Deck 7: Techniques of Integration

ملء الشاشة (f)
exit full mode
سؤال
Evaluate the integral. 2dyy2+2y3\int_{2}^{\infty} \frac{d y}{y^{2}+2 y-3}

A) 52\frac{5}{2}
B) 54\frac{5}{4}
C) 1ln4\frac{1}{\ln 4}
D)  divergent \text { divergent }
E) ln54\frac{\ln 5}{4}
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Evaluate the integral if it is convergent. Evaluate the integral if it is convergent.  <div style=padding-top: 35px>
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. Determine whether the improper integral converges or diverges, and if it converges, find its value.  <div style=padding-top: 35px>
سؤال
Find the area bounded by the curves y=cosxy=\cos x and y=cos2xy=\cos ^{2} x between x=0x=0 and x=π2x=\frac{\pi}{2} .

A) 14\frac{1}{4}
B) 44
C) 22\frac{\sqrt{2}}{2}
D) 12\frac{1}{2}
E)  none of these \text { none of these }
سؤال
Let a and b be real numbers. What integral must appear in place of the question mark "?" to make the following statement true? a10x2+9dx+a10x2+9dx=?+b10x2+9dx\int_{-\infty}^{a} \frac{10}{x^{2}+9} d x+\int_{a}^{\infty} \frac{10}{x^{2}+9} d x=?+\int_{b}^{\infty} \frac{10}{x^{2}+9} d x

A) a9x2+10dx\int_{-\infty}^{a} \frac{9}{x^{2}+10} d x
B) 010x29dx\int_{0}^{-\infty} \frac{10}{x^{2}-9} d x
C) b10x2+9dx\int_{-\infty}^{b} \frac{10}{x^{2}+9} d x
D) 010x2+9dx\int_{0}^{-\infty} \frac{10}{x^{2}+9} d x
E)  none of these \text { none of these }
سؤال
Evaluate the integral or show that it is divergent. 5dx4x2+4x+5 \int_{-\infty}^{\infty} \frac{5 d x}{4 x^{2}+4 x+5}

A) π10-\frac{\pi}{10}
B) π5\frac{\pi}{5}
C) π8\frac{\pi}{8}
D) 54\frac{5}{4} π\pi
E)  divergent \text { divergent }
سؤال
For what values of K is the following integral improper? For what values of K is the following integral improper?  <div style=padding-top: 35px>
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. 2781x3dx\int_{-27}^{8} \frac{1}{\sqrt[3]{x}} d x

A) 1515
B) 152-\frac{15}{2}
C) Diverges
D) 152\frac{15}{2}
سؤال
Evaluate the integral. 1dxx2lnx\int_{1}^{\infty} \frac{d x}{x^{2} \ln x}

A) 14-\frac{1}{4}
B) 14\frac{1}{4}
C)  divergent \text { divergent }
D) 2
E) 12\frac{1}{2}
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. 3πcosxdx\int_{3 \pi}^{\infty} \cos x d x

A) 6
B) 0
C) 3
D) Diverges
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. 3ex3+e2xdx\int_{-\infty}^{\infty} \frac{3 e^{x}}{3+e^{2 x}} d x

A) π32\frac{\pi \sqrt{3}}{2}
B) 3\sqrt{3}
C) π33\frac{\pi \sqrt{3}}{3}
D) Diverges
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. Determine whether the improper integral converges or diverges, and if it converges, find its value.  <div style=padding-top: 35px>
سؤال
Determine whether the integral converges or diverges. If it converges, find its value. Determine whether the integral converges or diverges. If it converges, find its value.  <div style=padding-top: 35px>
سؤال
Use the Trapezoidal Rule to approximate the integral with answers rounded to four decimal places. 01dx2x+4;n=7\int_{0}^{1} \frac{d x}{2 x+4} ; \quad n=7

A) 0.2029
B) 0.1088
C) 0.1163
D) 0.2326
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Evaluate the integral or show that it is divergent. Evaluate the integral or show that it is divergent.  <div style=padding-top: 35px>
سؤال
A manufacturer of light bulbs wants to produce bulbs that last about 400400 hours but, of course, some bulbs burn out faster than others. Let F(t)F(t) be the fraction of the company's bulbs that burn out before t hours. F(t)F(t) lies between 0 and 1. Let r(t)=F(t)r(t)=F^{\prime}(t) . What is the value of 0r(t)dt\int_{0}^{\infty} r(t) d t ?

A) 0r(t)dt=400\int_{0}^{\infty} r(t) d t=400
B) 0r(t)dt=2\int_{0}^{\infty} r(t) d t=2
C) 0r(t)dt=0\int_{0}^{\infty} r(t) d t=0
D)  divergent \text { divergent }
E) 0r(t)dt=1\int_{0}^{\infty} r(t) d t=1
سؤال
The region {(x+y)x7,0yex/5}\left\{(x+y) \mid x \geq-7,0 \leq y \leq e^{-x / 5}\right\} is represented below. Find the area of this region to two decimal places.  <strong>The region  \left\{(x+y) \mid x \geq-7,0 \leq y \leq e^{-x / 5}\right\}  is represented below. Find the area of this region to two decimal places.  </strong> A) 20.28 B)  17.89  C)  16.08  D)  15.89  E)  15.87  <div style=padding-top: 35px>

A) 20.28
B) 17.8917.89
C) 16.0816.08
D) 15.8915.89
E) 15.8715.87
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. 2πcosxdx\int_{2 \pi}^{\infty} \cos x d x

A) Diverges
B) 0
C) 2
D) 4
سؤال
Determine whether the improper integral converges or diverges, and if it converges, find its value. 31x3dx\int_{3}^{\infty} \frac{1}{x^{3}} d x

A) Diverges
B) 19\frac{1}{9}
C) 118\frac{1}{18}
D) 0
سؤال
A body moves along a coordinate line in such a way that its velocity at any time t, where A body moves along a coordinate line in such a way that its velocity at any time t, where   , is given by   . Find its position function if it is initially located at the origin.<div style=padding-top: 35px> , is given by A body moves along a coordinate line in such a way that its velocity at any time t, where   , is given by   . Find its position function if it is initially located at the origin.<div style=padding-top: 35px> .
Find its position function if it is initially located at the origin.
سؤال
Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals. Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals.  <div style=padding-top: 35px>
سؤال
Use the Table of Integrals to evaluate the integral. e4xsin2xdx\int e^{4 x} \sin 2 x d x

A) 15e4xsin2x+110e4xcos2x+C-\frac{1}{5} e^{4 x} \sin 2 x+\frac{1}{10} e^{4 x} \cos 2 x+C
B) 15e4xsin2x+110e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x+\frac{1}{10} e^{4 x} \cos 2 x+C
C) 15e4xsin2x310e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x-\frac{3}{10} e^{4 x} \cos 2 x+C
D) 15e4xsin2x110e4xcos2x+C-\frac{1}{5} e^{4 x} \sin 2 x-\frac{1}{10} e^{4 x} \cos 2 x+C
E) 15e4xsin2x110e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x-\frac{1}{10} e^{4 x} \cos 2 x+C
سؤال
The region under the curve y=2sin2xy=2 \sin ^{2} x , 0xπ0 \leq x \leq \pi is rotated about the x-axis. Find the volume of the resulting solid.

