Deck 13: Vector Functions

ملء الشاشة (f)
exit full mode
سؤال
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
The following table gives coordinates of a particle moving through space along a smooth curve. txyz0.55.89.14.3112.614.916.81.525.621.229.4239.239.537.92.542.442.443\begin{array} { | c | c | c | c | } \hline \mathbf { t } & x & y & z \\\hline 0.5 & 5.8 & 9.1 & 4.3 \\\hline 1 & 12.6 & 14.9 & 16.8 \\\hline 1.5 & 25.6 & 21.2 & 29.4 \\\hline 2 & 39.2 & 39.5 & 37.9 \\\hline 2.5 & 42.4 & 42.4 & 43 \\\hline\end{array} Find the average velocity over the time interval [2.5,1.5][ 2.5,1.5 ] .

A) v=13.6i+21.12j+16.8k\mathbf { v } = 13.6 \mathbf { i } + 21.12 \mathbf { j } + 16.8 \mathbf { k }
B) v=13.6i+16.8j+16.8kv = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 16.8 \mathbf { k }
C) v=13.6i+16.8j+13.6k\mathbf { v } = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 13.6 \mathbf { k }
D) v=16.8i+21.12j+13.6k\mathbf { v } = 16.8 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
E) v=21.12i+21.12j+13.6k\mathbf { v } = 21.12 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
سؤال
What force is required so that a particle of mass mm has the following position function?. r(t)=5t3i+10t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

A) F(t)=30 mti+20 mj+42 mtk\mathrm { F } ( t ) = 30 \mathrm {~m} t \mathbf { i } + 20 \mathrm {~m} \mathbf { j } + 42 \mathrm {~m} t \mathbf { k }
B) F(t)=30mt2i+20mj+42mtk\mathrm { F } ( t ) = 30 m t ^ { 2 } \mathbf { i } + 20 m \mathbf { j } + 42 m t \mathbf { k }
C) F(t)=42mti+42mj+20mtk\mathrm { F } ( t ) = 42 m t \mathbf { i } + 42 m \mathbf { j } + 20 m t \mathbf { k }
D) F(t)=mt2i+5mtj+10mt2k\mathrm { F } ( t ) = m t ^ { 2 } \mathbf { i } + 5 m t \mathbf { j } + 10 m t ^ { 2 } \mathbf { k }
E) F(t)=30mti+20mj+tk\mathrm { F } ( t ) = 30 m t \mathbf { i } + 20 m \mathbf { j } + t \mathbf { k }
سؤال
Find the acceleration of a particle with the following position function. r(t)={2t22,4t}\mathbf { r } ( t ) = \left\{ 2 t ^ { 2 } - 2,4 t \right\}

A) a(t)=4i\mathbf { a } ( t ) = 4 \mathbf { i }
B) a(t)=2ti+2j\mathbf { a } ( t ) = 2 t \mathbf { i } + 2 \mathbf { j }
C) a(t)=(2+4t)i2j\mathbf { a } ( t ) = ( 2 + 4 t ) \mathbf { i } - 2 \mathbf { j }
D) a(t)=2ij\mathbf { a } ( t ) = 2 \mathbf { i } - \mathbf { j }
E) a(t)=4ti+2j\mathbf { a } ( t ) = 4 t \mathbf { i } + 2 \mathbf { j }
سؤال
A force with magnitude 1212 N acts directly upward from the xy-plane on an object with mass 22 kg. The object starts at the origin with initial velocity v(0)=3i2j\mathbf { v } ( 0 ) = 3 \mathbf { i } - 2 \mathbf { j } . Find its position function.

A) r(t)=2t2i3t2j+12t3k\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - 3 t ^ { 2 } \mathbf { j } + 12 t ^ { 3 } \mathbf { k }
B) r(t)=2ti4tj+t2k\mathbf { r } ( t ) = 2 t \mathbf { i } - 4 t \mathbf { j } + t ^ { 2 } \mathbf { k }
C) r(t)=3ti2tj+\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j } + 33  k \text { k }
D) r(t)=3ti2tj\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j }
E) r(t)=5t3i4j+2k\mathbf { r } ( t ) = 5 t ^ { 3 } \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k }
سؤال
A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

A) d43.3d \approx 43.3 km
B) d350d \approx 350 km
C) d63.3d \approx 63.3 km
D) d433d \approx 433 km
E) d53.3d \approx 53.3 km
سؤال
Find the velocity of a particle with the given position function. r(t)=11e9ti+9e13tj\mathbf { r } ( t ) = 11 e ^ { 9 t } \mathbf { i } + 9 e ^ { - 13 t } \mathbf { j }

A) v(t)=e9ti+117e13tj\mathbf { v } ( t ) = e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
B) v(t)=99e9ti117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
C) v(t)=11e9ti+e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } + e ^ { - 13 t } \mathbf { j }
D) v(t)=11e9ti117e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
E) v(t)=99e9ti+117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
سؤال
A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

A) aT=5ta _ { T } = 5 t
B) aT=542ta _ { T } = 542 t
C) aT=42t+5a _ { T } = 42 t + 5
D) aT=55ta _ { T } = - 55 t
E) aT=42ta _ { T } = 42 t
سؤال
A particle moves with position function A particle moves with position function   . Find the acceleration of the particle.<div style=padding-top: 35px> . Find the acceleration of the particle.
سؤال
Find the position vector of a particle that has the given acceleration and the given initial velocity and position. Find the position vector of a particle that has the given acceleration and the given initial velocity and position.  <div style=padding-top: 35px>
سؤال
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et(cos8t,sin8t,8)\mathbf { r } ( t ) = e ^ { t } ( \cos 8 t , \sin 8 t , 8 )

A) aT=65eta _ { \mathbf { T } } = \sqrt { 65 } e ^ { t } , aN=865eta _ { \mathrm { N } } = 8 \sqrt { 65 } e ^ { t }
B) aT=865eta _ { \mathbf { T } } = 8 \sqrt { 65 } e ^ { t } , aN=65eta _ { \mathrm { N } } = \sqrt { 65 } e ^ { t }
C) aT=65eta _ { \mathbf { T } } = 65 e ^ { t } , aN(t)=8eta _ { \mathrm { N } } ( t ) = 8 e ^ { t }
D) aT=8eta _ { \mathbf { T } } = 8 e ^ { t } , aN=65eta _ { \mathrm { N } } = 65 e ^ { t }
سؤال
Find the acceleration of a particle with the given position function. r(t)=9sinti+10tj8costk\mathbf { r } ( t ) = 9 \sin t \mathbf { i } + 10 t \mathbf { j } - 8 \cos t \mathbf { k }

A) a(t)=9sinti9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } - 9 \cos t \mathbf { j }
B) a(t)=9sinti+9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 9 \cos t \mathbf { j }
C) a(t)=9sinti+10costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 10 \cos t \mathbf { k }
D) a(t)=9sinti+8costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 8 \cos t \mathbf { k }
E) a(t)=9sinti10tk\mathbf { a } ( t ) = 9 \sin t \mathbf { i } - 10 t \mathbf { k }
سؤال
A mortar shell is fired with a muzzle speed of 325 ft/sec. Find the angle of elevation of the mortar if the shell strikes a target located 1500 ft away. Round your answer to 2 decimal places.

