Deck 15: Multiple Integrals

ملء الشاشة (f)
exit full mode
سؤال
Find the Jacobian of the transformation. x=6αsinβ,y=5αcosβx = 6 \alpha \sin \beta , y = 5 \alpha \cos \beta

A) (x,y)(α,β)=30α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 30 \alpha
B) (x,y)(α,β)=20αsinβcosβ\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 20 \alpha \sin \beta \cos \beta
C) (x,y)(α,β)=9α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 9 \alpha
D) (x,y)(α,β)=α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - \alpha
E) (x,y)(α,β)=36α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 36 \alpha
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Use cylindrical coordinates to evaluate the triple integral Use cylindrical coordinates to evaluate the triple integral   where E is the solid that lies between the sphere   and   in the first octant.<div style=padding-top: 35px> where E is the solid that lies between the sphere Use cylindrical coordinates to evaluate the triple integral   where E is the solid that lies between the sphere   and   in the first octant.<div style=padding-top: 35px> and Use cylindrical coordinates to evaluate the triple integral   where E is the solid that lies between the sphere   and   in the first octant.<div style=padding-top: 35px> in the first octant.
سؤال
Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 55 .

A) 3125007π\frac { 312500 } { 7 } \pi
B) 43747\frac { 4374 } { 7 }
C) 43747π\frac { 4374 } { 7 } \pi
D) 5598727π\frac { 559872 } { 7 } \pi
E) None of these
سؤال
Identify the surface with equation Identify the surface with equation  <div style=padding-top: 35px>
سؤال
Use spherical coordinates to find the moment of inertia of the solid homogeneous hemisphere of radius 55 and density 1 about a diameter of its base.

A) 205.13
B) 2616.672616.67
C) 195.22
D) 213.5
E) 198.08
سؤال
Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places. Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places.   R is the parallelogram bounded by the lines   . <div style=padding-top: 35px> R is the parallelogram bounded by the lines Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places.   R is the parallelogram bounded by the lines   . <div style=padding-top: 35px> .
سؤال
Use the transformation x=5u53v,y=5u+53vx = \sqrt { 5 } u - \sqrt { \frac { 5 } { 3 } } v , y = \sqrt { 5 } u + \sqrt { \frac { 5 } { 3 } } v to evaluate the integral R(x2xy+y2)dA\iint _ { R } \left( x ^ { 2 } - x y + y ^ { 2 } \right) d A , where R is the region bounded by the ellipse x2xy+y2=5x ^ { 2 } - x y + y ^ { 2 } = 5 .

A) 5π3\frac { 5 \pi } { \sqrt { 3 } }
B) 253\frac { 25 } { \sqrt { 3 } }
C) 100π33/2\frac { 100 \pi } { 3 ^ { 3 / 2 } }
D) 25π3\frac { 25 \pi } { \sqrt { 3 } }
E) 5π23\frac { 5 \pi ^ { 2 } } { \sqrt { 3 } }
سؤال
Identify the surface with equation Identify the surface with equation  <div style=padding-top: 35px>
سؤال
Find the Jacobian of the transformation. Find the Jacobian of the transformation.  <div style=padding-top: 35px>
سؤال
Evaluate Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V where f(x,y,z)=7yf ( x , y , z ) = 7 y and T is the region bounded by the paraboloid y=x2+z2y = x ^ { 2 } + z ^ { 2 } and the plane y=1y = 1

A) 73\frac { 7 } { 3 } π\pi
B) 17\frac { 1 } { 7 } π\pi
C) 493\frac { 49 } { 3 } π\pi
D) 77 π\pi
سؤال
Use spherical coordinates to find the volume of the solid that lies within the sphere Use spherical coordinates to find the volume of the solid that lies within the sphere   above the xy-plane and below the cone   . Round the answer to two decimal places. <div style=padding-top: 35px> above the xy-plane and below the cone Use spherical coordinates to find the volume of the solid that lies within the sphere   above the xy-plane and below the cone   . Round the answer to two decimal places. <div style=padding-top: 35px> . Round the answer to two decimal places.
سؤال
Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where R is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas y=2,xy=4;x=uv,y=vy = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

A) 9.447
B) 3.296
C) 8.841
D) 4.447
E) 5.088
سؤال
Use spherical coordinate to find the volume above the cone Use spherical coordinate to find the volume above the cone   and inside sphere   .<div style=padding-top: 35px> and inside sphere Use spherical coordinate to find the volume above the cone   and inside sphere   .<div style=padding-top: 35px> .
سؤال
Find the moment of inertia with respect to a diameter of the base of a solid hemisphere of radius 3 with constant mass density function Find the moment of inertia with respect to a diameter of the base of a solid hemisphere of radius 3 with constant mass density function  <div style=padding-top: 35px>
سؤال
Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where T is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=2z = 2 and z=5z = 5

A) 22 π\pi
B) 1414 π\pi
C) 2121 π\pi
D) 33 π\pi
سؤال
Use the given transformation to evaluate the integral. R(x+y)dA\iint _ { R } ( x + y ) d A , where R is the square with vertices (0, 0), (4, 6), (6, 4- 4 ), (10, 2) and x=4u+6v,y=6u4vx = 4 u + 6 v , y = 6 u - 4 v

A) 208
B) 52
C) 343
D) 42
E) 312
سؤال
Use spherical coordinates to evaluate Bx2+y2+z2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V where B is the ball x2+y2+z28x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 8

A) 512 π \pi
B) 8 π \pi
C) 64 π \pi
D) 1024 π \pi
سؤال
The sketch of the solid is given below. Given a=5a = 5 , write the inequalities that describe it.  <strong>The sketch of the solid is given below. Given  a = 5  , write the inequalities that describe it.  </strong> A) None of these B)  r ^ { 2 } - 5 \leq z \leq r ^ { 2 }  C)  r ^ { 2 } \leq z \leq 5  D)  r ^ { 2 } \leq z \leq 5 + r ^ { 2 }  E)  r ^ { 2 } \leq z \leq 5 - r ^ { 2 }  <div style=padding-top: 35px>

A) None of these
B) r25zr2r ^ { 2 } - 5 \leq z \leq r ^ { 2 }
C) r2z5r ^ { 2 } \leq z \leq 5
D) r2z5+r2r ^ { 2 } \leq z \leq 5 + r ^ { 2 }
E) r2z5r2r ^ { 2 } \leq z \leq 5 - r ^ { 2 }
سؤال
Identify the surface with equation Identify the surface with equation  <div style=padding-top: 35px>
سؤال
Find the mass of a solid hemisphere of radius 5 if the mass density at any point on the solid is directly proportional to its distance from the base of the solid.