A) 34\frac{3}{4} π2\pi^{2}
B) 2π\frac{2}{\pi}
C) 6π2\frac{6}{\pi^{2}}
D) π6\frac{\pi}{6}
E) π26\frac{\pi^{2}}{6}
سؤال
Estimate the area of the shaded region by using the Trapezoidal Rule with Estimate the area of the shaded region by using the Trapezoidal Rule with   . Round the answer to the nearest tenth.   <div style=padding-top: 35px> . Round the answer to the nearest tenth. Estimate the area of the shaded region by using the Trapezoidal Rule with   . Round the answer to the nearest tenth.   <div style=padding-top: 35px>
سؤال
Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals. Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals.  <div style=padding-top: 35px>
سؤال
Use the Trapezoidal Rule to approximate Use the Trapezoidal Rule to approximate   for   . Round the result to four decimal places.<div style=padding-top: 35px> for Use the Trapezoidal Rule to approximate   for   . Round the result to four decimal places.<div style=padding-top: 35px> . Round the result to four decimal places.
سؤال
Use (a) the Trapezoidal Rule and (b) Simpson's Rule to approximate the integral to four decimal places. Compare your results with the exact value. Use (a) the Trapezoidal Rule and (b) Simpson's Rule to approximate the integral to four decimal places. Compare your results with the exact value.  <div style=padding-top: 35px>
سؤال
Use the Midpoint Rule to approximate the given integral with the specified value of n. Compare your result to the actual value. Find the error in the approximation. 223exdx,n=62 \int_{2}^{3} e^{-\sqrt{x}} d x, \quad n=6

A) 0.00008-0.00008
B) 0.600040.60004
C) 0.00008
D) 1.00008
E) 0.00096-0.00096
سؤال
Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 0π/24+sin2xdx;n=6\int_{0}^{\pi / 2} \sqrt{4+\sin ^{2} x} d x ; \quad n=6

A) 4.0689
B) 3.3296
C) 2.9599
D) 3.6993
سؤال
Use a table of integrals to evaluate the integral. x3sin(x2+3)dx\int x^{3} \sin \left(x^{2}+3\right) d x

A) 12sin(x2+3)12x2cos(x2+3)+C\frac{1}{2} \sin \left(x^{2}+\sqrt{3}\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+\sqrt{3}\right)+C
B) 12sin(x2+3)12x2cos(x2+3)+C\frac{1}{2} \sin \left(x^{2}+3\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+3\right)+C
C) 12sin(x2+3)12x2cos(x2+3)+C-\frac{1}{2} \sin \left(x^{2}+\sqrt{3}\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+\sqrt{3}\right)+C
D) 12sin(x2+3)12x2cos(x2+3)+C-\frac{1}{2} \sin \left(x^{2}+3\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+3\right)+C
سؤال
Use a table of integrals to evaluate the integral. e7xsin3xdx\int e^{-7 x} \sin 3 x d x

A) 110e7x(7sin3x+7cos3x)+C-\frac{1}{10} e^{-7 x}(7 \sin 3 x+7 \cos 3 x)+C
B) 110e7x(7sin3x+3cos3x)+C-\frac{1}{10} e^{-7 x}(7 \sin 3 x+3 \cos 3 x)+C
C) 158e7x(7sin3x+7cos3x)+C-\frac{1}{58} e^{-7 x}(7 \sin 3 x+7 \cos 3 x)+C
D) 158e7x(7sin3x+3cos3x)+C-\frac{1}{58} e^{-7 x}(7 \sin 3 x+3 \cos 3 x)+C
سؤال
Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt{2+2 x} d x

A) 2215(2x1)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(2 x-1)(x+1)^{3 / 2}+C
B) 2215(3x2)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(3 x-2)(x+1)^{3 / 2}+C
C) 215(3x2)x+1+C\frac{2}{15}(3 x-2) \sqrt{x+1}+C
D) 2215(3x2)x+1+C\frac{2 \sqrt{2}}{15}(3 x-2) \sqrt{x+1}+C
سؤال
Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals. Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals.  <div style=padding-top: 35px>
سؤال
Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 6.3 9.7 7.5 4.5 3.5 2.2 0.6 0.3 0.1 0<div style=padding-top: 35px> and the formula Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 6.3 9.7 7.5 4.5 3.5 2.2 0.6 0.3 0.1 0<div style=padding-top: 35px> to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams, Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 6.3 9.7 7.5 4.5 3.5 2.2 0.6 0.3 0.1 0<div style=padding-top: 35px> is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place.
t
0
2
4
6
8
10
12
14
16
18
20
22
24
C(t)
0
0
2.6
6.3
9.7
7.5
4.5
3.5
2.2
0.6
0.3
0.1
0
سؤال
Use the Trapezoidal Rule to approximate the integral with answers rounded to four decimal places. 02dxx3+4;n=6\int_{0}^{2} \frac{d x}{\sqrt{x^{3}+4}} ; \quad n=6

A) 0.8528
B) 0.9842
C) 0.4921
D) 0.4695
سؤال
Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 0π/22+sin2xdx;n=6\int_{0}^{\pi / 2} \sqrt{2+\sin ^{2} x} d x ; \quad n=6

A) 2.2028
B) 2.7519
C) 3.0265
D) 2.4774
سؤال
Find a bound on the error in approximating the integral Find a bound on the error in approximating the integral   using (a) the Trapezoidal Rule and (b) Simpson's Rule with   subintervals.<div style=padding-top: 35px> using (a) the Trapezoidal Rule and (b) Simpson's Rule with Find a bound on the error in approximating the integral   using (a) the Trapezoidal Rule and (b) Simpson's Rule with   subintervals.<div style=padding-top: 35px> subintervals.
سؤال
Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 11x2+1dx;n=6\int_{-1}^{1} \sqrt{x^{2}+1} d x ; \quad n=6

A) 2.0076
B) 2.9504
C) 2.6098
D) 2.2955
سؤال
Use the Table of Integrals to evaluate the integral. 49x21x2dx\int \frac{\sqrt{49 x^{2}-1}}{x^{2}} d x

A) 7ln7x+49x21+C7 \ln \left|7 x+\sqrt{49 x^{2}-1}\right|+C
B) 49x21x+7ln14x+249x21+C-\frac{\sqrt{49 x^{2}-1}}{x}+7 \ln \left|14 x+2 \sqrt{49 x^{2}-1}\right|+C
C) 49x21x+7ln7x+49x21\frac{\sqrt{49 x^{2}-1}}{x}+7 \ln \left|7 x+\sqrt{49 x^{2}-1}\right|
D) 7x21x+lnx+7x21+C\frac{\sqrt{7 x^{2}-1}}{x}+\ln \left|x+\sqrt{7 x^{2}-1}\right|+C
E) 49x21x+ln7x+49x2+C\frac{\sqrt{49 x^{2}-1}}{x}+\ln \left|7 x+\sqrt{49 x^{2}}\right|+C
سؤال
Use the Table of Integrals to evaluate the integral to three decimal places. Use the Table of Integrals to evaluate the integral to three decimal places.  <div style=padding-top: 35px>
سؤال
Evaluate the integral. x/6π/33ln(tanx)7sinxcosxdx\int_{x / 6}^{\pi / 3} \frac{3 \ln (\tan x)}{7 \sin x \cos x} d x