A) 12.2212.22 ^ { \circ }
B) 0.640.64 ^ { \circ }
C) 13.5113.51 ^ { \circ }
D) 0.240.24 ^ { \circ }
سؤال
Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6kr ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

A) v(t)=1+100t2+100t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 100 t ^ { 10 } }
B) v(t)=1+100t+324t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + 324 t ^ { 9 } }
C) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = 1 + 100 t ^ { 2 } + 324 t ^ { 10 }
D) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 324 t ^ { 10 } }
E) v(t)=1+100t+t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + t ^ { 9 } }
سؤال
A particle moves with position function A particle moves with position function   . Find the normal component of the acceleration vector.<div style=padding-top: 35px> .
Find the normal component of the acceleration vector.
سؤال
Find the speed of a particle with the given position function. r(t)=52ti+e5tje5tk\mathbf { r } ( t ) = 5 \sqrt { 2 } t \mathbf { i } + e ^ { 5 t } \mathbf { j } - e ^ { - 5 t } \mathbf { k }

A) v(t)=5(e5t+e5t)| v ( t ) | = 5 \left( e ^ { 5 t } + e ^ { - 5 t } \right)
B) v(t)=(e5t+e5t)| v ( t ) | = \left( e ^ { 5 t } + e ^ { - 5 t } \right)
C) v(t)=5+5et+5et| v ( t ) | = \sqrt { 5 + 5 e ^ { t } + 5 e ^ { - t } }
D) v(t)=5(et+et)| v ( t ) | = 5 \left( e ^ { t } + e ^ { - t } \right)
E) v(t)=5+e5t+e50t| v ( t ) | = \sqrt { 5 + e ^ { 5 t } + e ^ { - 50 t } }
سؤال
A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 3030 m away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

A) v017 m/sv _ { 0 } \approx 17 \mathrm {~m} / \mathrm { s }
B) v022 m/sv _ { 0 } \approx 22 \mathrm {~m} / \mathrm { s } .
C) v042 m/sv _ { 0 } \approx 42 \mathrm {~m} / \mathrm { s } .
D) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s }
E) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s } .
سؤال
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k }

A) aT=0a _ { \mathbf { T } } = 0 aN=3a _ { \mathrm { N } } = 3
B) aT=5a _ { \mathbf { T } } = 5 aN=3a _ { \mathrm { N } } = 3
C) aT=0a _ { \mathbf { T } } = 0 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
D) aT=5a _ { \mathbf { T } } = 5 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
سؤال
The position function of a particle is given by r(t)=5t2,5t,5t2100t\mathbf { r } ( t ) = \left\langle 5 t ^ { 2 } , 5 t , 5 t ^ { 2 } - 100 t \right\rangle When is the speed a minimum?

A) t=5t = 5
B) t=30t = 30
C) t=20t = 20
D) t=0t = 0
E) t=10t = 10
سؤال
Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=12i7j\mathbf { a } ( t ) = 3 \mathbf { k } , \mathbf { v } ( 0 ) = 12 \mathbf { i } - 7 \mathbf { j }

A) v(t)=12ij+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - \mathbf { j } + 3 t \mathbf { k }
B) v(t)=12i7j+tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + t \mathbf { k }
C) v(t)=(12t9)i+7tk\mathbf { v } ( t ) = ( 12 t - 9 ) \mathbf { i } + 7 t \mathbf { k }
D) v(t)=i7j+3tk\mathbf { v } ( t ) = \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
E) v(t)=12i7j+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
سؤال
Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

A) 43\frac { 4 } { 3 }
B) 34\frac { 3 } { 4 }
C) 5116\frac { 51 } { 16 }
D) 1651\frac { 16 } { 51 }
سؤال
Find the scalar tangential and normal components of acceleration of a particle with position vector Find the scalar tangential and normal components of acceleration of a particle with position vector  <div style=padding-top: 35px>
سؤال
Find the curvature of y=x4y = x ^ { 4 } .

A) 12x2(116x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 - 16 x ^ { 6 } \right) ^ { 3 / 2 } }
B) 12x2(1+16x6)1/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
C) x2(1+x6)3/2\frac { | x | ^ { 2 } } { \left( 1 + x ^ { 6 } \right) ^ { 3 / 2 } }
D) x2(1+16x6)1/2\frac { | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
E) 12x2(1+16x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 3 / 2 } }
سؤال
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
سؤال
A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of   . a. What are the scalar tangential and normal components of acceleration of the projectile? b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?<div style=padding-top: 35px> .
a. What are the scalar tangential and normal components of acceleration of the projectile?
b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?
سؤال
Find the velocity and position vectors of an object with acceleration Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  <div style=padding-top: 35px> initial velocity Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  <div style=padding-top: 35px> and initial position Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  <div style=padding-top: 35px>
سؤال
Find the length of the curve r(t)=2ti+t2j+lntk\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } 1te31 \leq t \leq e ^ { 3 }

A) e6e ^ { 6 }
B) e3e ^ { 3 }
C) e6+2e ^ { 6 } + 2
D) e3+2e ^ { 3 } + 2
سؤال
For the curve given by r(t)=(4sint,5t,4cost)\mathbf { r } ( t ) = (4 \sin t , 5 t , 4 \mathrm { cos } t ) , find the unit normal vector. a(t)=2k,v(0)=10i9j\mathbf { a } ( t ) = 2 \mathbf { k } , \mathbf { v } ( 0 ) = 10 \mathbf { i } - 9 \mathbf { j }

A) (2sint,5,2cost)( 2 \sin t , 5 , - 2 \cos t)
B) (2sint,0,2cost)(- 2 \sin t , 0 , - 2 \cos t )
C) (sint29,0,cost29)\left( - \frac { \sin t } { \sqrt { 29 } } , 0 , - \frac { \cos t } { \sqrt { 29 } } \right)
D) (29sint,0,29cost)( \sqrt { 29 } \sin t , 0 , - \sqrt { 29 } \mathrm { cost } )
E) None of these
سؤال
Find the length of the curve r(t)=8ti+3costj+3sintk\mathbf { r } ( t ) = 8 t \mathbf { i } + 3 \cos t \mathbf { j } + 3 \sin t \mathbf { k } 0t2π0 \leq t \leq 2 \pi

A) 2732 \sqrt { 73 } π\pi
B) 73\sqrt { 73 } π\pi
C) 11\sqrt { 11 } π\pi
D) 2112 \sqrt { 11 } π\pi
سؤال
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by  <div style=padding-top: 35px> and Find the unit tangent and unit normal vectors   and   for the curve C defined by  <div style=padding-top: 35px> for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by  <div style=padding-top: 35px>
سؤال
Let C be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathbf { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to C corresponding to t. The plane determined by T and N is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1

A) z=2z = 2
B) y=3y = 3
C) 2x+3y+2z=12 x + 3 y + 2 z = 1
D) x=2x = 2
سؤال
Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

A) r(t(s))=(53126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 - \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
B) r(t(s))=(5+3126s)i+(89126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 - \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
C) r(t(s))=(5+3126s)i+(8+9126s)j+(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } + ( 6 s ) \mathbf { k }
D) r(t(s))=(5+3126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
E) r(t(s))=(5+3126s)i+(8+9126s)j(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - ( 6 s ) \mathbf { k }
سؤال
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   .<div style=padding-top: 35px> .
سؤال
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
سؤال
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> Sketch the graph of C, and show Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px> for Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  <div style=padding-top: 35px>
سؤال
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   .<div style=padding-top: 35px> .
سؤال
A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of <strong>A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of   </strong> A) Find the range of the projectile. B) What is the maximm height attained by the projectile? C) What is the speed of the projectile at impact? Round your answers to the nearest integer. <div style=padding-top: 35px>

A) Find the range of the projectile.
B) What is the maximm height attained by the projectile?
C) What is the speed of the projectile at impact?
Round your answers to the nearest integer.
سؤال
Find the length of the curve r(t)=2titj+tk\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } 2t1.- 2 \leq t \leq 1 .