A) 6254\frac { 625 } { 4 } k π \pi
B) 2525 k π \pi
C) 254\frac { 25 } { 4 } k π \pi
D) 1254\frac { 125 } { 4 } k π \pi
سؤال
Evaluate the integral Bf(x,y,z)dV\iiint _ { B } f ( x , y , z ) d V where f(x,y,z)=xy2+yz2f ( x , y , z ) = x y ^ { 2 } + y z ^ { 2 } and B={(x,y,z)0x2,5y5,0z3}B = \{ ( x , y , z ) \mid 0 \leq x \leq 2 , - 5 \leq y \leq 5,0 \leq z \leq 3 \} with respect to x, y, and z, in that order.

A) 120
B) 620
C) 180
D) 500
سؤال
The joint density function for a pair of random variables The joint density function for a pair of random variables   and   is given.   Find the value of the constant   .<div style=padding-top: 35px> and The joint density function for a pair of random variables   and   is given.   Find the value of the constant   .<div style=padding-top: 35px> is given. The joint density function for a pair of random variables   and   is given.   Find the value of the constant   .<div style=padding-top: 35px> Find the value of the constant The joint density function for a pair of random variables   and   is given.   Find the value of the constant   .<div style=padding-top: 35px> .
سؤال
Express the integral as an iterated integral of the form Express the integral as an iterated integral of the form   where E is the solid bounded by the surfaces    <div style=padding-top: 35px> where E is the solid bounded by the surfaces Express the integral as an iterated integral of the form   where E is the solid bounded by the surfaces    <div style=padding-top: 35px> Express the integral as an iterated integral of the form   where E is the solid bounded by the surfaces    <div style=padding-top: 35px>
سؤال
Find the moment of inertia about the y-axis for a cube of constant density 3 and side length Find the moment of inertia about the y-axis for a cube of constant density 3 and side length   if one vertex is located at the origin and three edges lie along the coordinate axes.<div style=padding-top: 35px> if one vertex is located at the origin and three edges lie along the coordinate axes.
سؤال
Use cylindrical coordinates to evaluate 2204x2016x2y2zdzdydx\int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } z d z d y d x

A) 1212 π\pi
B) 112112 π\pi
C) 32\frac { 3 } { 2 } π\pi
D) 1414 π\pi
سؤال
Evaluate the iterated integral Evaluate the iterated integral  <div style=padding-top: 35px>
سؤال
The joint density function for random variables The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. <div style=padding-top: 35px> and The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. <div style=padding-top: 35px> is The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. <div style=padding-top: 35px> for The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. <div style=padding-top: 35px> and The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. <div style=padding-top: 35px> otherwise. Find the value of the constant The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. <div style=padding-top: 35px> .
Round the answer to the nearest thousandth.
سؤال
Find the center of mass of a homogeneous solid bounded by the paraboloid Find the center of mass of a homogeneous solid bounded by the paraboloid   and  <div style=padding-top: 35px> and Find the center of mass of a homogeneous solid bounded by the paraboloid   and  <div style=padding-top: 35px>
سؤال
Calculate the iterated integral. 0x0101y28ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 8 y \sin x d z d y d x

A) 8
B) 316\frac { 3 } { 16 }
C) 00
D) 83\frac { 8 } { 3 }
E) None of these
سؤال
Find the region E for which the triple integral Find the region E for which the triple integral   is a maximum.<div style=padding-top: 35px> is a maximum.
سؤال
Use cylindrical or spherical coordinates, whichever seems more appropriate, to evaluate EzdV\iiint _ { E } z d V where E lies above the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and below the plane z=2z = 2 .

A) - 160.28
B) 175.37
C) 66.9966.99
D) 176.38
E) 175.93
سؤال
Evaluate the triple integral. Round your answer to one decimal place. Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . <div style=padding-top: 35px> Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . <div style=padding-top: 35px> lies under the plane Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . <div style=padding-top: 35px> and above the region in the Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . <div style=padding-top: 35px> -plane bounded by the curves Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . <div style=padding-top: 35px> , and Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . <div style=padding-top: 35px> .
سؤال
Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 .

A) 8.38.3
B) 183183
C) 2.52.5
D) 15.315.3
E) 11.311.3
سؤال
Find the mass of the solid S bounded by the paraboloid z=6x2+6y2z = 6 x ^ { 2 } + 6 y ^ { 2 } and the plane z=5z = 5 if S has constant density 3.

A) 16.25
B) 15.07
C) 24.91
D) 13.92
E) 19.63
سؤال
Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where E is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xy-plane and below the plane z=x+4z = x + 4 .

