Deck 6: Series Solutions of Linear Equations

ملء الشاشة (f)
exit full mode
سؤال
The recurrence relation for the power series solution about x=0x = 0 of the differential equation y+y=0y ^ { \prime \prime } + y = 0 is

A) (k+2)(k+1)ck+2+ck=0( k + 2 ) ( k + 1 ) c _ { k + 2 } + c _ { k } = 0
B) (k+2)(k+1)ck+ck2=0( k + 2 ) ( k + 1 ) c _ { k } + c _ { k - 2 } = 0
C) (k+1)kck+2+ck=0( k + 1 ) k c _ { k + 2 } + c _ { k } = 0
D) (k+1)kck+ck2=0( k + 1 ) k c _ { k } + c _ { k - 2 } = 0
E) (k2)(k1)ck2+ck=0( k - 2 ) ( k - 1 ) c _ { k - 2 } + c _ { k } = 0
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
A power series solution about x=0x = 0 of the differential equation y+y=0y ^ { \prime \prime } + y = 0 is

A) y=c0k=0(1)kx2k/(2k)!+c1k=0(1)kx2k+1/(2k+1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
B) y=c0k=0(1)kx2k/(2k)+c1k=0(1)kx2k+1/(2k+1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 )
C) y=c0k=0(1)kx2k/(2k)2+c1k=0(1)kx2k+1/(2k+1)2y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ^ { 2 } + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) ^ { 2 }
D) y=c0k=0(1)kx2k/(2k)!+c1k=0(1)kx2k1/(2k1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k - 1 } / ( 2 k - 1 ) !
E) y=c0k=0(1)kx2k/(2k)+c1k=0(1)kx2k1/(2k1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k - 1 } / ( 2 k - 1 )
سؤال
For the equation (x216)3(x1)y2xy+y=0\left( x ^ { 2 } - 16 \right) ^ { 3 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=4x = 4 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
سؤال
The solution of the previous problem is

A) y=c1P1/s(x)+c2P1/5(x)y = c _ { 1 } P _ { 1 / s } ( x ) + c _ { 2 } P _ { - 1 / 5 } ( x )
B) y=c1P5(x)+c2P5(x)y = c _ { 1 } P _ { 5 } ( x ) + c _ { 2 } P _ { - 5 } ( x )
C) y=c1J5(x)+c2Y5(x)y = c _ { 1 } J _ { 5 } ( x ) + c _ { 2 } Y _ { 5 } ( x )
D) y=c1J1/s(x)+c2JJ1/5(x)y = c _ { 1 } J _ { 1 / s } ( x ) + c _ { 2 } ^ { J } J _ { - 1 / 5 } ( x )
E) y=c1J1/25(x)+c2Y1/25(x)y = c _ { 1 } J _ { 1 / 25 } ( x ) + c _ { 2 } Y _ { 1 / 25 } ( x )
سؤال
The interval of convergence of the power series in the previous problem is

A) {0}\{ 0 \}
B) (1,1)( - 1,1 )
C) [1,1][ - 1,1 ]
D) (1,1]( - 1,1 ]
E) (,)( - \infty , \infty )
سؤال
Consider the differential equation xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0 . The indicial equation is r(r1)=0r ( r - 1 ) = 0 . The recurrence relation is ck+1(k+r+1)+(k+r)ck(k+r1)=0c _ { k + 1 } ( k + r + 1 ) + ( k + r ) - c _ { k } ( k + r - 1 ) = 0 . A series solution corresponding to the indicial root r=0r = 0 is

A) y1=xy _ { 1 } = x
B) y1=x2y _ { 1 } = x ^ { 2 }
C) y1=k=0(2x)k/[k!(1)13(2k1)]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 1 ) ]
D) y1=k=0(2x)k/[k!(2k3)!]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! ( 2 k - 3 ) ! ]
E) y1=k=0(2x)k/[k!13(2k3)]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! 1 \cdot 3 \cdots ( 2 k - 3 ) ]
سؤال
In the previous problem, a second solution is

A) y2=exy _ { 2 } = e ^ { x }
B) y2=xex/x2dxy _ { 2 } = x \int e ^ { x } / x ^ { 2 } d x
C) y=1+k1ckxk, where ck=(k1)/(k(k+1))y = 1 + \sum _ { k - 1 } ^ { \infty } c _ { k } x ^ { k } , \text { where } c _ { k } = ( k - 1 ) / ( k ( k + 1 ) )
D) y=1+k=1ckxk, where ck=1/k2y = 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } , \text { where } c _ { k } = 1 / k ^ { 2 }
E) none of the above
سؤال
For the equation (x216)3(x1)y2xy+y=0\left( x ^ { 2 } - 16 \right) ^ { 3 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=0x = 0 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
سؤال
The differential equation is (1x2)y2xy+12y=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + 12 y = 0 is

A) Bessel's equation of order 12
B) Bessel's equation of order 3
C) Legendre's equation of order 12
D) Legendre's equation of order 3
E) Legendre's equation of order 4
سؤال
For the equation (x216)3(x1)y2xy+y=0\left( x ^ { 2 } - 16 \right) ^ { 3 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=1x = 1 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
سؤال
Find three positive values of λ\lambda for which the differential equation (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0 has polynomial solutions.