A) 363 \sqrt { 6 }
B) 6\sqrt { 6 }
C) 262 \sqrt { 6 }
D) 666 \sqrt { 6 }
سؤال
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors.<div style=padding-top: 35px> Sketch the path of the object and its velocity and acceleration vectors.
سؤال
Find the curvature of the curve r(t)=2ti+6tj+9k\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 9 \mathbf { k } .

A) 1
B) 2102 \sqrt { 10 }
C) 11
D) 0
سؤال
Find parametric equations for the tangent line to the curve with parametric equations x=2tx = 2 t y=7t2y = 7 t ^ { 2 } z=4t3z = 4 t ^ { 3 } at the point with t=1t = 1

A) x=2+2tx = 2 + 2 t y=7+14ty = 7 + 14 t z=4+12tz = 4 + 12 t
B) x=2+2tx = 2 + 2 t y=7+7ty = 7 + 7 t z=4+4tz = 4 + 4 t
C) x=1+2tx = 1 + 2 t y=1+7ty = 1 + 7 t z=1+4tz = 1 + 4 t
D) x=1+2tx = 1 + 2 t y=1+14ty = 1 + 14 t z=1+12tz = 1 + 12 t
سؤال
Evaluate the integral. (e9ti+14tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 14 t \mathbf { j } + \ln t \mathbf { k } \right) d t

A) e9t9i+7t2j+t(lnt1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t - 1 ) \mathbf { k } + C
B) e9ti+7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
C) e9t9i+7t2j+t(lnt+9)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 9 ) \mathbf { k } + C
D) e9t9i7t2j+t(lnt+1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 1 ) \mathbf { k } + C
E) e9ti7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
سؤال
Find r(t)\mathbf { r } ( t ) satisfying the conditions for r(t)=5i+8tj6t2k\mathbf { r } ^ { \prime } ( t ) = 5 \mathbf { i } + 8 t \mathbf { j } - 6 t ^ { 2 } \mathbf { k } r(0)=i+j\mathbf { r } ( 0 ) = \mathbf { i } + \mathbf { j }

A) (5t+1)i+(4t2+1)j2t3k( 5 t + 1 ) \mathbf { i } + \left( 4 t ^ { 2 } + 1 \right) \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
B) (5t+1)i+(8t2+1)j6t3k( 5 t + 1 ) \mathbf { i } + \left( 8 t ^ { 2 } + 1 \right) \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
C) 5ti+4t2j2t3k5 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
D) 5ti+8t2j6t3k5 t \mathbf { i } + 8 t ^ { 2 } \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
سؤال
The figure shows a curve CC given by a vector function r(t)\mathbf { r } ( t ) . Choose the correct expression for r(4)\mathbf { r } ^ { \prime } ( 4 ) .  <strong>The figure shows a curve  C  given by a vector function  \mathbf { r } ( t )  . Choose the correct expression for  \mathbf { r } ^ { \prime } ( 4 )  .  </strong> A)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }  B)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }  C)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }  D)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }  E)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }  <div style=padding-top: 35px>

A) limh0r(4h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }
B) limh0r(4+h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }
C) limh0r(4+h)r(h)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }
D) limh0r(4h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }
E) limh0r(4+h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }
سؤال
If
r(t)=t,t9,t11\mathbf { r } ( t ) = \left\langle t , t ^ { 9 } , t ^ { 11 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t ) .

A) 0,110t9,72t7\left\langle 0,110 t ^ { 9 } , 72 t ^ { 7 } \right\rangle
B) 0,72t6,110t8\left\langle 0,72 t ^ { 6 } , 110 t ^ { 8 } \right\rangle
C) 0,72t7,110t9\left\langle0,72 t ^ { 7 } , 110 t ^ { 9 } \right\rangle
D) 0,110t8,72t6\left\langle0,110 t ^ { 8 } , 72 t ^ { 6 } \right\rangle
E) 1,9t6,11t8\left\langle 1,9 t ^ { 6 } , 11 t ^ { 8 } \right\rangle
سؤال
Find equations of the normal plane to Find equations of the normal plane to   at the point (2, 4, 8).<div style=padding-top: 35px> at the point (2, 4, 8).
سؤال
Find r(t)\mathbf { r } ( t ) satisfying the conditions for rt(t)=9e9ti+9etj+etk\mathbf { r } ^ { t } ( t ) = 9 e ^ { 9 t } \mathbf { i } + 9 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } r(0)=ij+9k\mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 9 \mathbf { k }

A) (e9t+1)i(9et+1)j+(et+9)k\left( e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } + 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
B) 9e9ti(9et+8)j+(et+8)k9 e ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } + 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
C) e9ti(9et8)j+(et+8)ke ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } - 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
D) (9e9t+1)i(9et1)j+(et+9)k\left( 9 e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } - 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
سؤال
The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×r)rmrt×rt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime \prime } \right) \cdot \mathbf { r } ^ { m \prime } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

A) 2729\frac { 27 } { 29 }
B) 1029\frac { 10 } { 29 }
C) 5029\frac { 50 } { 29 }
D) 729\frac { 7 } { 29 }
سؤال
Find the integral (2ti+9t2j+7k)dt\int \left( 2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } \right) d t

A) 2t2i+9t3j+7tk+C2 t ^ { 2 } \mathbf { i } + 9 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
B) t2i+3t3j+7tk+Ct ^ { 2 } \mathbf { i } + 3 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
C) 2ti+9t2j+7k+C2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } + \mathbf { C }
D) 2i+18tj+C2 \mathbf { i } + 18 t \mathbf { j } + \mathbf { C }
سؤال
Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t y=7t2y = 7 t ^ { 2 } z=8t3z = 8 t ^ { 3 } at the point with t=1t = 1

A) x=3+3tx = 3 + 3 t y=7+14ty = 7 + 14 t z=8+24tz = 8 + 24 t
B) x=1+3tx = 1 + 3 t y=1+14ty = 1 + 14 t z=1+24tz = 1 + 24 t
C) x=1+3tx = 1 + 3 t y=1+7ty = 1 + 7 t z=1+8tz = 1 + 8 t
D) x=3+3tx = 3 + 3 t y=7+7ty = 7 + 7 t z=8+8tz = 8 + 8 t
سؤال
If r(t)=i+tcosπtj+2sinπtk\mathbf { r } ( t ) = \mathbf { i } + t \cos \pi t \mathbf { j } + 2 \sin \pi t\mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

A) i2π2j1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 1 } { \pi } \mathbf { k }
B) i+2π2j+4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
C) i+2π2j4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 4 } { \pi } \mathbf { k }
D) i2π2j+1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 1 } { \pi } \mathbf { k }
E) i2π2j+4πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
سؤال
Use Simpson's Rule with n = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places.