A) 8.57
B) 0
C) 3.4
D) 9.19
E) 0.54
سؤال
Evaluate the triple integral. Round your answer to one decimal place. Evaluate the triple integral. Round your answer to one decimal place.   <div style=padding-top: 35px>
سؤال
Use cylindrical coordinates to find the volume of the solid that the cylinder Use cylindrical coordinates to find the volume of the solid that the cylinder   cuts out of the sphere of radius 3 centered at the origin.<div style=padding-top: 35px> cuts out of the sphere of radius 3 centered at the origin.
سؤال
Find the mass of the solid E, if E is the cube given by Find the mass of the solid E, if E is the cube given by   and the density function   is   .<div style=padding-top: 35px> and the density function Find the mass of the solid E, if E is the cube given by   and the density function   is   .<div style=padding-top: 35px> is Find the mass of the solid E, if E is the cube given by   and the density function   is   .<div style=padding-top: 35px> .
سؤال
Express the volume of the wedge in the first octant that is cut from the cylinder Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   .<div style=padding-top: 35px> by the planes Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   .<div style=padding-top: 35px> and Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   .<div style=padding-top: 35px> as an iterated integral with respect to Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   .<div style=padding-top: 35px> , then to Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   .<div style=padding-top: 35px> , then to Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   .<div style=padding-top: 35px> .
سؤال
Use cylindrical coordinates to evaluate Ex2+y2dV\iiint _ { E } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where E is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=6 and z=5z = - 6 \text { and } z = 5 . Round the answer to two decimal places.

A) 2878.332878.33
B) 2218.41
C) 2931.90
D) 2818.41
E) 2431.90
سؤال
Find the area of the surface. The part of the surface Find the area of the surface. The part of the surface   that lies within the cylinder   .<div style=padding-top: 35px> that lies within the cylinder Find the area of the surface. The part of the surface   that lies within the cylinder   .<div style=padding-top: 35px> .
سؤال
Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=15a = 15 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0)( 0,0 ) , and that the sides are along the positive axes.

A) (6,6)( 6,6 )
B) (6,15)( 6,15 )
C) (5,6)( 5,6 )
D) (15,15)( 15,15 )
E) None of these
سؤال
Find the area of the part of the plane Find the area of the part of the plane   that lies in the first octant.<div style=padding-top: 35px> that lies in the first octant.
سؤال
Find the area of the surface S where S is the part of the plane Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  <div style=padding-top: 35px> that lies above the triangular region with vertices Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  <div style=padding-top: 35px> Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  <div style=padding-top: 35px> , and Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  <div style=padding-top: 35px>
سؤال
Sketch the solid whose volume is given by the integral Sketch the solid whose volume is given by the integral   Evaluate the integral.<div style=padding-top: 35px> Evaluate the integral.
سؤال
Express the triple integral Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  <div style=padding-top: 35px> as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  <div style=padding-top: 35px> Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  <div style=padding-top: 35px> Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  <div style=padding-top: 35px> and Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  <div style=padding-top: 35px>
سؤال
Find the area of the surface S where S is the part of the surface Find the area of the surface S where S is the part of the surface   that lies inside the cylinder  <div style=padding-top: 35px> that lies inside the cylinder Find the area of the surface S where S is the part of the surface   that lies inside the cylinder  <div style=padding-top: 35px>
سؤال
Find the area of the surface. The part of the surface z=4x2y2z = 4 - x ^ { 2 } - y ^ { 2 } that lies above the xy-plane.

A) (1717)( \sqrt { 17 } - 17 )
B) 16\frac { 1 } { 6 } π(17171)\pi ( 17 \sqrt { 17 } - 1 )
C) 16\frac { 1 } { 6 } (17+1)( \sqrt { 17 } + 1 )
D) π(17171)\pi ( 17 \sqrt { 17 } - 1 )
E) 16\frac { 1 } { 6 } (1717+1)( 17 \sqrt { 17 } + 1 )
سؤال
Find the area of the part of hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

A) (828235)π( 82 \sqrt { 82 } - 3 \sqrt { 5 } ) \pi
B) (8282+55)π( 82 \sqrt { 82 } + 5 \sqrt { 5 } ) \pi
C) 29\frac { 2 } { 9 } (828255)( 82 \sqrt { 82 } - 5 \sqrt { 5 } )
D) 29\frac { 2 } { 9 } (828235)π( 82 \sqrt { 82 } - 3 \sqrt { 5 } ) \pi
E) 29\frac { 2 } { 9 } (828255)π( 82 \sqrt { 82 } - 5 \sqrt { 5 } ) \pi
سؤال
Find the area of the surface S where S is the part of the sphere Find the area of the surface S where S is the part of the sphere   that lies to the right of the xz-plane and inside the cylinder  <div style=padding-top: 35px> that lies to the right of the xz-plane and inside the cylinder Find the area of the surface S where S is the part of the sphere   that lies to the right of the xz-plane and inside the cylinder  <div style=padding-top: 35px>
سؤال
Find the area of the part of the plane Find the area of the part of the plane   that lies inside the cylinder   .<div style=padding-top: 35px> that lies inside the cylinder Find the area of the part of the plane   that lies inside the cylinder   .<div style=padding-top: 35px> .
سؤال
Find the area of the surface. The part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies above the plane z=1z = 1 .

A) 24π24 \pi
B) π16\frac { \pi } { 16 }
C) 2424
D) π\pi
E) 24π24 - \pi
سؤال
Find the area of the part of the sphere x2+y2+z2=25zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 z that lies inside the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

A) 11.5π11.5 \pi
B) 9.5π9.5 \pi
C) 25π25 \pi
D) 5π5 \pi
E) 15π15 \pi
سؤال
Sketch the solid bounded by the graphs of the equations Sketch the solid bounded by the graphs of the equations   and   , and then use a triple integral to find the volume of the solid.<div style=padding-top: 35px> and Sketch the solid bounded by the graphs of the equations   and   , and then use a triple integral to find the volume of the solid.<div style=padding-top: 35px> , and then use a triple integral to find the volume of the solid.
سؤال
Find the area of the surface. Round your answer to three decimal places. z=z = 43\frac { 4 } { 3 } (x2/3+y2/3),0x5,0y3\left( x ^ { 2 / 3 } + y ^ { 2 / 3 } \right) , 0 \leq x \leq 5,0 \leq y \leq 3

A) 70.049270.0492
B) 62.370262.3702
C) 60.049260.0492
D) 80.370280.3702
E) 85.370285.3702
سؤال
Sketch the solid whose volume is given by the iterated integral Sketch the solid whose volume is given by the iterated integral  <div style=padding-top: 35px>
سؤال
Find the exact area of the surface. z=x2+2y,0x1,0y2z = x ^ { 2 } + 2 y , 0 \leq x \leq 1,0 \leq y \leq 2 .