A) 15(ln2)2-\frac{1}{5}(\ln 2)^{2}
B) 12(ln3)2-\frac{1}{2}(\ln 3)^{2}
C) 0
D) 16(ln3)2\frac{1}{6}(\ln 3)^{2}
E) 12(ln3)2\frac{1}{2}(\ln 3)^{2}
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Evaluate the integral. 1e5x+e5xdx\int \frac{1}{-e^{-5 x}+e^{5 x}} d x

A) 110ln(e5x1e5x+1)+C-\frac{1}{10} \ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
B) 110ln(e5x1e5x+1)+C\frac{1}{10} \ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
C) ln(e5x1e5x+1)+C\ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
D) ln(e5x1e5x)+C-\ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}}\right)+C
E) ln(e5x1e5x+1)+C-\ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Write the form of the partial fraction decomposition of the rational expression. Do not find the numerical values of the constants. x2x82x33x2+4x6\frac{x^{2}-x-8}{2 x^{3}-3 x^{2}+4 x-6}

A) A2x3+Bx+Cx2+2\frac{A}{2 x-3}+\frac{B x+C}{x^{2}+2}
B) A2x1+Bx+Cx2+2\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+2}
C) A2x+1+Bx+Cx22\frac{A}{2 x+1}+\frac{B x+C}{x^{2}-2}
D) A2x+3+Bx+Cx22\frac{A}{2 x+3}+\frac{B x+C}{x^{2}-2}
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Find the integral. x33x2+6x2x32x2+xdx\int \frac{x^{3}-3 x^{2}+6 x-2}{x^{3}-2 x^{2}+x} d x

A) lnx1x21x1+x+C\ln \left|\frac{x-1}{x^{2}}\right|-\frac{1}{x-1}+x+C
B) lnx2x12x1+x+C\ln \left|\frac{x^{2}}{x-1}\right|-\frac{2}{x-1}+x+C
C) lnx1x22x1+x+C\ln \left|\frac{x-1}{x^{2}}\right|-\frac{2}{x-1}+x+C
D) lnx2x11x1+x+C\ln \left|\frac{x^{2}}{x-1}\right|-\frac{1}{x-1}+x+C
سؤال
Use long division to evaluate the integral. x2x+3dx\int \frac{x^{2}}{x+3} d x

A) 12(x9)(x+3)+9lnx+3+C\frac{1}{2}(x-9)(x+3)+9 \ln |x+3|+C
B) 12(x+9)(x+3)9lnx+3+C\frac{1}{2}(x+9)(x+3)-9 \ln |x+3|+C
C) x226x27+lnx+3+C\frac{x^{2}}{2}-6 x-27+\ln |x+3|+C
D) x226x+27+9lnx+3+C\frac{x^{2}}{2}-6 x+27+9 \ln |x+3|+C
E) x22+2x+lnx+9+C\frac{x^{2}}{2}+2 x+\ln |x+9|+C
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Find the integral. 3x5x22x3dx\int \frac{3 x-5}{x^{2}-2 x-3} d x

A) ln(x3)(x+1)2+C\ln \left|(x-3)(x+1)^{2}\right|+C
B) ln(x+3)(x1)2+C\ln \left|(x+3)(x-1)^{2}\right|+C
C) ln(x+1)(x3)2+C\ln \left|(x+1)(x-3)^{2}\right|+C
D) ln(x1)(x+3)2+C\ln \left|(x-1)(x+3)^{2}\right|+C
سؤال
Use the Table of Integrals to evaluate the integral. Use the Table of Integrals to evaluate the integral.  <div style=padding-top: 35px>
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Find the integral. dxx(x2)\int \frac{d x}{x(x-2)}

A) 2lnx22x+C2 \ln \left|\frac{x^{2}-2}{x}\right|+C
B) 2lnx2x+C2 \ln \left|\frac{x-2}{x}\right|+C
C) 12lnx22x+C\frac{1}{2} \ln \left|\frac{x^{2}-2}{x}\right|+C
D) 12lnx2x+C\frac{1}{2} \ln \left|\frac{x-2}{x}\right|+C
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Find the integral. 5x29x+6x32x2+xdx\int \frac{5 x^{2}-9 x+6}{x^{3}-2 x^{2}+x} d x

A) lnx6x11x1+C\ln \left|\frac{x^{6}}{x-1}\right|-\frac{1}{x-1}+C
B) lnx1x61x1+C\ln \left|\frac{x-1}{x^{6}}\right|-\frac{1}{x-1}+C
C) lnx1x62x1+C\ln \left|\frac{x-1}{x^{6}}\right|-\frac{2}{x-1}+C
D) lnx6x12x1+C\ln \left|\frac{x^{6}}{x-1}\right|-\frac{2}{x-1}+C
سؤال
Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt{2+2 x} d x

A) 2215(3x2)x+1+C\frac{2 \sqrt{2}}{15}(3 x-2) \sqrt{x+1}+C
B) 2215(2x1)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(2 x-1)(x+1)^{3 / 2}+C
C) 215(3x2)x+1+C\frac{2}{15}(3 x-2) \sqrt{x+1}+C
D) 2215(3x2)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(3 x-2)(x+1)^{3 / 2}+C
سؤال
Evaluate the integral. 7dx(x2+2x+2)2\int \frac{7 d x}{\left(x^{2}+2 x+2\right)^{2}}

A) 12(tan1(x+2)+7x2+2)+C\frac{1}{2}\left(\tan ^{-1}(x+2)+\frac{7}{x^{2}+2}\right)+C
B) 12(tan1(x+7)+1x2+2x+2)+C\frac{1}{2}\left(\tan ^{-1}(x+7)+\frac{1}{x^{2}+2 x+2}\right)+C
C) 72(tan1(x+1)+x+1x2+2x+2)+C\frac{7}{2}\left(\tan ^{-1}(x+1)+\frac{x+1}{x^{2}+2 x+2}\right)+C
D) 12(tan(x+1)+17x2+2x+2)+C\frac{1}{2}\left(\tan (x+1)+\frac{17}{x^{2}+2 x+2}\right)+C
E) 72(tan(x+2)+x+1x2+2x+2)+C\frac{7}{2}\left(\tan (x+2)+\frac{x+1}{x^{2}+2 x+2}\right)+C
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Use a table of integrals to evaluate the integral. 4x+5x2dx\int \frac{\sqrt{4 x+5}}{x^{2}} d x

A) 255ln4x+554x+5+5+C-\frac{2 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
B) 4x+5x+255ln4x+554x+5+5+C-\frac{\sqrt{4 x+5}}{x}+\frac{2 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
C) 4x+5x+455ln4x+554x+5+5+C-\frac{\sqrt{4 x+5}}{x}+\frac{4 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
D) 455ln4x+554x+5+5+C-\frac{4 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
سؤال
Find the integral. 3x3x2x2dx\int \frac{3 x-3}{x^{2}-x-2} d x