A) 2, 6, 12
B) 1, 2, 3
C) 1, 4, 9
D) 2, 4, 6
E) 2, 6, 10
سؤال
The solution of the recurrence relation in the previous problem is

A) c2k=c0(1)k/(2k),c2k+1=c1(1)k/(2k+1)c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k ) , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 1 )
B) c2k=c0(1)k/(2k)2,c2k+1=c1(1)k/(2k+1)2c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k ) ^ { 2 } , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 1 ) ^ { 2 }
C) c2k=c0(1)k/(2k)!,c2k+1=c1(1)k/(2k+1)!c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k ) ! , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 1 ) !
D) c2k=c0(1)k/(2k+2)!,c2k+1=c1(1)k/(2k+3)!c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k + 2 ) ! , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 3 ) !
E) c2k=c0(1)k/(2k1)!,c2k+1=c1(1)k/(2k)!c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k - 1 ) ! , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k ) !
سؤال
The solution of the previous problem is

A) y=c1P3(x)+c2P3(x)y = c _ { 1 } P _ { 3 } ( x ) + c _ { 2 } P _ { - 3 } ( x )
B) y=c1P3(x)+c2Q3(x)y = c _ { 1 } P _ { 3 } ( x ) + c _ { 2 } Q _ { 3 } ( x ) , where Q3(x)Q _ { 3 } ( x ) is given by an infinite series
C) y=c1J4(x)+c2Y4(x)y = c _ { 1 } J _ { 4 } ( x ) + c _ { 2 } Y _ { 4 } ( x )
D) y=c1J3(x)+c2Y3(x)y = c _ { 1 } J _ { 3 } ( x ) + c _ { 2 } Y _ { 3 } ( x )
E) y=c1J12(x)+c2Y12(x)y = c _ { 1 } J _ { 12 } ( x ) + c _ { 2 } Y _ { 12 } ( x )
سؤال
The singular points of the differential equation xy+y+y(x+2)/(x4)=0x y ^ { \prime \prime } + y ^ { \prime } + y ( x + 2 ) / ( x - 4 ) = 0 are

A) none
B) 0
C) 0, 2- 2
D) 0, 4
E) 0, 2- 2 , 4
سؤال
The recurrence relation for the differential equation xy+2yxy=0x y ^ { \prime \prime } + 2 y ^ { \prime } - x y = 0 is

A) ck(k+r)(k+r1)+ck2=0c _ { k } ( k + r ) ( k + r - 1 ) + c _ { k - 2 } = 0
B) ck(k+r)(k+r1)ck2=0c _ { k } ( k + r ) ( k + r - 1 ) - c _ { k - 2 } = 0
C) ck(k+r+1)2ck2=0c _ { k } ( k + r + 1 ) ^ { 2 } - c _ { k - 2 } = 0
D) ck(k+r+2)(k+r+1)+ck2=0c _ { k } ( k + r + 2 ) ( k + r + 1 ) + c _ { k - 2 } = 0
E) ck(k+r)(k+r+1)ck2=0c _ { k } ( k + r ) ( k + r + 1 ) - c _ { k - 2 } = 0
سؤال
The radius of convergence of the power series n=1xn/n!\sum _ { n = 1 } ^ { \infty } x ^ { n } / n ! is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
سؤال
The first four nonzero terms in the power series expansion of the function f(x)=sinxf ( x ) = \sin x about x=0x = 0 are

A) 1x+x2/2x3/31 - x + x ^ { 2 } / 2 - x ^ { 3 } / 3
B) xx3/6+x5/120x7/5040x - x ^ { 3 } / 6 + x ^ { 5 } / 120 - x ^ { 7 } / 5040
C) x+x3+x5+x7x + x ^ { 3 } + x ^ { 5 } + x ^ { 7 }
D) 1+x2/2+x4/4+x6/61 + x ^ { 2 } / 2 + x ^ { 4 } / 4 + x ^ { 6 } / 6
E) 1x2/2+x4/24x6/7201 - x ^ { 2 } / 2 + x ^ { 4 } / 24 - x ^ { 6 } / 720
سؤال
The differential equation x2y+xy+(x21/25)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - 1 / 25 \right) y = 0 is

A) Bessel's equation of order nn
B) Bessel's equation of order 1/25
C) Bessel's equation of order 1/5
D) Legendre's equation of order 1/25
E) Legendre's equation of order 1/5
سؤال
The radius of convergence of the power series solution of y+y=0y ^ { \prime \prime } + y = 0 about x=0x = 0 is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
سؤال
The indicial equation for the differential equation xy+2yxy=0x y ^ { \prime \prime } + 2 y ^ { \prime } - x y = 0 is

A) r(r1)=0r ( r - 1 ) = 0
B) r(r+2)=0r ( r + 2 ) = 0
C) r(2r+1)=0r ( 2 r + 1 ) = 0
D) r(2r1)=0r ( 2 r - 1 ) = 0
E) r(r+1)=0r ( r + 1 ) = 0
سؤال
The differential equation x2y+xy+(x21/16)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - 1 / 16 \right) y = 0 is

A) Bessel's equation of order nn
B) Bessel's equation of order 1/16
C) Bessel's equation of order 1/4
D) Legendre's equation of order 1/16
E) Legendre's equation of order 1/4
سؤال
The solution of the previous problem is