A) 14.82414.824
B) 7.20417.2041
C) 7.41067.4106
D) 6.57066.5706
E) None of these
سؤال
Find r(t)\mathbf { r } ( t ) if r(t)=sinticostj+6tk\mathbf { r } ^ { \prime } ( t ) = \sin t \mathbf { i } - \cos t \mathbf { j } + 6 t \mathbf { k } and r(0)=i+j+5kr ( 0 ) = i + j + 5 k .

A) (cost+2)i+(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
B) (cost)i+(sint1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
C) (cost)i+(sint+1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t + 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
D) (cost+2)i(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
E) (cost+1)i(sint1)j+(3t2+5)k( - \cos t + 1 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
سؤال
Find the arc length function Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s.<div style=padding-top: 35px> for the curve defined by Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s.<div style=padding-top: 35px> for Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s.<div style=padding-top: 35px> Then use this result to find a parametrization of C in terms of s.
سؤال
The helix r1(t)=8costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 8 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(8+t)i+10t2j+9t3k\mathbf { r } _ { 2 } ( t ) = ( 8 + t ) \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 9 t ^ { 3 } \mathbf { k } at the point (8,0,0)( 8,0,0 ) . Find the angle of intersection.

A) π3\frac { \pi } { 3 }
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) 00
E) None of these
سؤال
Find the unit tangent vector T(t)\mathbf { T } ( t ) for r(t)=2ti+6tj+3tk\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 3 t \mathbf { k } at t=1t = - 1

A) 2i6j3k- 2 \mathbf { i } - 6 \mathbf { j } - 3 \mathbf { k }
B) 27\frac { 2 } { 7 } i + 67\frac { 6 } { 7 } j + 37\frac { 3 } { 7 } k
C) 249- \frac { 2 } { 49 } i 649- \frac { 6 } { 49 } j 349- \frac { 3 } { 49 } k
D) 2i+6j+3k2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }
سؤال
Find the point(s) on the graph of Find the point(s) on the graph of   at which the curvature is zero.<div style=padding-top: 35px> at which the curvature is zero.
سؤال
Find the unit tangent vector T(t)T ( t ) . r(t)=2sint,4t,2cost\mathbf { r } ( t ) = \langle 2 \sin t , 4 t , 2 \cos t \rangle

A) cost25,25,sint25\left\langle\frac { \cos t } { 2 \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { 2 \sqrt { 5 } } \right\rangle
B) 3cost,6,3sint\langle3 \cos t , 6 , - 3 \sin t \rangle
C) cost5,25,sint5\left\langle\frac { \cos t } { \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { \sqrt { 5 } } \right\rangle
D) 35cost,6,35sint\langle3 \sqrt { 5 } \cos t , 6 , - 3 \sqrt { 5 } \sin t \rangle
E) cost25,425,3sint25\left\langle- \frac { \cos t } { 2 \sqrt { 5 } } , \frac { 4 } { 2 \sqrt { 5 } } , \frac { 3 \sin t } { 2 \sqrt { 5 } } \right\rangle
سؤال
At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=43 x + 9 y - 4 z = 4 ?

A) (1,3,9)( - 1 , - 3,9 )
B) (9,18,2)( 9,18 , - 2 )
C) (1,9,1)( - 1 , - 9,1 )
D) (18,9,1)( - 18,9,1 )
E) (9,1,1)( - 9,1,1 )
سؤال
The curvature of the curve given by the vector function rr is k(t)=r(t)×r(t)r(t)3k ( t ) = \frac { \left| \mathbf { r } ^ { \prime } ( t ) \times \mathbf { r } ^ { \prime \prime } ( t ) \right| } { \left| \mathbf { r } ^ { \prime } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=13t,et,et\mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right\rangle
at the point (0,1,1)( 0,1,1 ) .

A) 15\sqrt { 15 }
B) 215\frac { \sqrt { 2 } } { 15 }
C) 15215 \sqrt { 2 }
D) 152\frac { 15 } { \sqrt { 2 } }
E) 1515\frac { \sqrt { 15 } } { 15 }
سؤال
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t11,y=t3,z=t6;(4,4,4)x = t ^ { 11 } , y = t ^ { 3 } , z = t ^ { 6 } ; ( 4,4,4 )

A) x=411t,y=4+3t,z=4+6tx = 4 - 11 t , y = 4 + 3 t , z = 4 + 6 t
B) x=4+11t,y=4+3t,z=4+6tx = 4 + 11 t , y = 4 + 3 t , z = 4 + 6 t
C) x=4+11t,y=4+3t,z=46tx = 4 + 11 t , y = 4 + 3 t , z = 4 - 6 t
D) x=11t,y=4+3t,z=4+6tx = 11 t , y = 4 + 3 t , z = 4 + 6 t
E) x=4+11t,y=43t,z=4+6tx = 4 + 11 t , y = 4 - 3 t , z = 4 + 6 t
سؤال
Given Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px>
a. Find Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> .
b. Sketch the curve defined by r and the vectors Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.<div style=padding-top: 35px> on the same set of axes.
سؤال
Find the domain of the vector function r(t)=8ti+1t4j\mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 4 } \mathbf { j } .

A) (,4)(4,)( - \infty , - 4 ) \cup ( - 4 , \infty )
B) (,8)(8,)( - \infty , 8 ) \cup ( 8 , \infty )
C) (,8)(8,)( - \infty , - 8 ) \cup ( - 8 , \infty )
D) (,4)(4,)( - \infty , 4 ) \cup ( 4 , \infty )
سؤال
Find the unit tangent vector for the curve given by r(t)=17t7,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 7 } t ^ { 7 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .

A) t6,t2,1t10+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 10 } + t ^ { 4 } } }
B) t6,t2,16t12+4t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { 6 t ^ { 12 } + 4 t ^ { 4 } + 1 } }
C) t6,t2,1t12+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } } }
D) t6,t2,1t12+t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } + 1 } }
E) None of these
سؤال
Find the derivative of the vector function. Find the derivative of the vector function.  <div style=padding-top: 35px>
سؤال
If If   and   , find   .<div style=padding-top: 35px> and If   and   , find   .<div style=padding-top: 35px> , find If   and   , find   .<div style=padding-top: 35px> .
سؤال
Find Find   and   for  <div style=padding-top: 35px> and Find   and   for  <div style=padding-top: 35px> for Find   and   for  <div style=padding-top: 35px>
سؤال
Find the point of intersection of the tangent lines to the curve Find the point of intersection of the tangent lines to the curve   , at the points where   and   .<div style=padding-top: 35px> , at the points where Find the point of intersection of the tangent lines to the curve   , at the points where   and   .<div style=padding-top: 35px> and Find the point of intersection of the tangent lines to the curve   , at the points where   and   .<div style=padding-top: 35px> .
سؤال
The curves The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree.<div style=padding-top: 35px> and The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree.<div style=padding-top: 35px> intersects at the origin. Find their angle of intersection correct to the nearest degree.
سؤال
Let r(t)=6t,(et2)t,ln(t+1)\mathbf { r } ( t ) = \left\langle \sqrt { 6 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\rangle . Find the domain of rr .