A) ln(x+2)(x1)2+C\ln \left|(x+2)(x-1)^{2}\right|+C
B) ln(x2)(x+1)2+C\ln \left|(x-2)(x+1)^{2}\right|+C
C) ln(x+1)(x2)2+C\ln \left|(x+1)(x-2)^{2}\right|+C
D) ln(x1)(x+2)2+C\ln \left|(x-1)(x+2)^{2}\right|+C
سؤال
Find the integral using an appropriate trigonometric substitution. 1x2x2+25dx\int \frac{1}{x^{2} \sqrt{x^{2}+25}} d x

A) x2+255x+C-\frac{\sqrt{x^{2}+25}}{5 x}+C
B) x2+255x+C\frac{\sqrt{x^{2}+25}}{5 x}+C
C) x2+2525x+C\frac{\sqrt{x^{2}+25}}{25 x}+C
D) x2+2525x+C-\frac{\sqrt{x^{2}+25}}{25 x}+C
سؤال
Make a substitution to express the integrand as a rational function and then evaluate the integral. Make a substitution to express the integrand as a rational function and then evaluate the integral.   Round the answer to four decimal places. <div style=padding-top: 35px> Round the answer to four decimal places.
سؤال
Evaluate the integral using the indicated trigonometric substitution. Evaluate the integral using the indicated trigonometric substitution.  <div style=padding-top: 35px>
سؤال
Find the integral using an appropriate trigonometric substitution. x3x2+36dx\int \frac{x^{3}}{\sqrt{x^{2}+36}} d x

A) 13(x236)3/2x2+36+C\frac{1}{3}\left(x^{2}-36\right)^{3 / 2} \sqrt{x^{2}+36}+C
B) 13(x2+72)x2+36+C\frac{1}{3}\left(x^{2}+72\right) \sqrt{x^{2}+36}+C
C) 13(x272)x2+36+C\frac{1}{3}\left(x^{2}-72\right) \sqrt{x^{2}+36}+C
D) 13(x2+36)3/2x2+36+C\frac{1}{3}\left(x^{2}+36\right)^{3 / 2} \sqrt{x^{2}+36}+C
سؤال
Evaluate the integral. 8(x1x2+2x)dx\int 8\left(\frac{x-1}{x^{2}+2 x}\right) d x

A) 8(13x13lnx)+C8\left(\frac{1}{3} x-\frac{1}{3} \ln x\right)+C
B) 8(lnxx)+C-8(\ln x-x)+C
C) 8(32ln(x+2)12lnx)+C8\left(\frac{3}{2} \ln (x+2)-\frac{1}{2} \ln x\right)+C
D) 8(22arctanx)+C-8\left(\frac{\sqrt{2}}{2} \arctan x\right)+C
E)  None of these \text { None of these }
سؤال
Find the integral. Find the integral.  <div style=padding-top: 35px>
سؤال
Find the volume of the resulting solid if the region under the curve Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. <div style=padding-top: 35px> from Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. <div style=padding-top: 35px> to Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. <div style=padding-top: 35px> is rotated about the x-axis. Round your answer to four decimal places.
سؤال
Find the integral using an appropriate trigonometric substitution. x4x2dx\int \frac{x}{\sqrt{4-x^{2}}} d x

A) 4x2+C-\sqrt{4-x^{2}}+C
B) 2x+C\sqrt{2-x}+C
C) 4x2+C\sqrt{4-x^{2}}+C
D) 2x+C-\sqrt{2-x}+C
سؤال
Evaluate the integral using the indicated trigonometric substitution. x3x2+16dx;x=4tanθ\int \frac{x^{3}}{\sqrt{x^{2}+16}} d x ; x=4 \tan \theta

A) 32(x+16)3/216x+16+C\frac{3}{2}(x+16)^{3 / 2}-16 \sqrt{x+16}+C
B) (x2+16)3/2x2+16+C\left(x^{2}+16\right)^{3 / 2}-\sqrt{x^{2}+16}+C
C) 13(x2+16)3/2x2+16+C\frac{1}{3}\left(x^{2}+16\right)^{3 / 2}-\sqrt{x^{2}+16}+C
D) 13(x2+16)3/2+16x2+16+C\frac{1}{3}\left(x^{2}+16\right)^{3 / 2}+16 \sqrt{x^{2}+16}+C
E) (x2+16)3/24x2+16+C\left(x^{2}+16\right)^{3 / 2}-4 \sqrt{x^{2}+16}+C
سؤال
Use long division to evaluate the integral. 01x3+4x212x+1x2+4x12dx\int_{0}^{1} \frac{x^{3}+4 x^{2}-12 x+1}{x^{2}+4 x-12} d x The choices are rounded to 3 decimal places.

A) 4.606-4.606
B) 5.3945.394
C) 0.3940.394
D) 9.606-9.606
E) 10.39410.394
سؤال
Find the integral. Find the integral.  <div style=padding-top: 35px>
سؤال
The region under the graph of The region under the graph of   on the interval [1, 2] is revolved about the x-axis. Find the volume of the resulting solid.<div style=padding-top: 35px> on the interval [1, 2] is revolved about the x-axis. Find the volume of the resulting solid.
سؤال
A corporation is building a complex of homes, offices, stores, schools, and churches in a rural community. As a result of this development, the planners have estimated that the community's population (in thousands) t years from now will be given by A corporation is building a complex of homes, offices, stores, schools, and churches in a rural community. As a result of this development, the planners have estimated that the community's population (in thousands) t years from now will be given by   . What will the average population of the community be over the next 10 years?<div style=padding-top: 35px> .
What will the average population of the community be over the next 10 years?
سؤال
Evaluate the integral using an appropriate trigonometric substitution. 02x24x2dx\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x

A) π\pi
B) π21\frac{\pi}{2}-1
C) 2π332\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
D) π1\pi-1
سؤال
Evaluate the integral. 01xx+8dx\int_{0}^{1} \frac{x}{x+8} d x

A) 19ln8+8ln161-9 \ln 8+\sqrt{8} \ln 16
B) 18ln9ln8\frac{1}{8 \ln 9}-\ln \sqrt{8}
C) 18(ln9ln8)1-8(\ln 9-\ln 8)
D) 98ln9+ln89-8 \ln 9+\ln \sqrt{8}
E)  None of these \text { None of these }
سؤال
Find the integral using an appropriate trigonometric substitution. x9x2dx\int x \sqrt{9-x^{2}} d x

A) 13(9x2)3/2+C\frac{1}{3}\left(9-x^{2}\right)^{3 / 2}+C
B) 13x2(9x2)3/2+C-\frac{1}{3} x^{2}\left(9-x^{2}\right)^{3 / 2}+C
C) 13x2(9x2)3/2+C\frac{1}{3} x^{2}\left(9-x^{2}\right)^{3 / 2}+C
D) 13(9x2)3/2+C-\frac{1}{3}\left(9-x^{2}\right)^{3 / 2}+C
سؤال
Evaluate the integral. Evaluate the integral.  <div style=padding-top: 35px>
سؤال
Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0 <div style=padding-top: 35px> and the formula Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0 <div style=padding-top: 35px> to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams, Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0 <div style=padding-top: 35px> is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place.
t
0
2
4
6
8
10
12
14
16
18
20
22
24
C(t)
0
0
2.6
5.9
9.7
7.9
4.6
3.5
2.2
0.8
0.2
0.1
0
سؤال
Find the integral. Find the integral.  <div style=padding-top: 35px>
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/124
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 7: Techniques of Integration
1
Evaluate the integral. 2dyy2+2y3\int_{2}^{\infty} \frac{d y}{y^{2}+2 y-3}

A) 52\frac{5}{2}
B) 54\frac{5}{4}
C) 1ln4\frac{1}{\ln 4}
D)  divergent \text { divergent }
E) ln54\frac{\ln 5}{4}
ln54\frac{\ln 5}{4}
2
Evaluate the integral if it is convergent. Evaluate the integral if it is convergent.
3
Determine whether the improper integral converges or diverges, and if it converges, find its value. Determine whether the improper integral converges or diverges, and if it converges, find its value.
not answered
4
Find the area bounded by the curves y=cosxy=\cos x and y=cos2xy=\cos ^{2} x between x=0x=0 and x=π2x=\frac{\pi}{2} .