A) y=c1P1/4(x)+c2P1/4(x)y = c _ { 1 } P _ { 1 / 4 } ( x ) + c _ { 2 } P _ { - 1 / 4 } ( x )
B) y=c1P4(x)+c2P4(x)y = c _ { 1 } P _ { 4 } ( x ) + c _ { 2 } P _ { 4 } ( x )
C) y=c1J4(x)+c2Y4(x)y = c _ { 1 } J _ { 4 } ( x ) + c _ { 2 } Y _ { 4 } ( x )
D) y=c1J1/4(x)+c2J1/4(x)y = c _ { 1 } J _ { 1 / 4 } ( x ) + c _ { 2 } J _ { - 1 / 4 } ( x )
E) y=c1J1/16(x)+c2J1/16(x)y = c _ { 1 } J _ { 1 / 16 } ( x ) + c _ { 2 } J _ { - 1 / 16 } ( x )
سؤال
The radius of convergence of the power series n=1xn/n\sum _ { n = 1 } ^ { \infty } x ^ { n } / n is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
سؤال
The singular points of x2(x1)y2xy+y=0x ^ { 2 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 are x=x = Select all that apply.

A) 2
B) 1- 1
C) 0
D) 1
E) none of the above
سؤال
The recurrence relation for the differential equation 2xyyt+2y=02 x y ^ { \prime \prime } - y ^ { t } + 2 y = 0 is

A) ck+1(k+r)(2k+2r1)+2ck=0c _ { k + 1 } ( k + r ) ( 2 k + 2 r - 1 ) + 2 c _ { k } = 0
B) ck+1(k+r)(k+r1)+2ck=0c _ { k + 1 } ( k + r ) ( k + r - 1 ) + 2 c _ { k } = 0
C) ck+1(k+r+1)(2k+2r1)2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r - 1 ) - 2 c _ { k } = 0
D) ck+1(k+r+1)(2k+2r1)+2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r - 1 ) + 2 c _ { k } = 0
E) ck+1(k+r+1)(2k+2r)+2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r ) + 2 c _ { k } = 0
سؤال
Consider the differential equation 2x2y+3xy+(2x1)y=02 x ^ { 2 } y ^ { \prime \prime } + 3 x y ^ { \prime } + ( 2 x - 1 ) y = 0 The indicial equation is 2r2+r1=02 r ^ { 2 } + r - 1 = 0 . The recurrence relation is ck[2(k+r)+(k+r1)+3(k+r)1]+2ck1=0c _ { k } [ 2 ( k + r ) + ( k + r - 1 ) + 3 ( k + r ) - 1 ] + 2 c _ { k - 1 } = 0 . A series solution corresponding to the indicial root r=1r = - 1 is y=x1[1+k=1ckxk]y = x ^ { - 1 } \left[ 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } \right] , where

A) ck=(2)k/[k!(1)13(2k3)]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 3 ) ]
B) ck=2k/[k!13(2k3)]c _ { k } = - 2 ^ { k } / [ k ! 1 \cdot 3 \cdots ( 2 k - 3 ) ]
C) ck=(2)k/[k!(1)13(2k1)]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 1 ) ]
D) ck=(2)k/[k!(1)(2k3)!]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) ( 2 k - 3 ) ! ]
E) ck=(2)k/[k13(2k5)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 1 \cdot 3 \cdots ( 2 k - 5 ) ]
سؤال
The interval of convergence of the power series in the previous problem is

A) {0}\{ 0 \}
B) (1,1)( - 1,1 )
C) [1,1][ - 1,1 ]
D) [1,1)[ - 1,1 )
E) (,)( - \infty , \infty )
سؤال
The singular points of the differential equation y+y/x+y(x2)/(x3)=0y ^ { \prime \prime } + y ^ { \prime } / x + y ( x - 2 ) / ( x - 3 ) = 0 are

A) none
B) 0
C) 0, 2
D) 0, 3
E) 0, 2, 3
سؤال
For the differential equation (x24)2y2xy+y=0\left( x ^ { 2 } - 4 \right) ^ { 2 } y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=0x = 0 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
سؤال
The recurrence relation for the power series solution about x=0x = 0 of the differential equation yy=0y ^ { \prime \prime } - y = 0 is (for k=0,1,2,k = 0,1,2 , \ldots )

A) (k+2)(k+1)ck+2=ck( k + 2 ) ( k + 1 ) c _ { k + 2 } = c _ { k }
B) (k+2)(k+1)ck=ck2( k + 2 ) ( k + 1 ) c _ { k } = c _ { k - 2 }
C) (k+1)kck+2=ck( k + 1 ) k c _ { k + 2 } = c _ { k }
D) (k+1)kck=ck2( k + 1 ) k c _ { k } = c _ { k - 2 }
E) (k2)(k1)ck2=ck( k - 2 ) ( k - 1 ) c _ { k - 2 } = c _ { k }
سؤال
In the previous problem, a series solution corresponding to the indicial root r=1/2r = 1 / 2 is y=x1/2{1+k=1ckxk}y = x ^ { 1 / 2 } \left\{ 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } \right\} , where

A) ck=(2)k/[k357(2k3)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 3 \cdot 5 \cdot 7 \cdots ( 2 k - 3 ) ]
B) ck=(2)k/[k135(2k3)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 1 \cdot 3 \cdot 5 \cdots ( 2 k - 3 ) ]
C) ck=2k/[k579(2k+1)]c _ { k } = - 2 ^ { k } / [ k \mid 5 \cdot 7 \cdot 9 \cdots ( 2 k + 1 ) ]
D) ck=(2)k/[k!(2k+3)!]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( 2 k + 3 ) ! ]
E) ck=(2)k/[k579(2k+3)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 5 \cdot 7 \cdot 9 \cdots ( 2 k + 3 ) ]
سؤال
The radius of convergence of the power series solution of yy=0y ^ { \prime \prime } - y = 0 about x=0x = 0 is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
سؤال
The indicial equation for the differential equation 2xyyt+2y=02 x y ^ { \prime \prime } - y ^ { t } + 2 y = 0 is