A) (2,6]( - 2,6 ]
B) (2,0)(0,6]( - 2,0 ) \cup ( 0,6 ]
C) (6,]( 6 , \infty ]
D) (,2)( - \infty , - 2 )
E) [6,0)(0,2)[ 6,0 ) \cup ( 0,2 )
سؤال
Find an expression for Find an expression for   .<div style=padding-top: 35px> .
سؤال
Find Find   if   and   .<div style=padding-top: 35px> if Find   if   and   .<div style=padding-top: 35px> and Find   if   and   .<div style=padding-top: 35px> .
سؤال
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,5,5)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,5,5 )

A) x=0,y=524t,z=5+24tx = 0 , y = 5 - 24 t , z = 5 + 24 t
B) x=1,y=5+24t,z=424tx = 1 , y = 5 + 24 t , z = 4 - 24 t
C) x=t,y=5+24t,z=524tx = t , y = 5 + 24 t , z = 5 - 24 t
D) x=t,y=524t,z=5+24tx = t , y = 5 - 24 t , z = 5 + 24 t
E) x=1,y=5+24t,z=524tx = 1 , y = 5 + 24 t , z = 5 - 24 t
سؤال
Find Find   and   for  <div style=padding-top: 35px> and Find   and   for  <div style=padding-top: 35px> for Find   and   for  <div style=padding-top: 35px>
سؤال
Find the domain of the vector function r(t)=9t,1t3,lnt\mathbf { r } ( t ) = \left\langle 9 \sqrt { t } , \frac { 1 } { t - 3 } , \ln t \right\rangle .

A) [0,3)(3,9)(9,)[ 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
B) (0,3)(3,)( 0,3 ) \cup ( 3 , \infty )
C) (0,3)(3,9)(9,)( 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
D) (0,9)(9,)( 0,9 ) \cup ( 9 , \infty )
سؤال
Find the limit. limt0+10cost,30sint,5tlnt\lim _ { t \rightarrow 0 ^ { + } } \langle10 \cos t , 30 \sin t , 5 t \ln t\rangle

A) r(t)=10k\mathbf { r } ( t ) = 10 \mathbf { k }
B) r(t)=10j\mathbf { r } ( t ) = 10 \mathbf { j }
C) r(t)=10i5k\mathbf { r } ( t ) = 10 \mathbf { i } - 5 \mathbf { k }
D) r(t)=10i+30j+5k\mathbf { r } ( t ) = 10 \mathbf { i } + 30 \mathbf { j } + 5 \mathbf { k }
E) r(t)=10i\mathbf { r } ( t ) = 10 \mathbf { i }
سؤال
Find the derivative Find the derivative  <div style=padding-top: 35px>
سؤال
Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=4i+sintj+costk\mathbf { r } ( t ) = 4 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

A) r(t)=sintjcostkr ^ { \prime \prime } ( t ) = \sin t j - \cos t \mathrm { k }
B) r(t)=4sintjcostkr ^ { \prime \prime } ( t ) = - 4 \sin t \mathrm { j } - \cos t \mathrm { k }
C) r(t)=4costjsintkr ^ { \prime \prime } ( t ) = - 4 \cos t j - \sin t \mathrm { k }
D) r(t)=costjsintkr ^ { \prime \prime } ( t ) = \cos t j - \sin t \mathrm { k }
E) r(t)=sintj+4costkr ^ { \prime \prime } ( t ) = - \sin t \mathrm { j } + 4 \cos t \mathrm { k }
سؤال
Find the integral Find the integral  <div style=padding-top: 35px>
سؤال
Find Find   for the function given.  <div style=padding-top: 35px> for the function given. Find   for the function given.  <div style=padding-top: 35px>
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/93
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 13: Vector Functions
1
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
not answered
2
The following table gives coordinates of a particle moving through space along a smooth curve. txyz0.55.89.14.3112.614.916.81.525.621.229.4239.239.537.92.542.442.443\begin{array} { | c | c | c | c | } \hline \mathbf { t } & x & y & z \\\hline 0.5 & 5.8 & 9.1 & 4.3 \\\hline 1 & 12.6 & 14.9 & 16.8 \\\hline 1.5 & 25.6 & 21.2 & 29.4 \\\hline 2 & 39.2 & 39.5 & 37.9 \\\hline 2.5 & 42.4 & 42.4 & 43 \\\hline\end{array} Find the average velocity over the time interval [2.5,1.5][ 2.5,1.5 ] .

A) v=13.6i+21.12j+16.8k\mathbf { v } = 13.6 \mathbf { i } + 21.12 \mathbf { j } + 16.8 \mathbf { k }
B) v=13.6i+16.8j+16.8kv = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 16.8 \mathbf { k }
C) v=13.6i+16.8j+13.6k\mathbf { v } = 13.6 \mathbf { i } + 16.8 \mathbf { j } + 13.6 \mathbf { k }
D) v=16.8i+21.12j+13.6k\mathbf { v } = 16.8 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
E) v=21.12i+21.12j+13.6k\mathbf { v } = 21.12 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
v=16.8i+21.12j+13.6k\mathbf { v } = 16.8 \mathbf { i } + 21.12 \mathbf { j } + 13.6 \mathbf { k }
3
What force is required so that a particle of mass mm has the following position function?. r(t)=5t3i+10t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

A) F(t)=30 mti+20 mj+42 mtk\mathrm { F } ( t ) = 30 \mathrm {~m} t \mathbf { i } + 20 \mathrm {~m} \mathbf { j } + 42 \mathrm {~m} t \mathbf { k }
B) F(t)=30mt2i+20mj+42mtk\mathrm { F } ( t ) = 30 m t ^ { 2 } \mathbf { i } + 20 m \mathbf { j } + 42 m t \mathbf { k }
C) F(t)=42mti+42mj+20mtk\mathrm { F } ( t ) = 42 m t \mathbf { i } + 42 m \mathbf { j } + 20 m t \mathbf { k }
D) F(t)=mt2i+5mtj+10mt2k\mathrm { F } ( t ) = m t ^ { 2 } \mathbf { i } + 5 m t \mathbf { j } + 10 m t ^ { 2 } \mathbf { k }
E) F(t)=30mti+20mj+tk\mathrm { F } ( t ) = 30 m t \mathbf { i } + 20 m \mathbf { j } + t \mathbf { k }
F(t)=30 mti+20 mj+42 mtk\mathrm { F } ( t ) = 30 \mathrm {~m} t \mathbf { i } + 20 \mathrm {~m} \mathbf { j } + 42 \mathrm {~m} t \mathbf { k }
4
Find the acceleration of a particle with the following position function. r(t)={2t22,4t}\mathbf { r } ( t ) = \left\{ 2 t ^ { 2 } - 2,4 t \right\}

A) a(t)=4i\mathbf { a } ( t ) = 4 \mathbf { i }
B) a(t)=2ti+2j\mathbf { a } ( t ) = 2 t \mathbf { i } + 2 \mathbf { j }
C) a(t)=(2+4t)i2j\mathbf { a } ( t ) = ( 2 + 4 t ) \mathbf { i } - 2 \mathbf { j }
D) a(t)=2ij\mathbf { a } ( t ) = 2 \mathbf { i } - \mathbf { j }
E) a(t)=4ti+2j\mathbf { a } ( t ) = 4 t \mathbf { i } + 2 \mathbf { j }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
5
A force with magnitude 1212 N acts directly upward from the xy-plane on an object with mass 22 kg. The object starts at the origin with initial velocity v(0)=3i2j\mathbf { v } ( 0 ) = 3 \mathbf { i } - 2 \mathbf { j } . Find its position function.