A) 14\frac{1}{4}
B) 44
C) 22\frac{\sqrt{2}}{2}
D) 12\frac{1}{2}
E)  none of these \text { none of these }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
5
Let a and b be real numbers. What integral must appear in place of the question mark "?" to make the following statement true? a10x2+9dx+a10x2+9dx=?+b10x2+9dx\int_{-\infty}^{a} \frac{10}{x^{2}+9} d x+\int_{a}^{\infty} \frac{10}{x^{2}+9} d x=?+\int_{b}^{\infty} \frac{10}{x^{2}+9} d x

A) a9x2+10dx\int_{-\infty}^{a} \frac{9}{x^{2}+10} d x
B) 010x29dx\int_{0}^{-\infty} \frac{10}{x^{2}-9} d x
C) b10x2+9dx\int_{-\infty}^{b} \frac{10}{x^{2}+9} d x
D) 010x2+9dx\int_{0}^{-\infty} \frac{10}{x^{2}+9} d x
E)  none of these \text { none of these }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
6
Evaluate the integral or show that it is divergent. 5dx4x2+4x+5 \int_{-\infty}^{\infty} \frac{5 d x}{4 x^{2}+4 x+5}

A) π10-\frac{\pi}{10}
B) π5\frac{\pi}{5}
C) π8\frac{\pi}{8}
D) 54\frac{5}{4} π\pi
E)  divergent \text { divergent }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
7
For what values of K is the following integral improper? For what values of K is the following integral improper?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
8
Determine whether the improper integral converges or diverges, and if it converges, find its value. 2781x3dx\int_{-27}^{8} \frac{1}{\sqrt[3]{x}} d x

A) 1515
B) 152-\frac{15}{2}
C) Diverges
D) 152\frac{15}{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
9
Evaluate the integral. 1dxx2lnx\int_{1}^{\infty} \frac{d x}{x^{2} \ln x}

A) 14-\frac{1}{4}
B) 14\frac{1}{4}
C)  divergent \text { divergent }
D) 2
E) 12\frac{1}{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
10
Determine whether the improper integral converges or diverges, and if it converges, find its value. 3πcosxdx\int_{3 \pi}^{\infty} \cos x d x

A) 6
B) 0
C) 3
D) Diverges
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
11
Determine whether the improper integral converges or diverges, and if it converges, find its value. 3ex3+e2xdx\int_{-\infty}^{\infty} \frac{3 e^{x}}{3+e^{2 x}} d x

A) π32\frac{\pi \sqrt{3}}{2}
B) 3\sqrt{3}
C) π33\frac{\pi \sqrt{3}}{3}
D) Diverges
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
12
Determine whether the improper integral converges or diverges, and if it converges, find its value. Determine whether the improper integral converges or diverges, and if it converges, find its value.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
13
Determine whether the integral converges or diverges. If it converges, find its value. Determine whether the integral converges or diverges. If it converges, find its value.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
14
Use the Trapezoidal Rule to approximate the integral with answers rounded to four decimal places. 01dx2x+4;n=7\int_{0}^{1} \frac{d x}{2 x+4} ; \quad n=7

A) 0.2029
B) 0.1088
C) 0.1163
D) 0.2326
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
15
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
16
Evaluate the integral or show that it is divergent. Evaluate the integral or show that it is divergent.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
17
A manufacturer of light bulbs wants to produce bulbs that last about 400400 hours but, of course, some bulbs burn out faster than others. Let F(t)F(t) be the fraction of the company's bulbs that burn out before t hours. F(t)F(t) lies between 0 and 1. Let r(t)=F(t)r(t)=F^{\prime}(t) . What is the value of 0r(t)dt\int_{0}^{\infty} r(t) d t ?

A) 0r(t)dt=400\int_{0}^{\infty} r(t) d t=400
B) 0r(t)dt=2\int_{0}^{\infty} r(t) d t=2
C) 0r(t)dt=0\int_{0}^{\infty} r(t) d t=0
D)  divergent \text { divergent }
E) 0r(t)dt=1\int_{0}^{\infty} r(t) d t=1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
18
The region {(x+y)x7,0yex/5}\left\{(x+y) \mid x \geq-7,0 \leq y \leq e^{-x / 5}\right\} is represented below. Find the area of this region to two decimal places.  <strong>The region  \left\{(x+y) \mid x \geq-7,0 \leq y \leq e^{-x / 5}\right\}  is represented below. Find the area of this region to two decimal places.  </strong> A) 20.28 B)  17.89  C)  16.08  D)  15.89  E)  15.87

A) 20.28
B) 17.8917.89
C) 16.0816.08
D) 15.8915.89
E) 15.8715.87
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
19
Determine whether the improper integral converges or diverges, and if it converges, find its value. 2πcosxdx\int_{2 \pi}^{\infty} \cos x d x

A) Diverges
B) 0
C) 2
D) 4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
20
Determine whether the improper integral converges or diverges, and if it converges, find its value. 31x3dx\int_{3}^{\infty} \frac{1}{x^{3}} d x

A) Diverges
B) 19\frac{1}{9}
C) 118\frac{1}{18}
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
21
A body moves along a coordinate line in such a way that its velocity at any time t, where A body moves along a coordinate line in such a way that its velocity at any time t, where   , is given by   . Find its position function if it is initially located at the origin. , is given by A body moves along a coordinate line in such a way that its velocity at any time t, where   , is given by   . Find its position function if it is initially located at the origin. .
Find its position function if it is initially located at the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals. Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
23
Use the Table of Integrals to evaluate the integral. e4xsin2xdx\int e^{4 x} \sin 2 x d x

A) 15e4xsin2x+110e4xcos2x+C-\frac{1}{5} e^{4 x} \sin 2 x+\frac{1}{10} e^{4 x} \cos 2 x+C
B) 15e4xsin2x+110e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x+\frac{1}{10} e^{4 x} \cos 2 x+C
C) 15e4xsin2x310e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x-\frac{3}{10} e^{4 x} \cos 2 x+C
D) 15e4xsin2x110e4xcos2x+C-\frac{1}{5} e^{4 x} \sin 2 x-\frac{1}{10} e^{4 x} \cos 2 x+C
E) 15e4xsin2x110e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x-\frac{1}{10} e^{4 x} \cos 2 x+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
24
The region under the curve y=2sin2xy=2 \sin ^{2} x , 0xπ0 \leq x \leq \pi is rotated about the x-axis. Find the volume of the resulting solid.