A) 5ln(3)4\frac { 5 \ln ( 3 ) } { 4 }
B) 54\frac { 5 } { 4 }
C) 3ln(5)3 - \ln ( 5 )
D) 3+54ln(5)3 + \frac { 5 } { 4 } \ln ( 5 )
E) 2+53ln(4)2 + \frac { 5 } { 3 } \ln ( 4 )
سؤال
Find the area of the surface S where S is the part of the sphere Find the area of the surface S where S is the part of the sphere   that lies inside the cylinder  <div style=padding-top: 35px> that lies inside the cylinder Find the area of the surface S where S is the part of the sphere   that lies inside the cylinder  <div style=padding-top: 35px>
سؤال
Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder   in the first octant and the plane   having mass density given by  <div style=padding-top: 35px> in the first octant and the plane Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder   in the first octant and the plane   having mass density given by  <div style=padding-top: 35px> having mass density given by Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder   in the first octant and the plane   having mass density given by  <div style=padding-top: 35px>
سؤال
Describe the region whose area is given by the integral. Describe the region whose area is given by the integral.  <div style=padding-top: 35px>
سؤال
Find the mass and the moments of inertia Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and the radii of gyration Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> for the lamina occupying the region R, where R is the region bounded by the graphs of the equations Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and having the mass density Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px>
سؤال
Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  <div style=padding-top: 35px> Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  <div style=padding-top: 35px> Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  <div style=padding-top: 35px> and Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  <div style=padding-top: 35px> and having the mass density Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  <div style=padding-top: 35px>
سؤال
Use polar coordinates to find the volume of the solid inside the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and the ellipsoid 6x2+6y2+z2=646 x ^ { 2 } + 6 y ^ { 2 } + z ^ { 2 } = 64 .

A) 853.187853.187
B) 903.187903.187
C) 1003.1871003.187
D) 753.187753.187
E) 1103.1871103.187
سؤال
Find the mass of the lamina that occupies the region Find the mass of the lamina that occupies the region   and has the given density function. Round your answer to two decimal places.   <div style=padding-top: 35px> and has the given density function. Round your answer to two decimal places. Find the mass of the lamina that occupies the region   and has the given density function. Round your answer to two decimal places.   <div style=padding-top: 35px>
سؤال
Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px> and having the mass density Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  <div style=padding-top: 35px>
سؤال
Use a double integral to find the area of the region R where R is bounded by the circle r=6sinθr = 6 \sin \theta

A) 3636 π\pi
B) 99 π\pi
C) 1818 π\pi
D) 66 π\pi
سؤال
A swimming pool is circular with a 6060 -ft diameter. The depth is constant along east-west lines and increases linearly from 33 ft at the south end to 99 ft at the north end. Find the volume of water in the pool.

A) 5410πft35410 \pi \mathrm { ft } ^ { 3 }
B) 5500πft35500 \pi \mathrm { ft } ^ { 3 }
C) 5400πft35400 \pi \mathrm { ft } ^ { 3 }
D) 5600πft35600 \pi \mathrm { ft } ^ { 3 }
E) 5700πft35700 \pi \mathrm { ft } ^ { 3 }
سؤال
Find the center of mass of the system comprising masses mk located at the points Pk in a coordinate plane. Assume that mass is measured in grams and distance is measured in centimeters.
m1 = 4, m2 = 3, m3 = 2
P1(-3, -3), P2(0, 3), P3(-2, -1)
سؤال
Find the center of mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola y=1x2y = 1 - x ^ { 2 } and the x-axis. ρ(x,y)=4y\rho ( x , y ) = 4 y

A) (0,0.57)( 0,0.57 )
B) (4,46.44)( 4,46.44 )
C) (12,0.57)( 12,0.57 )
D) (8,4)( 8,4 )
E) None of these
سؤال
Evaluate the integral by changing to polar coordinates. Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis.<div style=padding-top: 35px> Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis.<div style=padding-top: 35px> is the region bounded by the semicircle Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis.<div style=padding-top: 35px> and the Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis.<div style=padding-top: 35px> -axis.
سؤال
An electric charge is spread over a rectangular region R={(x,y)0x3,0y4}.R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 4 \} . Find the total charge on R if the charge density at a point (x,y)( x , y ) in R (measured in coulombs per square meter) is σ(x,y)=x2+4y3\sigma ( x , y ) = x ^ { 2 } + 4 y ^ { 3 }

A) 804804 coulombs
B) 9191 coulombs
C) 300300 coulombs
D) 265265 coulombs
سؤال
Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 } and the plane z=1z = 1 .

A) 6π6 \pi
B) 13π13 \pi
C) 3π3 \pi
D) 4.5π4.5 \pi
E) 2π2 \pi
سؤال
Find the mass and the center of mass of the lamina occupying the region R, where R is the triangular region with vertices (0,0)( 0,0 ) \text {, } (2,5)( 2,5 ) and (4,0)( 4,0 ) , and having the mass density ρ(x,y)=x\rho ( x , y ) = x

A) m=m = 2525 , (xˉ,yˉ)=(73,53)( \bar { x } , \bar { y } ) = \left( \frac { 7 } { 3 } , \frac { 5 } { 3 } \right)
B) m=20m = 20 , (xˉ,yˉ)=(73,53)( \bar { x } , \bar { y } ) = \left( \frac { 7 } { 3 } , \frac { 5 } { 3 } \right)
C) m=m = 2525 , (xˉ,yˉ)=(53,73)( \bar { x } , \bar { y } ) = \left( \frac { 5 } { 3 } , \frac { 7 } { 3 } \right)
D) m=20m = 20 , (xˉ,yˉ)=(53,73)( \bar { x } , \bar { y } ) = \left( \frac { 5 } { 3 } , \frac { 7 } { 3 } \right)
سؤال
Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 3309y2(x2+y2)3/2dxdy\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .

A) 152.68152.68
B) 5.655.65
C) 14.1414.14
D) 48.648.6
E) 381.7381.7
سؤال
A lamina occupies the part of the disk A lamina occupies the part of the disk   in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.<div style=padding-top: 35px> in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.
سؤال
Use polar coordinates to find the volume of the sphere of radius 33 . Round to two decimal places.

A) 183.33183.33
B) 113.1113.1
C) 173.33173.33
D) 153.33153.33
E) 133.1133.1
سؤال
Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina. Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina.  <div style=padding-top: 35px>
سؤال
Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y)=3\rho ( x , y ) = 3

A) 32\frac { 3 } { 2 }
B) 22
C) 27
D) 272\frac { 27 } { 2 }
E) None of these
سؤال
Find the mass and the moments of inertia Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> and the radii of gyration Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> for the lamina occupying the region R, where R is the rectangular region with vertices Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px> , and having uniform density Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  <div style=padding-top: 35px>
سؤال
Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 .

A) 40.5π40.5 \pi
B) 27π27 \pi
C) 81π81 \pi
D) 324π324 \pi
E) 162π162 \pi
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/124
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 15: Multiple Integrals
1
Find the Jacobian of the transformation. x=6αsinβ,y=5αcosβx = 6 \alpha \sin \beta , y = 5 \alpha \cos \beta

A) (x,y)(α,β)=30α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 30 \alpha
B) (x,y)(α,β)=20αsinβcosβ\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 20 \alpha \sin \beta \cos \beta
C) (x,y)(α,β)=9α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 9 \alpha
D) (x,y)(α,β)=α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - \alpha
E) (x,y)(α,β)=36α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = 36 \alpha
(x,y)(α,β)=30α\frac { \partial ( x , y ) } { \partial ( \alpha , \beta ) } = - 30 \alpha
2
Use cylindrical coordinates to evaluate the triple integral Use cylindrical coordinates to evaluate the triple integral   where E is the solid that lies between the sphere   and   in the first octant. where E is the solid that lies between the sphere Use cylindrical coordinates to evaluate the triple integral   where E is the solid that lies between the sphere   and   in the first octant. and Use cylindrical coordinates to evaluate the triple integral   where E is the solid that lies between the sphere   and   in the first octant. in the first octant.
3
Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 55 .

A) 3125007π\frac { 312500 } { 7 } \pi
B) 43747\frac { 4374 } { 7 }
C) 43747π\frac { 4374 } { 7 } \pi
D) 5598727π\frac { 559872 } { 7 } \pi
E) None of these
3125007π\frac { 312500 } { 7 } \pi
4
Identify the surface with equation Identify the surface with equation
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
5
Use spherical coordinates to find the moment of inertia of the solid homogeneous hemisphere of radius 55 and density 1 about a diameter of its base.

A) 205.13
B) 2616.672616.67
C) 195.22
D) 213.5
E) 198.08
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
6
Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places. Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places.   R is the parallelogram bounded by the lines   . R is the parallelogram bounded by the lines Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places.   R is the parallelogram bounded by the lines   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
7
Use the transformation x=5u53v,y=5u+53vx = \sqrt { 5 } u - \sqrt { \frac { 5 } { 3 } } v , y = \sqrt { 5 } u + \sqrt { \frac { 5 } { 3 } } v to evaluate the integral R(x2xy+y2)dA\iint _ { R } \left( x ^ { 2 } - x y + y ^ { 2 } \right) d A , where R is the region bounded by the ellipse x2xy+y2=5x ^ { 2 } - x y + y ^ { 2 } = 5 .

A) 5π3\frac { 5 \pi } { \sqrt { 3 } }
B) 253\frac { 25 } { \sqrt { 3 } }
C) 100π33/2\frac { 100 \pi } { 3 ^ { 3 / 2 } }
D) 25π3\frac { 25 \pi } { \sqrt { 3 } }
E) 5π23\frac { 5 \pi ^ { 2 } } { \sqrt { 3 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
8
Identify the surface with equation Identify the surface with equation
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
9
Find the Jacobian of the transformation. Find the Jacobian of the transformation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
10
Evaluate Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V where f(x,y,z)=7yf ( x , y , z ) = 7 y and T is the region bounded by the paraboloid y=x2+z2y = x ^ { 2 } + z ^ { 2 } and the plane y=1y = 1

A) 73\frac { 7 } { 3 } π\pi
B) 17\frac { 1 } { 7 } π\pi
C) 493\frac { 49 } { 3 } π\pi
D) 77 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
11
Use spherical coordinates to find the volume of the solid that lies within the sphere Use spherical coordinates to find the volume of the solid that lies within the sphere   above the xy-plane and below the cone   . Round the answer to two decimal places. above the xy-plane and below the cone Use spherical coordinates to find the volume of the solid that lies within the sphere   above the xy-plane and below the cone   . Round the answer to two decimal places. . Round the answer to two decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
12
Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where R is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas y=2,xy=4;x=uv,y=vy = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

A) 9.447
B) 3.296
C) 8.841
D) 4.447
E) 5.088
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
13
Use spherical coordinate to find the volume above the cone Use spherical coordinate to find the volume above the cone   and inside sphere   . and inside sphere Use spherical coordinate to find the volume above the cone   and inside sphere   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the moment of inertia with respect to a diameter of the base of a solid hemisphere of radius 3 with constant mass density function Find the moment of inertia with respect to a diameter of the base of a solid hemisphere of radius 3 with constant mass density function
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
15
Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where T is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=2z = 2 and z=5z = 5