A) r(t)=2t2i3t2j+12t3k\mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } - 3 t ^ { 2 } \mathbf { j } + 12 t ^ { 3 } \mathbf { k }
B) r(t)=2ti4tj+t2k\mathbf { r } ( t ) = 2 t \mathbf { i } - 4 t \mathbf { j } + t ^ { 2 } \mathbf { k }
C) r(t)=3ti2tj+\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j } + 33  k \text { k }
D) r(t)=3ti2tj\mathbf { r } ( t ) = 3 t \mathbf { i } - 2 t \mathbf { j }
E) r(t)=5t3i4j+2k\mathbf { r } ( t ) = 5 t ^ { 3 } \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
6
A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

A) d43.3d \approx 43.3 km
B) d350d \approx 350 km
C) d63.3d \approx 63.3 km
D) d433d \approx 433 km
E) d53.3d \approx 53.3 km
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find the velocity of a particle with the given position function. r(t)=11e9ti+9e13tj\mathbf { r } ( t ) = 11 e ^ { 9 t } \mathbf { i } + 9 e ^ { - 13 t } \mathbf { j }

A) v(t)=e9ti+117e13tj\mathbf { v } ( t ) = e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
B) v(t)=99e9ti117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
C) v(t)=11e9ti+e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } + e ^ { - 13 t } \mathbf { j }
D) v(t)=11e9ti117e13tj\mathbf { v } ( t ) = 11 e ^ { 9 t } \mathbf { i } - 117 e ^ { - 13 t } \mathbf { j }
E) v(t)=99e9ti+117e13tj\mathbf { v } ( t ) = 99 e ^ { 9 t } \mathbf { i } + 117 e ^ { - 13 t } \mathbf { j }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
8
A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

A) aT=5ta _ { T } = 5 t
B) aT=542ta _ { T } = 542 t
C) aT=42t+5a _ { T } = 42 t + 5
D) aT=55ta _ { T } = - 55 t
E) aT=42ta _ { T } = 42 t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
9
A particle moves with position function A particle moves with position function   . Find the acceleration of the particle. . Find the acceleration of the particle.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find the position vector of a particle that has the given acceleration and the given initial velocity and position. Find the position vector of a particle that has the given acceleration and the given initial velocity and position.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et(cos8t,sin8t,8)\mathbf { r } ( t ) = e ^ { t } ( \cos 8 t , \sin 8 t , 8 )

A) aT=65eta _ { \mathbf { T } } = \sqrt { 65 } e ^ { t } , aN=865eta _ { \mathrm { N } } = 8 \sqrt { 65 } e ^ { t }
B) aT=865eta _ { \mathbf { T } } = 8 \sqrt { 65 } e ^ { t } , aN=65eta _ { \mathrm { N } } = \sqrt { 65 } e ^ { t }
C) aT=65eta _ { \mathbf { T } } = 65 e ^ { t } , aN(t)=8eta _ { \mathrm { N } } ( t ) = 8 e ^ { t }
D) aT=8eta _ { \mathbf { T } } = 8 e ^ { t } , aN=65eta _ { \mathrm { N } } = 65 e ^ { t }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
12
Find the acceleration of a particle with the given position function. r(t)=9sinti+10tj8costk\mathbf { r } ( t ) = 9 \sin t \mathbf { i } + 10 t \mathbf { j } - 8 \cos t \mathbf { k }

A) a(t)=9sinti9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } - 9 \cos t \mathbf { j }
B) a(t)=9sinti+9costj\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 9 \cos t \mathbf { j }
C) a(t)=9sinti+10costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 10 \cos t \mathbf { k }
D) a(t)=9sinti+8costk\mathbf { a } ( t ) = - 9 \sin t \mathbf { i } + 8 \cos t \mathbf { k }
E) a(t)=9sinti10tk\mathbf { a } ( t ) = 9 \sin t \mathbf { i } - 10 t \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
13
A mortar shell is fired with a muzzle speed of 325 ft/sec. Find the angle of elevation of the mortar if the shell strikes a target located 1500 ft away. Round your answer to 2 decimal places.

A) 12.2212.22 ^ { \circ }
B) 0.640.64 ^ { \circ }
C) 13.5113.51 ^ { \circ }
D) 0.240.24 ^ { \circ }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
14
Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6kr ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

A) v(t)=1+100t2+100t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 100 t ^ { 10 } }
B) v(t)=1+100t+324t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + 324 t ^ { 9 } }
C) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = 1 + 100 t ^ { 2 } + 324 t ^ { 10 }
D) v(t)=1+100t2+324t10| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t ^ { 2 } + 324 t ^ { 10 } }
E) v(t)=1+100t+t9| \mathbf { v } ( t ) | = \sqrt { 1 + 100 t + t ^ { 9 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
15
A particle moves with position function A particle moves with position function   . Find the normal component of the acceleration vector. .
Find the normal component of the acceleration vector.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the speed of a particle with the given position function. r(t)=52ti+e5tje5tk\mathbf { r } ( t ) = 5 \sqrt { 2 } t \mathbf { i } + e ^ { 5 t } \mathbf { j } - e ^ { - 5 t } \mathbf { k }

A) v(t)=5(e5t+e5t)| v ( t ) | = 5 \left( e ^ { 5 t } + e ^ { - 5 t } \right)
B) v(t)=(e5t+e5t)| v ( t ) | = \left( e ^ { 5 t } + e ^ { - 5 t } \right)
C) v(t)=5+5et+5et| v ( t ) | = \sqrt { 5 + 5 e ^ { t } + 5 e ^ { - t } }
D) v(t)=5(et+et)| v ( t ) | = 5 \left( e ^ { t } + e ^ { - t } \right)
E) v(t)=5+e5t+e50t| v ( t ) | = \sqrt { 5 + e ^ { 5 t } + e ^ { - 50 t } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
17
A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 3030 m away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

A) v017 m/sv _ { 0 } \approx 17 \mathrm {~m} / \mathrm { s }
B) v022 m/sv _ { 0 } \approx 22 \mathrm {~m} / \mathrm { s } .
C) v042 m/sv _ { 0 } \approx 42 \mathrm {~m} / \mathrm { s } .
D) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s }
E) v027 m/sv _ { 0 } \approx 27 \mathrm {~m} / \mathrm { s } .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k }

A) aT=0a _ { \mathbf { T } } = 0 aN=3a _ { \mathrm { N } } = 3
B) aT=5a _ { \mathbf { T } } = 5 aN=3a _ { \mathrm { N } } = 3
C) aT=0a _ { \mathbf { T } } = 0 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
D) aT=5a _ { \mathbf { T } } = 5 aN=326a _ { \mathrm { N } } = 3 \sqrt { 26 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
19
The position function of a particle is given by r(t)=5t2,5t,5t2100t\mathbf { r } ( t ) = \left\langle 5 t ^ { 2 } , 5 t , 5 t ^ { 2 } - 100 t \right\rangle When is the speed a minimum?