A) r(2r1)=0r ( 2 r - 1 ) = 0
B) r(2r3)=0r ( 2 r - 3 ) = 0
C) r(2r2)=0r ( 2 r - 2 ) = 0
D) r(r3)=0r ( r - 3 ) = 0
E) r(r2)=0r ( r - 2 ) = 0
سؤال
A power series solution about x=0x = 0 of the differential equation yy=0y ^ { \prime \prime } - y = 0 is

A) y=c0k=0x2k/(2k)!+c1k=0x2k+1/(2k+1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
B) y=c0k=0x2k/(2k)+c1k=0x2k+1/(2k+1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 )
C) y=c0k0x2k/(2k)2+c1k0x2k+1/(2k+1)2y = c _ { 0 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ^ { 2 } + c _ { 1 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 ) ^ { 2 }
D) y=c0k=0x2k/(2k)!+c1k0x2k1/(2k1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k - 1 } / ( 2 k - 1 ) !
E) y=c0k=0x2k/(2k)+c1k=0x2k1/(2k1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k - 1 } / ( 2 k - 1 )
سؤال
The solution of the previous problem is

A) y=c1P20(x)+c2P20(x)y = c _ { 1 } P _ { 20 } ( x ) + c _ { 2 } P _ { - 20 } ( x )
B) y=c1P4(x)+c2Q4(x)y = c _ { 1 } P _ { 4 } ( x ) + c _ { 2 } Q _ { 4 } ( x ) , where Q4(x)Q _ { 4 } ( x ) is given by an infinite series
C) y=c1J4(x)+c2Y4(x)y = c _ { 1 } J _ { 4 } ( x ) + c _ { 2 } Y _ { 4 } ( x )
D) y=c1J1/4(x)+c2J1/4(x)y = c _ { 1 } J _ { 1 / 4 } ( x ) + c _ { 2 } J _ { - 1 / 4 } ( x )
E) y=c1J20(x)+c2Y20(x)y = c _ { 1 } J _ { 20 } ( x ) + c _ { 2 } Y _ { 20 } ( x )
سؤال
For the differential equation (x24)2y2xy+y=0\left( x ^ { 2 } - 4 \right) ^ { 2 } y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=2x = 2 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
سؤال
For the differential equation (x24)3y2xy+y=0\left( x ^ { 2 } - 4 \right) ^ { 3 } y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=2x = - 2 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
سؤال
The first four terms in the power series expansion of the function f(x)=e2xf ( x ) = e ^ { 2 x } about x=0x = 0 are

A) 1+x+x2+x31 + x + x ^ { 2 } + x ^ { 3 }
B) 1+2x+2x2+2x31 + 2 x + 2 x ^ { 2 } + 2 x ^ { 3 }
C) 1+2x+2x2+4x3/31 + 2 x + 2 x ^ { 2 } + 4 x ^ { 3 } / 3
D) 1+2x+2x2+2x3/31 + 2 x + 2 x ^ { 2 } + 2 x ^ { 3 } / 3
E) 1+2x+4x2+8x31 + 2 x + 4 x ^ { 2 } + 8 x ^ { 3 }
سؤال
The solution of the recurrence relation in the previous problem is

A) c2k=c0/(2k),c2k+1=c1/(2k+1)c _ { 2 k } = c _ { 0 } / ( 2 k ) , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 1 )
B) c2k=c0/(2k)2,c2k+1=c1/(2k+1)2c _ { 2 k } = c _ { 0 } / ( 2 k ) ^ { 2 } , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 1 ) ^ { 2 }
C) c2k=c0/(2k)!,c2k+1=c1/(2k+1)!c _ { 2 k } = c _ { 0 } / ( 2 k ) ! , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 1 ) !
D) c2k=c0/(2k+2)!,c2k+1=c1/(2k+3)!c _ { 2 k } = c _ { 0 } / ( 2 k + 2 ) ! , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 3 ) !
E) c2k=c0/(2k1)!,c2k+1=c1/(2k)!c _ { 2 k } = c _ { 0 } / ( 2 k - 1 ) ! , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k ) !
سؤال
The differential equation is (1x2)y2xy+20y=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + 20 y = 0 is

A) Bessel's equation of order 20
B) Bessel's equation of order 4
C) Legendre's equation of order n
D) Legendre's equation of order 20
E) Legendre's equation of order 4
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 6: Series Solutions of Linear Equations
1
The recurrence relation for the power series solution about x=0x = 0 of the differential equation y+y=0y ^ { \prime \prime } + y = 0 is