A) 22 π\pi
B) 1414 π\pi
C) 2121 π\pi
D) 33 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
16
Use the given transformation to evaluate the integral. R(x+y)dA\iint _ { R } ( x + y ) d A , where R is the square with vertices (0, 0), (4, 6), (6, 4- 4 ), (10, 2) and x=4u+6v,y=6u4vx = 4 u + 6 v , y = 6 u - 4 v

A) 208
B) 52
C) 343
D) 42
E) 312
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
17
Use spherical coordinates to evaluate Bx2+y2+z2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V where B is the ball x2+y2+z28x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 8

A) 512 π \pi
B) 8 π \pi
C) 64 π \pi
D) 1024 π \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
18
The sketch of the solid is given below. Given a=5a = 5 , write the inequalities that describe it.  <strong>The sketch of the solid is given below. Given  a = 5  , write the inequalities that describe it.  </strong> A) None of these B)  r ^ { 2 } - 5 \leq z \leq r ^ { 2 }  C)  r ^ { 2 } \leq z \leq 5  D)  r ^ { 2 } \leq z \leq 5 + r ^ { 2 }  E)  r ^ { 2 } \leq z \leq 5 - r ^ { 2 }

A) None of these
B) r25zr2r ^ { 2 } - 5 \leq z \leq r ^ { 2 }
C) r2z5r ^ { 2 } \leq z \leq 5
D) r2z5+r2r ^ { 2 } \leq z \leq 5 + r ^ { 2 }
E) r2z5r2r ^ { 2 } \leq z \leq 5 - r ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
19
Identify the surface with equation Identify the surface with equation
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the mass of a solid hemisphere of radius 5 if the mass density at any point on the solid is directly proportional to its distance from the base of the solid.

A) 6254\frac { 625 } { 4 } k π \pi
B) 2525 k π \pi
C) 254\frac { 25 } { 4 } k π \pi
D) 1254\frac { 125 } { 4 } k π \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
21
Evaluate the integral Bf(x,y,z)dV\iiint _ { B } f ( x , y , z ) d V where f(x,y,z)=xy2+yz2f ( x , y , z ) = x y ^ { 2 } + y z ^ { 2 } and B={(x,y,z)0x2,5y5,0z3}B = \{ ( x , y , z ) \mid 0 \leq x \leq 2 , - 5 \leq y \leq 5,0 \leq z \leq 3 \} with respect to x, y, and z, in that order.

A) 120
B) 620
C) 180
D) 500
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
22
The joint density function for a pair of random variables The joint density function for a pair of random variables   and   is given.   Find the value of the constant   . and The joint density function for a pair of random variables   and   is given.   Find the value of the constant   . is given. The joint density function for a pair of random variables   and   is given.   Find the value of the constant   . Find the value of the constant The joint density function for a pair of random variables   and   is given.   Find the value of the constant   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
23
Express the integral as an iterated integral of the form Express the integral as an iterated integral of the form   where E is the solid bounded by the surfaces    where E is the solid bounded by the surfaces Express the integral as an iterated integral of the form   where E is the solid bounded by the surfaces    Express the integral as an iterated integral of the form   where E is the solid bounded by the surfaces
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the moment of inertia about the y-axis for a cube of constant density 3 and side length Find the moment of inertia about the y-axis for a cube of constant density 3 and side length   if one vertex is located at the origin and three edges lie along the coordinate axes. if one vertex is located at the origin and three edges lie along the coordinate axes.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
25
Use cylindrical coordinates to evaluate 2204x2016x2y2zdzdydx\int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } z d z d y d x

A) 1212 π\pi
B) 112112 π\pi
C) 32\frac { 3 } { 2 } π\pi
D) 1414 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
26
Evaluate the iterated integral Evaluate the iterated integral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
27
The joint density function for random variables The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. and The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. is The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. for The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. and The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. otherwise. Find the value of the constant The joint density function for random variables   and   is   for   and   otherwise. Find the value of the constant   . Round the answer to the nearest thousandth. .
Round the answer to the nearest thousandth.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the center of mass of a homogeneous solid bounded by the paraboloid Find the center of mass of a homogeneous solid bounded by the paraboloid   and  and Find the center of mass of a homogeneous solid bounded by the paraboloid   and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
29
Calculate the iterated integral. 0x0101y28ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 8 y \sin x d z d y d x

A) 8
B) 316\frac { 3 } { 16 }
C) 00
D) 83\frac { 8 } { 3 }
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the region E for which the triple integral Find the region E for which the triple integral   is a maximum. is a maximum.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use cylindrical or spherical coordinates, whichever seems more appropriate, to evaluate EzdV\iiint _ { E } z d V where E lies above the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and below the plane z=2z = 2 .

A) - 160.28
B) 175.37
C) 66.9966.99
D) 176.38
E) 175.93
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
32
Evaluate the triple integral. Round your answer to one decimal place. Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . lies under the plane Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . and above the region in the Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . -plane bounded by the curves Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . , and Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
33
Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 .

A) 8.38.3
B) 183183
C) 2.52.5
D) 15.315.3
E) 11.311.3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find the mass of the solid S bounded by the paraboloid z=6x2+6y2z = 6 x ^ { 2 } + 6 y ^ { 2 } and the plane z=5z = 5 if S has constant density 3.

A) 16.25
B) 15.07
C) 24.91
D) 13.92
E) 19.63
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
35
Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where E is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xy-plane and below the plane z=x+4z = x + 4 .