A) t=5t = 5
B) t=30t = 30
C) t=20t = 20
D) t=0t = 0
E) t=10t = 10
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=12i7j\mathbf { a } ( t ) = 3 \mathbf { k } , \mathbf { v } ( 0 ) = 12 \mathbf { i } - 7 \mathbf { j }

A) v(t)=12ij+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - \mathbf { j } + 3 t \mathbf { k }
B) v(t)=12i7j+tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + t \mathbf { k }
C) v(t)=(12t9)i+7tk\mathbf { v } ( t ) = ( 12 t - 9 ) \mathbf { i } + 7 t \mathbf { k }
D) v(t)=i7j+3tk\mathbf { v } ( t ) = \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
E) v(t)=12i7j+3tk\mathbf { v } ( t ) = 12 \mathbf { i } - 7 \mathbf { j } + 3 t \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
21
Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

A) 43\frac { 4 } { 3 }
B) 34\frac { 3 } { 4 }
C) 5116\frac { 51 } { 16 }
D) 1651\frac { 16 } { 51 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the scalar tangential and normal components of acceleration of a particle with position vector Find the scalar tangential and normal components of acceleration of a particle with position vector
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find the curvature of y=x4y = x ^ { 4 } .

A) 12x2(116x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 - 16 x ^ { 6 } \right) ^ { 3 / 2 } }
B) 12x2(1+16x6)1/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
C) x2(1+x6)3/2\frac { | x | ^ { 2 } } { \left( 1 + x ^ { 6 } \right) ^ { 3 / 2 } }
D) x2(1+16x6)1/2\frac { | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 1 / 2 } }
E) 12x2(1+16x6)3/2\frac { 12 | x | ^ { 2 } } { \left( 1 + 16 x ^ { 6 } \right) ^ { 3 / 2 } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
25
A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of   . a. What are the scalar tangential and normal components of acceleration of the projectile? b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height? .
a. What are the scalar tangential and normal components of acceleration of the projectile?
b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the velocity and position vectors of an object with acceleration Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  initial velocity Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position  and initial position Find the velocity and position vectors of an object with acceleration   initial velocity   and initial position
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
27
Find the length of the curve r(t)=2ti+t2j+lntk\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } 1te31 \leq t \leq e ^ { 3 }

A) e6e ^ { 6 }
B) e3e ^ { 3 }
C) e6+2e ^ { 6 } + 2
D) e3+2e ^ { 3 } + 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
28
For the curve given by r(t)=(4sint,5t,4cost)\mathbf { r } ( t ) = (4 \sin t , 5 t , 4 \mathrm { cos } t ) , find the unit normal vector. a(t)=2k,v(0)=10i9j\mathbf { a } ( t ) = 2 \mathbf { k } , \mathbf { v } ( 0 ) = 10 \mathbf { i } - 9 \mathbf { j }

A) (2sint,5,2cost)( 2 \sin t , 5 , - 2 \cos t)
B) (2sint,0,2cost)(- 2 \sin t , 0 , - 2 \cos t )
C) (sint29,0,cost29)\left( - \frac { \sin t } { \sqrt { 29 } } , 0 , - \frac { \cos t } { \sqrt { 29 } } \right)
D) (29sint,0,29cost)( \sqrt { 29 } \sin t , 0 , - \sqrt { 29 } \mathrm { cost } )
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the length of the curve r(t)=8ti+3costj+3sintk\mathbf { r } ( t ) = 8 t \mathbf { i } + 3 \cos t \mathbf { j } + 3 \sin t \mathbf { k } 0t2π0 \leq t \leq 2 \pi

A) 2732 \sqrt { 73 } π\pi
B) 73\sqrt { 73 } π\pi
C) 11\sqrt { 11 } π\pi
D) 2112 \sqrt { 11 } π\pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by  and Find the unit tangent and unit normal vectors   and   for the curve C defined by  for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
31
Let C be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathbf { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to C corresponding to t. The plane determined by T and N is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1

A) z=2z = 2
B) y=3y = 3
C) 2x+3y+2z=12 x + 3 y + 2 z = 1
D) x=2x = 2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
32
Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

A) r(t(s))=(53126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 - \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
B) r(t(s))=(5+3126s)i+(89126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 - \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
C) r(t(s))=(5+3126s)i+(8+9126s)j+(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } + ( 6 s ) \mathbf { k }
D) r(t(s))=(5+3126s)i+(8+9126s)j(6s126)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - \left( \frac { 6 s } { \sqrt { 126 } } \right) \mathbf { k }
E) r(t(s))=(5+3126s)i+(8+9126s)j(6s)k\mathbf { r } ( t ( s ) ) = \left( 5 + \frac { 3 } { \sqrt { 126 } } s \right) \mathbf { i } + \left( 8 + \frac { 9 } { \sqrt { 126 } } s \right) \mathbf { j } - ( 6 s ) \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the unit tangent and unit normal vectors Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  for the curve C defined by Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  Sketch the graph of C, and show Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  and Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for  for Find the unit tangent and unit normal vectors   and   for the curve C defined by   Sketch the graph of C, and show   and   for
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
36
Find the velocity, acceleration, and speed of an object with position vector Find the velocity, acceleration, and speed of an object with position vector   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
37
A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of <strong>A projectile is fired from ground level with an initial speed of 1100 ft/sec and an angle of elevation of   </strong> A) Find the range of the projectile. B) What is the maximm height attained by the projectile? C) What is the speed of the projectile at impact? Round your answers to the nearest integer.

A) Find the range of the projectile.
B) What is the maximm height attained by the projectile?
C) What is the speed of the projectile at impact?
Round your answers to the nearest integer.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the length of the curve r(t)=2titj+tk\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } 2t1.- 2 \leq t \leq 1 .

A) 363 \sqrt { 6 }
B) 6\sqrt { 6 }
C) 262 \sqrt { 6 }
D) 666 \sqrt { 6 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the velocity, acceleration, and speed of an object with position function Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. for Find the velocity, acceleration, and speed of an object with position function   for   Sketch the path of the object and its velocity and acceleration vectors. Sketch the path of the object and its velocity and acceleration vectors.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the curvature of the curve r(t)=2ti+6tj+9k\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 9 \mathbf { k } .