A) 34\frac{3}{4} π2\pi^{2}
B) 2π\frac{2}{\pi}
C) 6π2\frac{6}{\pi^{2}}
D) π6\frac{\pi}{6}
E) π26\frac{\pi^{2}}{6}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
25
Estimate the area of the shaded region by using the Trapezoidal Rule with Estimate the area of the shaded region by using the Trapezoidal Rule with   . Round the answer to the nearest tenth.   . Round the answer to the nearest tenth. Estimate the area of the shaded region by using the Trapezoidal Rule with   . Round the answer to the nearest tenth.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals. Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
27
Use the Trapezoidal Rule to approximate Use the Trapezoidal Rule to approximate   for   . Round the result to four decimal places. for Use the Trapezoidal Rule to approximate   for   . Round the result to four decimal places. . Round the result to four decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
28
Use (a) the Trapezoidal Rule and (b) Simpson's Rule to approximate the integral to four decimal places. Compare your results with the exact value. Use (a) the Trapezoidal Rule and (b) Simpson's Rule to approximate the integral to four decimal places. Compare your results with the exact value.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
29
Use the Midpoint Rule to approximate the given integral with the specified value of n. Compare your result to the actual value. Find the error in the approximation. 223exdx,n=62 \int_{2}^{3} e^{-\sqrt{x}} d x, \quad n=6

A) 0.00008-0.00008
B) 0.600040.60004
C) 0.00008
D) 1.00008
E) 0.00096-0.00096
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
30
Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 0π/24+sin2xdx;n=6\int_{0}^{\pi / 2} \sqrt{4+\sin ^{2} x} d x ; \quad n=6

A) 4.0689
B) 3.3296
C) 2.9599
D) 3.6993
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use a table of integrals to evaluate the integral. x3sin(x2+3)dx\int x^{3} \sin \left(x^{2}+3\right) d x

A) 12sin(x2+3)12x2cos(x2+3)+C\frac{1}{2} \sin \left(x^{2}+\sqrt{3}\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+\sqrt{3}\right)+C
B) 12sin(x2+3)12x2cos(x2+3)+C\frac{1}{2} \sin \left(x^{2}+3\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+3\right)+C
C) 12sin(x2+3)12x2cos(x2+3)+C-\frac{1}{2} \sin \left(x^{2}+\sqrt{3}\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+\sqrt{3}\right)+C
D) 12sin(x2+3)12x2cos(x2+3)+C-\frac{1}{2} \sin \left(x^{2}+3\right)-\frac{1}{2} x^{2} \cos \left(x^{2}+3\right)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
32
Use a table of integrals to evaluate the integral. e7xsin3xdx\int e^{-7 x} \sin 3 x d x

A) 110e7x(7sin3x+7cos3x)+C-\frac{1}{10} e^{-7 x}(7 \sin 3 x+7 \cos 3 x)+C
B) 110e7x(7sin3x+3cos3x)+C-\frac{1}{10} e^{-7 x}(7 \sin 3 x+3 \cos 3 x)+C
C) 158e7x(7sin3x+7cos3x)+C-\frac{1}{58} e^{-7 x}(7 \sin 3 x+7 \cos 3 x)+C
D) 158e7x(7sin3x+3cos3x)+C-\frac{1}{58} e^{-7 x}(7 \sin 3 x+3 \cos 3 x)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
33
Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt{2+2 x} d x

A) 2215(2x1)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(2 x-1)(x+1)^{3 / 2}+C
B) 2215(3x2)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(3 x-2)(x+1)^{3 / 2}+C
C) 215(3x2)x+1+C\frac{2}{15}(3 x-2) \sqrt{x+1}+C
D) 2215(3x2)x+1+C\frac{2 \sqrt{2}}{15}(3 x-2) \sqrt{x+1}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals. Find a bound on the error in approximating the integral using (a) the Trapezoidal Rule and (b) Simpson's Rule with n subintervals.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
35
Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 6.3 9.7 7.5 4.5 3.5 2.2 0.6 0.3 0.1 0 and the formula Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 6.3 9.7 7.5 4.5 3.5 2.2 0.6 0.3 0.1 0 to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams, Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 6.3 9.7 7.5 4.5 3.5 2.2 0.6 0.3 0.1 0 is the concentration of the dye in the aorta, and R is measured in liters per minute. Round to one decimal place.
t
0
2
4
6
8
10
12
14
16
18
20
22
24
C(t)
0
0
2.6
6.3
9.7
7.5
4.5
3.5
2.2
0.6
0.3
0.1
0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use the Trapezoidal Rule to approximate the integral with answers rounded to four decimal places. 02dxx3+4;n=6\int_{0}^{2} \frac{d x}{\sqrt{x^{3}+4}} ; \quad n=6

A) 0.8528
B) 0.9842
C) 0.4921
D) 0.4695
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
37
Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 0π/22+sin2xdx;n=6\int_{0}^{\pi / 2} \sqrt{2+\sin ^{2} x} d x ; \quad n=6

A) 2.2028
B) 2.7519
C) 3.0265
D) 2.4774
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find a bound on the error in approximating the integral Find a bound on the error in approximating the integral   using (a) the Trapezoidal Rule and (b) Simpson's Rule with   subintervals. using (a) the Trapezoidal Rule and (b) Simpson's Rule with Find a bound on the error in approximating the integral   using (a) the Trapezoidal Rule and (b) Simpson's Rule with   subintervals. subintervals.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
39
Use Simpson's Rule to approximate the integral with answers rounded to four decimal places. 11x2+1dx;n=6\int_{-1}^{1} \sqrt{x^{2}+1} d x ; \quad n=6

A) 2.0076
B) 2.9504
C) 2.6098
D) 2.2955
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
40
Use the Table of Integrals to evaluate the integral. 49x21x2dx\int \frac{\sqrt{49 x^{2}-1}}{x^{2}} d x

A) 7ln7x+49x21+C7 \ln \left|7 x+\sqrt{49 x^{2}-1}\right|+C
B) 49x21x+7ln14x+249x21+C-\frac{\sqrt{49 x^{2}-1}}{x}+7 \ln \left|14 x+2 \sqrt{49 x^{2}-1}\right|+C
C) 49x21x+7ln7x+49x21\frac{\sqrt{49 x^{2}-1}}{x}+7 \ln \left|7 x+\sqrt{49 x^{2}-1}\right|
D) 7x21x+lnx+7x21+C\frac{\sqrt{7 x^{2}-1}}{x}+\ln \left|x+\sqrt{7 x^{2}-1}\right|+C
E) 49x21x+ln7x+49x2+C\frac{\sqrt{49 x^{2}-1}}{x}+\ln \left|7 x+\sqrt{49 x^{2}}\right|+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
41
Use the Table of Integrals to evaluate the integral to three decimal places. Use the Table of Integrals to evaluate the integral to three decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
42
Evaluate the integral. x/6π/33ln(tanx)7sinxcosxdx\int_{x / 6}^{\pi / 3} \frac{3 \ln (\tan x)}{7 \sin x \cos x} d x