A) 8.57
B) 0
C) 3.4
D) 9.19
E) 0.54
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
36
Evaluate the triple integral. Round your answer to one decimal place. Evaluate the triple integral. Round your answer to one decimal place.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
37
Use cylindrical coordinates to find the volume of the solid that the cylinder Use cylindrical coordinates to find the volume of the solid that the cylinder   cuts out of the sphere of radius 3 centered at the origin. cuts out of the sphere of radius 3 centered at the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the mass of the solid E, if E is the cube given by Find the mass of the solid E, if E is the cube given by   and the density function   is   . and the density function Find the mass of the solid E, if E is the cube given by   and the density function   is   . is Find the mass of the solid E, if E is the cube given by   and the density function   is   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
39
Express the volume of the wedge in the first octant that is cut from the cylinder Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   . by the planes Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   . and Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   . as an iterated integral with respect to Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   . , then to Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   . , then to Express the volume of the wedge in the first octant that is cut from the cylinder   by the planes   and   as an iterated integral with respect to   , then to   , then to   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
40
Use cylindrical coordinates to evaluate Ex2+y2dV\iiint _ { E } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where E is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=6 and z=5z = - 6 \text { and } z = 5 . Round the answer to two decimal places.

A) 2878.332878.33
B) 2218.41
C) 2931.90
D) 2818.41
E) 2431.90
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find the area of the surface. The part of the surface Find the area of the surface. The part of the surface   that lies within the cylinder   . that lies within the cylinder Find the area of the surface. The part of the surface   that lies within the cylinder   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the center of mass of a lamina in the shape of an isosceles right triangle with equal sides of length a=15a = 15 if the density at any point is proportional to the square of the distance from the vertex opposite the hypotenuse. Assume the vertex opposite the hypotenuse is located at (0,0)( 0,0 ) , and that the sides are along the positive axes.

A) (6,6)( 6,6 )
B) (6,15)( 6,15 )
C) (5,6)( 5,6 )
D) (15,15)( 15,15 )
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find the area of the part of the plane Find the area of the part of the plane   that lies in the first octant. that lies in the first octant.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the area of the surface S where S is the part of the plane Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  that lies above the triangular region with vertices Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and  , and Find the area of the surface S where S is the part of the plane   that lies above the triangular region with vertices     , and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
45
Sketch the solid whose volume is given by the integral Sketch the solid whose volume is given by the integral   Evaluate the integral. Evaluate the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
46
Express the triple integral Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and  and Express the triple integral   as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes       and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find the area of the surface S where S is the part of the surface Find the area of the surface S where S is the part of the surface   that lies inside the cylinder  that lies inside the cylinder Find the area of the surface S where S is the part of the surface   that lies inside the cylinder
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the area of the surface. The part of the surface z=4x2y2z = 4 - x ^ { 2 } - y ^ { 2 } that lies above the xy-plane.

A) (1717)( \sqrt { 17 } - 17 )
B) 16\frac { 1 } { 6 } π(17171)\pi ( 17 \sqrt { 17 } - 1 )
C) 16\frac { 1 } { 6 } (17+1)( \sqrt { 17 } + 1 )
D) π(17171)\pi ( 17 \sqrt { 17 } - 1 )
E) 16\frac { 1 } { 6 } (1717+1)( 17 \sqrt { 17 } + 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the area of the part of hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

A) (828235)π( 82 \sqrt { 82 } - 3 \sqrt { 5 } ) \pi
B) (8282+55)π( 82 \sqrt { 82 } + 5 \sqrt { 5 } ) \pi
C) 29\frac { 2 } { 9 } (828255)( 82 \sqrt { 82 } - 5 \sqrt { 5 } )
D) 29\frac { 2 } { 9 } (828235)π( 82 \sqrt { 82 } - 3 \sqrt { 5 } ) \pi
E) 29\frac { 2 } { 9 } (828255)π( 82 \sqrt { 82 } - 5 \sqrt { 5 } ) \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find the area of the surface S where S is the part of the sphere Find the area of the surface S where S is the part of the sphere   that lies to the right of the xz-plane and inside the cylinder  that lies to the right of the xz-plane and inside the cylinder Find the area of the surface S where S is the part of the sphere   that lies to the right of the xz-plane and inside the cylinder
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the area of the part of the plane Find the area of the part of the plane   that lies inside the cylinder   . that lies inside the cylinder Find the area of the part of the plane   that lies inside the cylinder   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the area of the surface. The part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies above the plane z=1z = 1 .

A) 24π24 \pi
B) π16\frac { \pi } { 16 }
C) 2424
D) π\pi
E) 24π24 - \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the area of the part of the sphere x2+y2+z2=25zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 z that lies inside the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

A) 11.5π11.5 \pi
B) 9.5π9.5 \pi
C) 25π25 \pi
D) 5π5 \pi
E) 15π15 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
54
Sketch the solid bounded by the graphs of the equations Sketch the solid bounded by the graphs of the equations   and   , and then use a triple integral to find the volume of the solid. and Sketch the solid bounded by the graphs of the equations   and   , and then use a triple integral to find the volume of the solid. , and then use a triple integral to find the volume of the solid.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
55
Find the area of the surface. Round your answer to three decimal places. z=z = 43\frac { 4 } { 3 } (x2/3+y2/3),0x5,0y3\left( x ^ { 2 / 3 } + y ^ { 2 / 3 } \right) , 0 \leq x \leq 5,0 \leq y \leq 3

A) 70.049270.0492
B) 62.370262.3702
C) 60.049260.0492
D) 80.370280.3702
E) 85.370285.3702
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
56
Sketch the solid whose volume is given by the iterated integral Sketch the solid whose volume is given by the iterated integral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the exact area of the surface. z=x2+2y,0x1,0y2z = x ^ { 2 } + 2 y , 0 \leq x \leq 1,0 \leq y \leq 2 .