A) (k+2)(k+1)ck+2+ck=0( k + 2 ) ( k + 1 ) c _ { k + 2 } + c _ { k } = 0
B) (k+2)(k+1)ck+ck2=0( k + 2 ) ( k + 1 ) c _ { k } + c _ { k - 2 } = 0
C) (k+1)kck+2+ck=0( k + 1 ) k c _ { k + 2 } + c _ { k } = 0
D) (k+1)kck+ck2=0( k + 1 ) k c _ { k } + c _ { k - 2 } = 0
E) (k2)(k1)ck2+ck=0( k - 2 ) ( k - 1 ) c _ { k - 2 } + c _ { k } = 0
(k+2)(k+1)ck+2+ck=0( k + 2 ) ( k + 1 ) c _ { k + 2 } + c _ { k } = 0
2
A power series solution about x=0x = 0 of the differential equation y+y=0y ^ { \prime \prime } + y = 0 is

A) y=c0k=0(1)kx2k/(2k)!+c1k=0(1)kx2k+1/(2k+1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
B) y=c0k=0(1)kx2k/(2k)+c1k=0(1)kx2k+1/(2k+1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 )
C) y=c0k=0(1)kx2k/(2k)2+c1k=0(1)kx2k+1/(2k+1)2y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ^ { 2 } + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) ^ { 2 }
D) y=c0k=0(1)kx2k/(2k)!+c1k=0(1)kx2k1/(2k1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k - 1 } / ( 2 k - 1 ) !
E) y=c0k=0(1)kx2k/(2k)+c1k=0(1)kx2k1/(2k1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k - 1 } / ( 2 k - 1 )
y=c0k=0(1)kx2k/(2k)!+c1k=0(1)kx2k+1/(2k+1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
3
For the equation (x216)3(x1)y2xy+y=0\left( x ^ { 2 } - 16 \right) ^ { 3 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=4x = 4 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
an irregular singular point
4
The solution of the previous problem is

A) y=c1P1/s(x)+c2P1/5(x)y = c _ { 1 } P _ { 1 / s } ( x ) + c _ { 2 } P _ { - 1 / 5 } ( x )
B) y=c1P5(x)+c2P5(x)y = c _ { 1 } P _ { 5 } ( x ) + c _ { 2 } P _ { - 5 } ( x )
C) y=c1J5(x)+c2Y5(x)y = c _ { 1 } J _ { 5 } ( x ) + c _ { 2 } Y _ { 5 } ( x )
D) y=c1J1/s(x)+c2JJ1/5(x)y = c _ { 1 } J _ { 1 / s } ( x ) + c _ { 2 } ^ { J } J _ { - 1 / 5 } ( x )
E) y=c1J1/25(x)+c2Y1/25(x)y = c _ { 1 } J _ { 1 / 25 } ( x ) + c _ { 2 } Y _ { 1 / 25 } ( x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
5
The interval of convergence of the power series in the previous problem is

A) {0}\{ 0 \}
B) (1,1)( - 1,1 )
C) [1,1][ - 1,1 ]
D) (1,1]( - 1,1 ]
E) (,)( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
6
Consider the differential equation xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0 . The indicial equation is r(r1)=0r ( r - 1 ) = 0 . The recurrence relation is ck+1(k+r+1)+(k+r)ck(k+r1)=0c _ { k + 1 } ( k + r + 1 ) + ( k + r ) - c _ { k } ( k + r - 1 ) = 0 . A series solution corresponding to the indicial root r=0r = 0 is

A) y1=xy _ { 1 } = x
B) y1=x2y _ { 1 } = x ^ { 2 }
C) y1=k=0(2x)k/[k!(1)13(2k1)]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 1 ) ]
D) y1=k=0(2x)k/[k!(2k3)!]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! ( 2 k - 3 ) ! ]
E) y1=k=0(2x)k/[k!13(2k3)]y _ { 1 } = \sum _ { k = 0 } ^ { \infty } ( - 2 x ) ^ { k } / [ k ! 1 \cdot 3 \cdots ( 2 k - 3 ) ]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
7
In the previous problem, a second solution is

A) y2=exy _ { 2 } = e ^ { x }
B) y2=xex/x2dxy _ { 2 } = x \int e ^ { x } / x ^ { 2 } d x
C) y=1+k1ckxk, where ck=(k1)/(k(k+1))y = 1 + \sum _ { k - 1 } ^ { \infty } c _ { k } x ^ { k } , \text { where } c _ { k } = ( k - 1 ) / ( k ( k + 1 ) )
D) y=1+k=1ckxk, where ck=1/k2y = 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } , \text { where } c _ { k } = 1 / k ^ { 2 }
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
8
For the equation (x216)3(x1)y2xy+y=0\left( x ^ { 2 } - 16 \right) ^ { 3 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=0x = 0 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
9
The differential equation is (1x2)y2xy+12y=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + 12 y = 0 is

A) Bessel's equation of order 12
B) Bessel's equation of order 3
C) Legendre's equation of order 12
D) Legendre's equation of order 3
E) Legendre's equation of order 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
10
For the equation (x216)3(x1)y2xy+y=0\left( x ^ { 2 } - 16 \right) ^ { 3 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=1x = 1 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find three positive values of λ\lambda for which the differential equation (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0 has polynomial solutions.