A) 15(ln2)2-\frac{1}{5}(\ln 2)^{2}
B) 12(ln3)2-\frac{1}{2}(\ln 3)^{2}
C) 0
D) 16(ln3)2\frac{1}{6}(\ln 3)^{2}
E) 12(ln3)2\frac{1}{2}(\ln 3)^{2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
43
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
44
Evaluate the integral. 1e5x+e5xdx\int \frac{1}{-e^{-5 x}+e^{5 x}} d x

A) 110ln(e5x1e5x+1)+C-\frac{1}{10} \ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
B) 110ln(e5x1e5x+1)+C\frac{1}{10} \ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
C) ln(e5x1e5x+1)+C\ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
D) ln(e5x1e5x)+C-\ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}}\right)+C
E) ln(e5x1e5x+1)+C-\ln \left(\frac{\left|e^{5 x}-1\right|}{e^{5 x}+1}\right)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
45
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
46
Write the form of the partial fraction decomposition of the rational expression. Do not find the numerical values of the constants. x2x82x33x2+4x6\frac{x^{2}-x-8}{2 x^{3}-3 x^{2}+4 x-6}

A) A2x3+Bx+Cx2+2\frac{A}{2 x-3}+\frac{B x+C}{x^{2}+2}
B) A2x1+Bx+Cx2+2\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+2}
C) A2x+1+Bx+Cx22\frac{A}{2 x+1}+\frac{B x+C}{x^{2}-2}
D) A2x+3+Bx+Cx22\frac{A}{2 x+3}+\frac{B x+C}{x^{2}-2}
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
47
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the integral. x33x2+6x2x32x2+xdx\int \frac{x^{3}-3 x^{2}+6 x-2}{x^{3}-2 x^{2}+x} d x

A) lnx1x21x1+x+C\ln \left|\frac{x-1}{x^{2}}\right|-\frac{1}{x-1}+x+C
B) lnx2x12x1+x+C\ln \left|\frac{x^{2}}{x-1}\right|-\frac{2}{x-1}+x+C
C) lnx1x22x1+x+C\ln \left|\frac{x-1}{x^{2}}\right|-\frac{2}{x-1}+x+C
D) lnx2x11x1+x+C\ln \left|\frac{x^{2}}{x-1}\right|-\frac{1}{x-1}+x+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
49
Use long division to evaluate the integral. x2x+3dx\int \frac{x^{2}}{x+3} d x

A) 12(x9)(x+3)+9lnx+3+C\frac{1}{2}(x-9)(x+3)+9 \ln |x+3|+C
B) 12(x+9)(x+3)9lnx+3+C\frac{1}{2}(x+9)(x+3)-9 \ln |x+3|+C
C) x226x27+lnx+3+C\frac{x^{2}}{2}-6 x-27+\ln |x+3|+C
D) x226x+27+9lnx+3+C\frac{x^{2}}{2}-6 x+27+9 \ln |x+3|+C
E) x22+2x+lnx+9+C\frac{x^{2}}{2}+2 x+\ln |x+9|+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
50
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the integral. 3x5x22x3dx\int \frac{3 x-5}{x^{2}-2 x-3} d x

A) ln(x3)(x+1)2+C\ln \left|(x-3)(x+1)^{2}\right|+C
B) ln(x+3)(x1)2+C\ln \left|(x+3)(x-1)^{2}\right|+C
C) ln(x+1)(x3)2+C\ln \left|(x+1)(x-3)^{2}\right|+C
D) ln(x1)(x+3)2+C\ln \left|(x-1)(x+3)^{2}\right|+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use the Table of Integrals to evaluate the integral. Use the Table of Integrals to evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
53
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the integral. dxx(x2)\int \frac{d x}{x(x-2)}

A) 2lnx22x+C2 \ln \left|\frac{x^{2}-2}{x}\right|+C
B) 2lnx2x+C2 \ln \left|\frac{x-2}{x}\right|+C
C) 12lnx22x+C\frac{1}{2} \ln \left|\frac{x^{2}-2}{x}\right|+C
D) 12lnx2x+C\frac{1}{2} \ln \left|\frac{x-2}{x}\right|+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
55
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the integral. 5x29x+6x32x2+xdx\int \frac{5 x^{2}-9 x+6}{x^{3}-2 x^{2}+x} d x

A) lnx6x11x1+C\ln \left|\frac{x^{6}}{x-1}\right|-\frac{1}{x-1}+C
B) lnx1x61x1+C\ln \left|\frac{x-1}{x^{6}}\right|-\frac{1}{x-1}+C
C) lnx1x62x1+C\ln \left|\frac{x-1}{x^{6}}\right|-\frac{2}{x-1}+C
D) lnx6x12x1+C\ln \left|\frac{x^{6}}{x-1}\right|-\frac{2}{x-1}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
57
Use a table of integrals to evaluate the integral. x2+2xdx\int x \sqrt{2+2 x} d x

A) 2215(3x2)x+1+C\frac{2 \sqrt{2}}{15}(3 x-2) \sqrt{x+1}+C
B) 2215(2x1)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(2 x-1)(x+1)^{3 / 2}+C
C) 215(3x2)x+1+C\frac{2}{15}(3 x-2) \sqrt{x+1}+C
D) 2215(3x2)(x+1)3/2+C\frac{2 \sqrt{2}}{15}(3 x-2)(x+1)^{3 / 2}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
58
Evaluate the integral. 7dx(x2+2x+2)2\int \frac{7 d x}{\left(x^{2}+2 x+2\right)^{2}}

A) 12(tan1(x+2)+7x2+2)+C\frac{1}{2}\left(\tan ^{-1}(x+2)+\frac{7}{x^{2}+2}\right)+C
B) 12(tan1(x+7)+1x2+2x+2)+C\frac{1}{2}\left(\tan ^{-1}(x+7)+\frac{1}{x^{2}+2 x+2}\right)+C
C) 72(tan1(x+1)+x+1x2+2x+2)+C\frac{7}{2}\left(\tan ^{-1}(x+1)+\frac{x+1}{x^{2}+2 x+2}\right)+C
D) 12(tan(x+1)+17x2+2x+2)+C\frac{1}{2}\left(\tan (x+1)+\frac{17}{x^{2}+2 x+2}\right)+C
E) 72(tan(x+2)+x+1x2+2x+2)+C\frac{7}{2}\left(\tan (x+2)+\frac{x+1}{x^{2}+2 x+2}\right)+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
59
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
60
Use a table of integrals to evaluate the integral. 4x+5x2dx\int \frac{\sqrt{4 x+5}}{x^{2}} d x

A) 255ln4x+554x+5+5+C-\frac{2 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
B) 4x+5x+255ln4x+554x+5+5+C-\frac{\sqrt{4 x+5}}{x}+\frac{2 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
C) 4x+5x+455ln4x+554x+5+5+C-\frac{\sqrt{4 x+5}}{x}+\frac{4 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
D) 455ln4x+554x+5+5+C-\frac{4 \sqrt{5}}{5} \ln \left|\frac{\sqrt{4 x+5}-\sqrt{5}}{\sqrt{4 x+5}+\sqrt{5}}\right|+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the integral. 3x3x2x2dx\int \frac{3 x-3}{x^{2}-x-2} d x