A) 5ln(3)4\frac { 5 \ln ( 3 ) } { 4 }
B) 54\frac { 5 } { 4 }
C) 3ln(5)3 - \ln ( 5 )
D) 3+54ln(5)3 + \frac { 5 } { 4 } \ln ( 5 )
E) 2+53ln(4)2 + \frac { 5 } { 3 } \ln ( 4 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find the area of the surface S where S is the part of the sphere Find the area of the surface S where S is the part of the sphere   that lies inside the cylinder  that lies inside the cylinder Find the area of the surface S where S is the part of the sphere   that lies inside the cylinder
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
59
Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder   in the first octant and the plane   having mass density given by  in the first octant and the plane Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder   in the first octant and the plane   having mass density given by  having mass density given by Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder   in the first octant and the plane   having mass density given by
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
60
Describe the region whose area is given by the integral. Describe the region whose area is given by the integral.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the mass and the moments of inertia Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and the radii of gyration Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  for the lamina occupying the region R, where R is the region bounded by the graphs of the equations Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and having the mass density Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
62
Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  and Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density  and having the mass density Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of       and   and having the mass density
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
63
Use polar coordinates to find the volume of the solid inside the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and the ellipsoid 6x2+6y2+z2=646 x ^ { 2 } + 6 y ^ { 2 } + z ^ { 2 } = 64 .

A) 853.187853.187
B) 903.187903.187
C) 1003.1871003.187
D) 753.187753.187
E) 1103.1871103.187
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the mass of the lamina that occupies the region Find the mass of the lamina that occupies the region   and has the given density function. Round your answer to two decimal places.   and has the given density function. Round your answer to two decimal places. Find the mass of the lamina that occupies the region   and has the given density function. Round your answer to two decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density  and having the mass density Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations     and   and having the mass density
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
66
Use a double integral to find the area of the region R where R is bounded by the circle r=6sinθr = 6 \sin \theta

A) 3636 π\pi
B) 99 π\pi
C) 1818 π\pi
D) 66 π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
67
A swimming pool is circular with a 6060 -ft diameter. The depth is constant along east-west lines and increases linearly from 33 ft at the south end to 99 ft at the north end. Find the volume of water in the pool.

A) 5410πft35410 \pi \mathrm { ft } ^ { 3 }
B) 5500πft35500 \pi \mathrm { ft } ^ { 3 }
C) 5400πft35400 \pi \mathrm { ft } ^ { 3 }
D) 5600πft35600 \pi \mathrm { ft } ^ { 3 }
E) 5700πft35700 \pi \mathrm { ft } ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the center of mass of the system comprising masses mk located at the points Pk in a coordinate plane. Assume that mass is measured in grams and distance is measured in centimeters.
m1 = 4, m2 = 3, m3 = 2
P1(-3, -3), P2(0, 3), P3(-2, -1)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
69
Find the center of mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola y=1x2y = 1 - x ^ { 2 } and the x-axis. ρ(x,y)=4y\rho ( x , y ) = 4 y

A) (0,0.57)( 0,0.57 )
B) (4,46.44)( 4,46.44 )
C) (12,0.57)( 12,0.57 )
D) (8,4)( 8,4 )
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
70
Evaluate the integral by changing to polar coordinates. Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. is the region bounded by the semicircle Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. and the Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. -axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
71
An electric charge is spread over a rectangular region R={(x,y)0x3,0y4}.R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 4 \} . Find the total charge on R if the charge density at a point (x,y)( x , y ) in R (measured in coulombs per square meter) is σ(x,y)=x2+4y3\sigma ( x , y ) = x ^ { 2 } + 4 y ^ { 3 }

A) 804804 coulombs
B) 9191 coulombs
C) 300300 coulombs
D) 265265 coulombs
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
72
Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 } and the plane z=1z = 1 .

A) 6π6 \pi
B) 13π13 \pi
C) 3π3 \pi
D) 4.5π4.5 \pi
E) 2π2 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find the mass and the center of mass of the lamina occupying the region R, where R is the triangular region with vertices (0,0)( 0,0 ) \text {, } (2,5)( 2,5 ) and (4,0)( 4,0 ) , and having the mass density ρ(x,y)=x\rho ( x , y ) = x

A) m=m = 2525 , (xˉ,yˉ)=(73,53)( \bar { x } , \bar { y } ) = \left( \frac { 7 } { 3 } , \frac { 5 } { 3 } \right)
B) m=20m = 20 , (xˉ,yˉ)=(73,53)( \bar { x } , \bar { y } ) = \left( \frac { 7 } { 3 } , \frac { 5 } { 3 } \right)
C) m=m = 2525 , (xˉ,yˉ)=(53,73)( \bar { x } , \bar { y } ) = \left( \frac { 5 } { 3 } , \frac { 7 } { 3 } \right)
D) m=20m = 20 , (xˉ,yˉ)=(53,73)( \bar { x } , \bar { y } ) = \left( \frac { 5 } { 3 } , \frac { 7 } { 3 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
74
Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 3309y2(x2+y2)3/2dxdy\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .

A) 152.68152.68
B) 5.655.65
C) 14.1414.14
D) 48.648.6
E) 381.7381.7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
75
A lamina occupies the part of the disk A lamina occupies the part of the disk   in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis. in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
76
Use polar coordinates to find the volume of the sphere of radius 33 . Round to two decimal places.

A) 183.33183.33
B) 113.1113.1
C) 173.33173.33
D) 153.33153.33
E) 133.1133.1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
77
Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina. Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y)=3\rho ( x , y ) = 3

A) 32\frac { 3 } { 2 }
B) 22
C) 27
D) 272\frac { 27 } { 2 }
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
79
Find the mass and the moments of inertia Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  and the radii of gyration Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  for the lamina occupying the region R, where R is the rectangular region with vertices Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  and Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density  , and having uniform density Find the mass and the moments of inertia     and   and the radii of gyration   and   for the lamina occupying the region R, where R is the rectangular region with vertices       and   , and having uniform density
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
80
Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y29x ^ { 2 } + y ^ { 2 } \leq 9 .

A) 40.5π40.5 \pi
B) 27π27 \pi
C) 81π81 \pi
D) 324π324 \pi
E) 162π162 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 124 في هذه المجموعة.