A) 2, 6, 12
B) 1, 2, 3
C) 1, 4, 9
D) 2, 4, 6
E) 2, 6, 10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
12
The solution of the recurrence relation in the previous problem is

A) c2k=c0(1)k/(2k),c2k+1=c1(1)k/(2k+1)c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k ) , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 1 )
B) c2k=c0(1)k/(2k)2,c2k+1=c1(1)k/(2k+1)2c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k ) ^ { 2 } , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 1 ) ^ { 2 }
C) c2k=c0(1)k/(2k)!,c2k+1=c1(1)k/(2k+1)!c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k ) ! , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 1 ) !
D) c2k=c0(1)k/(2k+2)!,c2k+1=c1(1)k/(2k+3)!c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k + 2 ) ! , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k + 3 ) !
E) c2k=c0(1)k/(2k1)!,c2k+1=c1(1)k/(2k)!c _ { 2 k } = c _ { 0 } ( - 1 ) ^ { k } / ( 2 k - 1 ) ! , c _ { 2 k + 1 } = c _ { 1 } ( - 1 ) ^ { k } / ( 2 k ) !
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
13
The solution of the previous problem is

A) y=c1P3(x)+c2P3(x)y = c _ { 1 } P _ { 3 } ( x ) + c _ { 2 } P _ { - 3 } ( x )
B) y=c1P3(x)+c2Q3(x)y = c _ { 1 } P _ { 3 } ( x ) + c _ { 2 } Q _ { 3 } ( x ) , where Q3(x)Q _ { 3 } ( x ) is given by an infinite series
C) y=c1J4(x)+c2Y4(x)y = c _ { 1 } J _ { 4 } ( x ) + c _ { 2 } Y _ { 4 } ( x )
D) y=c1J3(x)+c2Y3(x)y = c _ { 1 } J _ { 3 } ( x ) + c _ { 2 } Y _ { 3 } ( x )
E) y=c1J12(x)+c2Y12(x)y = c _ { 1 } J _ { 12 } ( x ) + c _ { 2 } Y _ { 12 } ( x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
14
The singular points of the differential equation xy+y+y(x+2)/(x4)=0x y ^ { \prime \prime } + y ^ { \prime } + y ( x + 2 ) / ( x - 4 ) = 0 are

A) none
B) 0
C) 0, 2- 2
D) 0, 4
E) 0, 2- 2 , 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
15
The recurrence relation for the differential equation xy+2yxy=0x y ^ { \prime \prime } + 2 y ^ { \prime } - x y = 0 is

A) ck(k+r)(k+r1)+ck2=0c _ { k } ( k + r ) ( k + r - 1 ) + c _ { k - 2 } = 0
B) ck(k+r)(k+r1)ck2=0c _ { k } ( k + r ) ( k + r - 1 ) - c _ { k - 2 } = 0
C) ck(k+r+1)2ck2=0c _ { k } ( k + r + 1 ) ^ { 2 } - c _ { k - 2 } = 0
D) ck(k+r+2)(k+r+1)+ck2=0c _ { k } ( k + r + 2 ) ( k + r + 1 ) + c _ { k - 2 } = 0
E) ck(k+r)(k+r+1)ck2=0c _ { k } ( k + r ) ( k + r + 1 ) - c _ { k - 2 } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
16
The radius of convergence of the power series n=1xn/n!\sum _ { n = 1 } ^ { \infty } x ^ { n } / n ! is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
17
The first four nonzero terms in the power series expansion of the function f(x)=sinxf ( x ) = \sin x about x=0x = 0 are

A) 1x+x2/2x3/31 - x + x ^ { 2 } / 2 - x ^ { 3 } / 3
B) xx3/6+x5/120x7/5040x - x ^ { 3 } / 6 + x ^ { 5 } / 120 - x ^ { 7 } / 5040
C) x+x3+x5+x7x + x ^ { 3 } + x ^ { 5 } + x ^ { 7 }
D) 1+x2/2+x4/4+x6/61 + x ^ { 2 } / 2 + x ^ { 4 } / 4 + x ^ { 6 } / 6
E) 1x2/2+x4/24x6/7201 - x ^ { 2 } / 2 + x ^ { 4 } / 24 - x ^ { 6 } / 720
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
18
The differential equation x2y+xy+(x21/25)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - 1 / 25 \right) y = 0 is

A) Bessel's equation of order nn
B) Bessel's equation of order 1/25
C) Bessel's equation of order 1/5
D) Legendre's equation of order 1/25
E) Legendre's equation of order 1/5
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
19
The radius of convergence of the power series solution of y+y=0y ^ { \prime \prime } + y = 0 about x=0x = 0 is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
20
The indicial equation for the differential equation xy+2yxy=0x y ^ { \prime \prime } + 2 y ^ { \prime } - x y = 0 is

A) r(r1)=0r ( r - 1 ) = 0
B) r(r+2)=0r ( r + 2 ) = 0
C) r(2r+1)=0r ( 2 r + 1 ) = 0
D) r(2r1)=0r ( 2 r - 1 ) = 0
E) r(r+1)=0r ( r + 1 ) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
21
The differential equation x2y+xy+(x21/16)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - 1 / 16 \right) y = 0 is

A) Bessel's equation of order nn
B) Bessel's equation of order 1/16
C) Bessel's equation of order 1/4
D) Legendre's equation of order 1/16
E) Legendre's equation of order 1/4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
22
The solution of the previous problem is

A) y=c1P1/4(x)+c2P1/4(x)y = c _ { 1 } P _ { 1 / 4 } ( x ) + c _ { 2 } P _ { - 1 / 4 } ( x )
B) y=c1P4(x)+c2P4(x)y = c _ { 1 } P _ { 4 } ( x ) + c _ { 2 } P _ { 4 } ( x )
C) y=c1J4(x)+c2Y4(x)y = c _ { 1 } J _ { 4 } ( x ) + c _ { 2 } Y _ { 4 } ( x )
D) y=c1J1/4(x)+c2J1/4(x)y = c _ { 1 } J _ { 1 / 4 } ( x ) + c _ { 2 } J _ { - 1 / 4 } ( x )
E) y=c1J1/16(x)+c2J1/16(x)y = c _ { 1 } J _ { 1 / 16 } ( x ) + c _ { 2 } J _ { - 1 / 16 } ( x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
23
The radius of convergence of the power series n=1xn/n\sum _ { n = 1 } ^ { \infty } x ^ { n } / n is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
24
The singular points of x2(x1)y2xy+y=0x ^ { 2 } ( x - 1 ) y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 are x=x = Select all that apply.

