) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
E) c2[u(x+h,t)2u(x,t)+u(xh,t)]/h2=(u(x,t+k)2u(x,t)+u(x,tk))/k2c ^ { 2 } [ u ( x + h , t ) - 2 u ( x , t ) + u ( x - h , t ) ] / h ^ { 2 } = ( u ( x , t + k ) - 2 u ( x , t ) + u ( x , t - k ) ) / k ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
34
In the previous two problems, let c=1c = 1 . Thesolution for u along the line t=0.5t = 0.5 at the mesh points is Select all that apply.

A) u11=0u _ { 11 } = 0
B) u11=20/9u _ { 11 } = 20 / 9
C) u11=30/9u _ { 11 } = 30 / 9
D) u21=26/9u _ { 21 } = 26 / 9
E) u21=32/9u _ { 21 } = 32 / 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
35
A Dirichlet problem is a partial differential equation with conditions specifying

A) the values of the unknown function along the boundary
B) the values of the derivative of the unknown function along the boundary
C) a linear combination of the values of the unknown function along the boundary and the values of the derivative of the unknown function along the boundary
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
36
Laplace's equation is

A) hyperbolic
B) parabolic
C) elliptic
D) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
37
In the previous problem, is the value of λ\lambda such that the scheme is stable?

A) yes
B) no
C) It is right on the borderline.
D) It cannot be determined from the available data.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
38
In the previous two problems, using uiju _ { i j } to denote the value of uu at the i,ji , j point, the equations for the values of the unknown function at the interior points are Select all that apply.

A) 4u11+u21+u12=0- 4 u _ { 11 } + u _ { 21 } + u _ { 12 } = 0
B) 4u22+u21+u12=3- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - \sqrt { 3 }
C) 4u22+u21+u12=3/2- 4 u _ { 22 } + u _ { 21 } + u _ { 12 } = - \sqrt { 3 } / 2
D) 4u12+u11+u22=3/2- 4 u _ { 12 } + u _ { 11 } + u _ { 22 } = - \sqrt { 3 } / 2
E) 4u21+u11+u22=3/2- 4 u _ { 21 } + u _ { 11 } + u _ { 22 } = - \sqrt { 3 } / 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
39
The five point approximation of the Laplacian is

A) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)2u(x,y)]/h[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 2 u ( x , y ) ] / h
B) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)4u(x,y)]/h[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 4 u ( x , y ) ] / h
C) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)2u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 2 u ( x , y ) ] / h ^ { 2 }
D) [u(x+h,y)+u(x,y+h)+u(xh,y)+u(x,yh)4u(x,y)]/h2[ u ( x + h , y ) + u ( x , y + h ) + u ( x - h , y ) + u ( x , y - h ) - 4 u ( x , y ) ] / h ^ { 2 }
E) [u(x+h,y)u(x,y+h)+u(xh,y)u(x,yh)4u(x,y)]/h2[ u ( x + h , y ) - u ( x , y + h ) + u ( x - h , y ) - u ( x , y - h ) - 4 u ( x , y ) ] / h ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
40
Consider the problem 2ux2+2uy2=0,u(0,y)=0,u(x,0)=0,u(1,y)=sin(πy),u(x,1)=sin(πx)\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 , u ( 0 , y ) = 0 , u ( x , 0 ) = 0 , u ( 1 , y ) = \sin ( \pi y ) , u ( x , 1 ) = \sin ( \pi x ) . A finite difference approximation of the solution is desired, using the approximation of the previous problem. Use a mesh size of h=1/3h = 1 / 3 The conditions satisfied by the mesh points on the boundary are Select all that apply.

A) u=1/2 at (1,2/3) and (2/3,1)u = 1 / 2 \text { at } ( 1,2 / 3 ) \text { and } ( 2 / 3,1 )
B) u=3/2 at (1,1/3) and (1/3,1)u = \sqrt { 3 } / 2 \text { at } ( 1,1 / 3 ) \text { and } ( 1 / 3,1 )
C) u=0 at (0,1/3) and (1/3,0)u = 0 \text { at } ( 0,1 / 3 ) \text { and } ( 1 / 3,0 )
D) u=0 at (0,2/3) and (2/3,0)u = 0 \text { at } ( 0,2 / 3 ) \text { and } ( 2 / 3,0 )
E) u=0 at (1/3,1/3) and (2/3,2/3)u = 0 \text { at } ( 1 / 3,1 / 3 ) \text { and } ( 2 / 3,2 / 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.