A) ln(x+2)(x1)2+C\ln \left|(x+2)(x-1)^{2}\right|+C
B) ln(x2)(x+1)2+C\ln \left|(x-2)(x+1)^{2}\right|+C
C) ln(x+1)(x2)2+C\ln \left|(x+1)(x-2)^{2}\right|+C
D) ln(x1)(x+2)2+C\ln \left|(x-1)(x+2)^{2}\right|+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
62
Find the integral using an appropriate trigonometric substitution. 1x2x2+25dx\int \frac{1}{x^{2} \sqrt{x^{2}+25}} d x

A) x2+255x+C-\frac{\sqrt{x^{2}+25}}{5 x}+C
B) x2+255x+C\frac{\sqrt{x^{2}+25}}{5 x}+C
C) x2+2525x+C\frac{\sqrt{x^{2}+25}}{25 x}+C
D) x2+2525x+C-\frac{\sqrt{x^{2}+25}}{25 x}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
63
Make a substitution to express the integrand as a rational function and then evaluate the integral. Make a substitution to express the integrand as a rational function and then evaluate the integral.   Round the answer to four decimal places. Round the answer to four decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
64
Evaluate the integral using the indicated trigonometric substitution. Evaluate the integral using the indicated trigonometric substitution.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the integral using an appropriate trigonometric substitution. x3x2+36dx\int \frac{x^{3}}{\sqrt{x^{2}+36}} d x

A) 13(x236)3/2x2+36+C\frac{1}{3}\left(x^{2}-36\right)^{3 / 2} \sqrt{x^{2}+36}+C
B) 13(x2+72)x2+36+C\frac{1}{3}\left(x^{2}+72\right) \sqrt{x^{2}+36}+C
C) 13(x272)x2+36+C\frac{1}{3}\left(x^{2}-72\right) \sqrt{x^{2}+36}+C
D) 13(x2+36)3/2x2+36+C\frac{1}{3}\left(x^{2}+36\right)^{3 / 2} \sqrt{x^{2}+36}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
66
Evaluate the integral. 8(x1x2+2x)dx\int 8\left(\frac{x-1}{x^{2}+2 x}\right) d x

A) 8(13x13lnx)+C8\left(\frac{1}{3} x-\frac{1}{3} \ln x\right)+C
B) 8(lnxx)+C-8(\ln x-x)+C
C) 8(32ln(x+2)12lnx)+C8\left(\frac{3}{2} \ln (x+2)-\frac{1}{2} \ln x\right)+C
D) 8(22arctanx)+C-8\left(\frac{\sqrt{2}}{2} \arctan x\right)+C
E)  None of these \text { None of these }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find the integral. Find the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the volume of the resulting solid if the region under the curve Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. from Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. to Find the volume of the resulting solid if the region under the curve   from   to   is rotated about the x-axis. Round your answer to four decimal places. is rotated about the x-axis. Round your answer to four decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
69
Find the integral using an appropriate trigonometric substitution. x4x2dx\int \frac{x}{\sqrt{4-x^{2}}} d x

A) 4x2+C-\sqrt{4-x^{2}}+C
B) 2x+C\sqrt{2-x}+C
C) 4x2+C\sqrt{4-x^{2}}+C
D) 2x+C-\sqrt{2-x}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
70
Evaluate the integral using the indicated trigonometric substitution. x3x2+16dx;x=4tanθ\int \frac{x^{3}}{\sqrt{x^{2}+16}} d x ; x=4 \tan \theta

A) 32(x+16)3/216x+16+C\frac{3}{2}(x+16)^{3 / 2}-16 \sqrt{x+16}+C
B) (x2+16)3/2x2+16+C\left(x^{2}+16\right)^{3 / 2}-\sqrt{x^{2}+16}+C
C) 13(x2+16)3/2x2+16+C\frac{1}{3}\left(x^{2}+16\right)^{3 / 2}-\sqrt{x^{2}+16}+C
D) 13(x2+16)3/2+16x2+16+C\frac{1}{3}\left(x^{2}+16\right)^{3 / 2}+16 \sqrt{x^{2}+16}+C
E) (x2+16)3/24x2+16+C\left(x^{2}+16\right)^{3 / 2}-4 \sqrt{x^{2}+16}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
71
Use long division to evaluate the integral. 01x3+4x212x+1x2+4x12dx\int_{0}^{1} \frac{x^{3}+4 x^{2}-12 x+1}{x^{2}+4 x-12} d x The choices are rounded to 3 decimal places.

A) 4.606-4.606
B) 5.3945.394
C) 0.3940.394
D) 9.606-9.606
E) 10.39410.394
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the integral. Find the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
73
The region under the graph of The region under the graph of   on the interval [1, 2] is revolved about the x-axis. Find the volume of the resulting solid. on the interval [1, 2] is revolved about the x-axis. Find the volume of the resulting solid.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
74
A corporation is building a complex of homes, offices, stores, schools, and churches in a rural community. As a result of this development, the planners have estimated that the community's population (in thousands) t years from now will be given by A corporation is building a complex of homes, offices, stores, schools, and churches in a rural community. As a result of this development, the planners have estimated that the community's population (in thousands) t years from now will be given by   . What will the average population of the community be over the next 10 years? .
What will the average population of the community be over the next 10 years?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
75
Evaluate the integral using an appropriate trigonometric substitution. 02x24x2dx\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x

A) π\pi
B) π21\frac{\pi}{2}-1
C) 2π332\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
D) π1\pi-1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
76
Evaluate the integral. 01xx+8dx\int_{0}^{1} \frac{x}{x+8} d x

A) 19ln8+8ln161-9 \ln 8+\sqrt{8} \ln 16
B) 18ln9ln8\frac{1}{8 \ln 9}-\ln \sqrt{8}
C) 18(ln9ln8)1-8(\ln 9-\ln 8)
D) 98ln9+ln89-8 \ln 9+\ln \sqrt{8}
E)  None of these \text { None of these }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
77
Find the integral using an appropriate trigonometric substitution. x9x2dx\int x \sqrt{9-x^{2}} d x

A) 13(9x2)3/2+C\frac{1}{3}\left(9-x^{2}\right)^{3 / 2}+C
B) 13x2(9x2)3/2+C-\frac{1}{3} x^{2}\left(9-x^{2}\right)^{3 / 2}+C
C) 13x2(9x2)3/2+C\frac{1}{3} x^{2}\left(9-x^{2}\right)^{3 / 2}+C
D) 13(9x2)3/2+C-\frac{1}{3}\left(9-x^{2}\right)^{3 / 2}+C
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
78
Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
79
Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0 and the formula Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0 to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams, Eight milligrams of a dye are injected into a vein leading the an individual's heart. The concentration of dye in the aorta (in milligrams per liter) measured at 2-sec intervals is shown in the accompanying table. Use Simpson's Rule with   and the formula   to estimate the person's cardiac output, where D is the quantity of dye injected in milligrams,   is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place. t 0 2 4 6 8 10 12 14 16 18 20 22 24 C(t) 0 0 2.6 5.9 9.7 7.9 4.6 3.5 2.2 0.8 0.2 0.1 0 is the concentration of the dye in the aorta, and R is measured in liters per minute. Round your answer to one decimal place.
t
0
2
4
6
8
10
12
14
16
18
20
22
24
C(t)
0
0
2.6
5.9
9.7
7.9
4.6
3.5
2.2
0.8
0.2
0.1
0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find the integral. Find the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.