A) 2
B) 1- 1
C) 0
D) 1
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
25
The recurrence relation for the differential equation 2xyyt+2y=02 x y ^ { \prime \prime } - y ^ { t } + 2 y = 0 is

A) ck+1(k+r)(2k+2r1)+2ck=0c _ { k + 1 } ( k + r ) ( 2 k + 2 r - 1 ) + 2 c _ { k } = 0
B) ck+1(k+r)(k+r1)+2ck=0c _ { k + 1 } ( k + r ) ( k + r - 1 ) + 2 c _ { k } = 0
C) ck+1(k+r+1)(2k+2r1)2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r - 1 ) - 2 c _ { k } = 0
D) ck+1(k+r+1)(2k+2r1)+2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r - 1 ) + 2 c _ { k } = 0
E) ck+1(k+r+1)(2k+2r)+2ck=0c _ { k + 1 } ( k + r + 1 ) ( 2 k + 2 r ) + 2 c _ { k } = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
26
Consider the differential equation 2x2y+3xy+(2x1)y=02 x ^ { 2 } y ^ { \prime \prime } + 3 x y ^ { \prime } + ( 2 x - 1 ) y = 0 The indicial equation is 2r2+r1=02 r ^ { 2 } + r - 1 = 0 . The recurrence relation is ck[2(k+r)+(k+r1)+3(k+r)1]+2ck1=0c _ { k } [ 2 ( k + r ) + ( k + r - 1 ) + 3 ( k + r ) - 1 ] + 2 c _ { k - 1 } = 0 . A series solution corresponding to the indicial root r=1r = - 1 is y=x1[1+k=1ckxk]y = x ^ { - 1 } \left[ 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } \right] , where

A) ck=(2)k/[k!(1)13(2k3)]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 3 ) ]
B) ck=2k/[k!13(2k3)]c _ { k } = - 2 ^ { k } / [ k ! 1 \cdot 3 \cdots ( 2 k - 3 ) ]
C) ck=(2)k/[k!(1)13(2k1)]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) \cdot 1 \cdot 3 \cdots ( 2 k - 1 ) ]
D) ck=(2)k/[k!(1)(2k3)!]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( - 1 ) ( 2 k - 3 ) ! ]
E) ck=(2)k/[k13(2k5)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 1 \cdot 3 \cdots ( 2 k - 5 ) ]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
27
The interval of convergence of the power series in the previous problem is

A) {0}\{ 0 \}
B) (1,1)( - 1,1 )
C) [1,1][ - 1,1 ]
D) [1,1)[ - 1,1 )
E) (,)( - \infty , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
28
The singular points of the differential equation y+y/x+y(x2)/(x3)=0y ^ { \prime \prime } + y ^ { \prime } / x + y ( x - 2 ) / ( x - 3 ) = 0 are

A) none
B) 0
C) 0, 2
D) 0, 3
E) 0, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
29
For the differential equation (x24)2y2xy+y=0\left( x ^ { 2 } - 4 \right) ^ { 2 } y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=0x = 0 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
30
The recurrence relation for the power series solution about x=0x = 0 of the differential equation yy=0y ^ { \prime \prime } - y = 0 is (for k=0,1,2,k = 0,1,2 , \ldots )

A) (k+2)(k+1)ck+2=ck( k + 2 ) ( k + 1 ) c _ { k + 2 } = c _ { k }
B) (k+2)(k+1)ck=ck2( k + 2 ) ( k + 1 ) c _ { k } = c _ { k - 2 }
C) (k+1)kck+2=ck( k + 1 ) k c _ { k + 2 } = c _ { k }
D) (k+1)kck=ck2( k + 1 ) k c _ { k } = c _ { k - 2 }
E) (k2)(k1)ck2=ck( k - 2 ) ( k - 1 ) c _ { k - 2 } = c _ { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
31
In the previous problem, a series solution corresponding to the indicial root r=1/2r = 1 / 2 is y=x1/2{1+k=1ckxk}y = x ^ { 1 / 2 } \left\{ 1 + \sum _ { k = 1 } ^ { \infty } c _ { k } x ^ { k } \right\} , where

A) ck=(2)k/[k357(2k3)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 3 \cdot 5 \cdot 7 \cdots ( 2 k - 3 ) ]
B) ck=(2)k/[k135(2k3)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 1 \cdot 3 \cdot 5 \cdots ( 2 k - 3 ) ]
C) ck=2k/[k579(2k+1)]c _ { k } = - 2 ^ { k } / [ k \mid 5 \cdot 7 \cdot 9 \cdots ( 2 k + 1 ) ]
D) ck=(2)k/[k!(2k+3)!]c _ { k } = ( - 2 ) ^ { k } / [ k ! ( 2 k + 3 ) ! ]
E) ck=(2)k/[k579(2k+3)]c _ { k } = ( - 2 ) ^ { k } / [ k \mid 5 \cdot 7 \cdot 9 \cdots ( 2 k + 3 ) ]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
32
The radius of convergence of the power series solution of yy=0y ^ { \prime \prime } - y = 0 about x=0x = 0 is

A) 0
B) 1
C) 2
D) \infty
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
33
The indicial equation for the differential equation 2xyyt+2y=02 x y ^ { \prime \prime } - y ^ { t } + 2 y = 0 is

A) r(2r1)=0r ( 2 r - 1 ) = 0
B) r(2r3)=0r ( 2 r - 3 ) = 0
C) r(2r2)=0r ( 2 r - 2 ) = 0
D) r(r3)=0r ( r - 3 ) = 0
E) r(r2)=0r ( r - 2 ) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
34
A power series solution about x=0x = 0 of the differential equation yy=0y ^ { \prime \prime } - y = 0 is

A) y=c0k=0x2k/(2k)!+c1k=0x2k+1/(2k+1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 ) !
B) y=c0k=0x2k/(2k)+c1k=0x2k+1/(2k+1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 )
C) y=c0k0x2k/(2k)2+c1k0x2k+1/(2k+1)2y = c _ { 0 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ^ { 2 } + c _ { 1 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k + 1 } / ( 2 k + 1 ) ^ { 2 }
D) y=c0k=0x2k/(2k)!+c1k0x2k1/(2k1)!y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) ! + c _ { 1 } \sum _ { k - 0 } ^ { \infty } x ^ { 2 k - 1 } / ( 2 k - 1 ) !
E) y=c0k=0x2k/(2k)+c1k=0x2k1/(2k1)y = c _ { 0 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k } / ( 2 k ) + c _ { 1 } \sum _ { k = 0 } ^ { \infty } x ^ { 2 k - 1 } / ( 2 k - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
35
The solution of the previous problem is

A) y=c1P20(x)+c2P20(x)y = c _ { 1 } P _ { 20 } ( x ) + c _ { 2 } P _ { - 20 } ( x )
B) y=c1P4(x)+c2Q4(x)y = c _ { 1 } P _ { 4 } ( x ) + c _ { 2 } Q _ { 4 } ( x ) , where Q4(x)Q _ { 4 } ( x ) is given by an infinite series
C) y=c1J4(x)+c2Y4(x)y = c _ { 1 } J _ { 4 } ( x ) + c _ { 2 } Y _ { 4 } ( x )
D) y=c1J1/4(x)+c2J1/4(x)y = c _ { 1 } J _ { 1 / 4 } ( x ) + c _ { 2 } J _ { - 1 / 4 } ( x )
E) y=c1J20(x)+c2Y20(x)y = c _ { 1 } J _ { 20 } ( x ) + c _ { 2 } Y _ { 20 } ( x )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
36
For the differential equation (x24)2y2xy+y=0\left( x ^ { 2 } - 4 \right) ^ { 2 } y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=2x = 2 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
37
For the differential equation (x24)3y2xy+y=0\left( x ^ { 2 } - 4 \right) ^ { 3 } y ^ { \prime \prime } - 2 x y ^ { \prime } + y = 0 , the point x=2x = - 2 is

A) an ordinary point
B) a regular singular point
C) an irregular singular point
D) a special point
E) none of the above
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
38
The first four terms in the power series expansion of the function f(x)=e2xf ( x ) = e ^ { 2 x } about x=0x = 0 are

A) 1+x+x2+x31 + x + x ^ { 2 } + x ^ { 3 }
B) 1+2x+2x2+2x31 + 2 x + 2 x ^ { 2 } + 2 x ^ { 3 }
C) 1+2x+2x2+4x3/31 + 2 x + 2 x ^ { 2 } + 4 x ^ { 3 } / 3
D) 1+2x+2x2+2x3/31 + 2 x + 2 x ^ { 2 } + 2 x ^ { 3 } / 3
E) 1+2x+4x2+8x31 + 2 x + 4 x ^ { 2 } + 8 x ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
39
The solution of the recurrence relation in the previous problem is

A) c2k=c0/(2k),c2k+1=c1/(2k+1)c _ { 2 k } = c _ { 0 } / ( 2 k ) , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 1 )
B) c2k=c0/(2k)2,c2k+1=c1/(2k+1)2c _ { 2 k } = c _ { 0 } / ( 2 k ) ^ { 2 } , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 1 ) ^ { 2 }
C) c2k=c0/(2k)!,c2k+1=c1/(2k+1)!c _ { 2 k } = c _ { 0 } / ( 2 k ) ! , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 1 ) !
D) c2k=c0/(2k+2)!,c2k+1=c1/(2k+3)!c _ { 2 k } = c _ { 0 } / ( 2 k + 2 ) ! , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k + 3 ) !
E) c2k=c0/(2k1)!,c2k+1=c1/(2k)!c _ { 2 k } = c _ { 0 } / ( 2 k - 1 ) ! , c _ { 2 k + 1 } = c _ { 1 } / ( 2 k ) !
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
40
The differential equation is (1x2)y2xy+20y=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + 20 y = 0 is

A) Bessel's equation of order 20
B) Bessel's equation of order 4
C) Legendre's equation of order n
D) Legendre's equation of order 20
E) Legendre's equation of order 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 40 في هذه المجموعة.