A) 1
B) 2102 \sqrt { 10 }
C) 11
D) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
41
Find parametric equations for the tangent line to the curve with parametric equations x=2tx = 2 t y=7t2y = 7 t ^ { 2 } z=4t3z = 4 t ^ { 3 } at the point with t=1t = 1

A) x=2+2tx = 2 + 2 t y=7+14ty = 7 + 14 t z=4+12tz = 4 + 12 t
B) x=2+2tx = 2 + 2 t y=7+7ty = 7 + 7 t z=4+4tz = 4 + 4 t
C) x=1+2tx = 1 + 2 t y=1+7ty = 1 + 7 t z=1+4tz = 1 + 4 t
D) x=1+2tx = 1 + 2 t y=1+14ty = 1 + 14 t z=1+12tz = 1 + 12 t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
42
Evaluate the integral. (e9ti+14tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 14 t \mathbf { j } + \ln t \mathbf { k } \right) d t

A) e9t9i+7t2j+t(lnt1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t - 1 ) \mathbf { k } + C
B) e9ti+7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
C) e9t9i+7t2j+t(lnt+9)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } + 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 9 ) \mathbf { k } + C
D) e9t9i7t2j+t(lnt+1)k+C\frac { e ^ { 9 t } } { 9 } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + t ( \ln t + 1 ) \mathbf { k } + C
E) e9ti7t2j+(lnt1)k+Ce ^ { 9 t } \mathbf { i } - 7 t ^ { 2 } \mathbf { j } + ( \ln t - 1 ) \mathbf { k } + \mathrm { C }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
43
Find r(t)\mathbf { r } ( t ) satisfying the conditions for r(t)=5i+8tj6t2k\mathbf { r } ^ { \prime } ( t ) = 5 \mathbf { i } + 8 t \mathbf { j } - 6 t ^ { 2 } \mathbf { k } r(0)=i+j\mathbf { r } ( 0 ) = \mathbf { i } + \mathbf { j }

A) (5t+1)i+(4t2+1)j2t3k( 5 t + 1 ) \mathbf { i } + \left( 4 t ^ { 2 } + 1 \right) \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
B) (5t+1)i+(8t2+1)j6t3k( 5 t + 1 ) \mathbf { i } + \left( 8 t ^ { 2 } + 1 \right) \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
C) 5ti+4t2j2t3k5 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } - 2 t ^ { 3 } \mathbf { k }
D) 5ti+8t2j6t3k5 t \mathbf { i } + 8 t ^ { 2 } \mathbf { j } - 6 t ^ { 3 } \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
44
The figure shows a curve CC given by a vector function r(t)\mathbf { r } ( t ) . Choose the correct expression for r(4)\mathbf { r } ^ { \prime } ( 4 ) .  <strong>The figure shows a curve  C  given by a vector function  \mathbf { r } ( t )  . Choose the correct expression for  \mathbf { r } ^ { \prime } ( 4 )  .  </strong> A)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }  B)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }  C)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }  D)  \lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }  E)  \lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }

A) limh0r(4h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) + r ( 4 ) } { h }
B) limh0r(4+h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( 4 ) } { h }
C) limh0r(4+h)r(h)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) - r ( h ) } { h }
D) limh0r(4h)r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 - h ) - r ( 4 ) } { h }
E) limh0r(4+h)+r(4)h\lim _ { h \rightarrow 0 } \frac { r ( 4 + h ) + r ( 4 ) } { h }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
45
If
r(t)=t,t9,t11\mathbf { r } ( t ) = \left\langle t , t ^ { 9 } , t ^ { 11 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t ) .

A) 0,110t9,72t7\left\langle 0,110 t ^ { 9 } , 72 t ^ { 7 } \right\rangle
B) 0,72t6,110t8\left\langle 0,72 t ^ { 6 } , 110 t ^ { 8 } \right\rangle
C) 0,72t7,110t9\left\langle0,72 t ^ { 7 } , 110 t ^ { 9 } \right\rangle
D) 0,110t8,72t6\left\langle0,110 t ^ { 8 } , 72 t ^ { 6 } \right\rangle
E) 1,9t6,11t8\left\langle 1,9 t ^ { 6 } , 11 t ^ { 8 } \right\rangle
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
46
Find equations of the normal plane to Find equations of the normal plane to   at the point (2, 4, 8). at the point (2, 4, 8).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find r(t)\mathbf { r } ( t ) satisfying the conditions for rt(t)=9e9ti+9etj+etk\mathbf { r } ^ { t } ( t ) = 9 e ^ { 9 t } \mathbf { i } + 9 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } r(0)=ij+9k\mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 9 \mathbf { k }

A) (e9t+1)i(9et+1)j+(et+9)k\left( e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } + 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
B) 9e9ti(9et+8)j+(et+8)k9 e ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } + 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
C) e9ti(9et8)j+(et+8)ke ^ { 9 t } \mathbf { i } - \left( 9 e ^ { - t } - 8 \right) \mathbf { j } + \left( e ^ { t } + 8 \right) \mathbf { k }
D) (9e9t+1)i(9et1)j+(et+9)k\left( 9 e ^ { 9 t } + 1 \right) \mathbf { i } - \left( 9 e ^ { - t } - 1 \right) \mathbf { j } + \left( e ^ { t } + 9 \right) \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
48
The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×r)rmrt×rt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime \prime } \right) \cdot \mathbf { r } ^ { m \prime } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

A) 2729\frac { 27 } { 29 }
B) 1029\frac { 10 } { 29 }
C) 5029\frac { 50 } { 29 }
D) 729\frac { 7 } { 29 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the integral (2ti+9t2j+7k)dt\int \left( 2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } \right) d t

A) 2t2i+9t3j+7tk+C2 t ^ { 2 } \mathbf { i } + 9 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
B) t2i+3t3j+7tk+Ct ^ { 2 } \mathbf { i } + 3 t ^ { 3 } \mathbf { j } + 7 t \mathbf { k } + \mathbf { C }
C) 2ti+9t2j+7k+C2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } + \mathbf { C }
D) 2i+18tj+C2 \mathbf { i } + 18 t \mathbf { j } + \mathbf { C }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
50
Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t y=7t2y = 7 t ^ { 2 } z=8t3z = 8 t ^ { 3 } at the point with t=1t = 1

A) x=3+3tx = 3 + 3 t y=7+14ty = 7 + 14 t z=8+24tz = 8 + 24 t
B) x=1+3tx = 1 + 3 t y=1+14ty = 1 + 14 t z=1+24tz = 1 + 24 t
C) x=1+3tx = 1 + 3 t y=1+7ty = 1 + 7 t z=1+8tz = 1 + 8 t
D) x=3+3tx = 3 + 3 t y=7+7ty = 7 + 7 t z=8+8tz = 8 + 8 t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
51
If r(t)=i+tcosπtj+2sinπtk\mathbf { r } ( t ) = \mathbf { i } + t \cos \pi t \mathbf { j } + 2 \sin \pi t\mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t .

A) i2π2j1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 1 } { \pi } \mathbf { k }
B) i+2π2j+4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
C) i+2π2j4πk\mathbf { i } + \frac { 2 } { \pi ^ { 2 } } \mathbf { j } - \frac { 4 } { \pi } \mathbf { k }
D) i2π2j+1πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 1 } { \pi } \mathbf { k }
E) i2π2j+4πk\mathbf { i } - \frac { 2 } { \pi ^ { 2 } } \mathbf { j } + \frac { 4 } { \pi } \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use Simpson's Rule with n = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places.

A) 14.82414.824
B) 7.20417.2041
C) 7.41067.4106
D) 6.57066.5706
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find r(t)\mathbf { r } ( t ) if r(t)=sinticostj+6tk\mathbf { r } ^ { \prime } ( t ) = \sin t \mathbf { i } - \cos t \mathbf { j } + 6 t \mathbf { k } and r(0)=i+j+5kr ( 0 ) = i + j + 5 k .

A) (cost+2)i+(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
B) (cost)i+(sint1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
C) (cost)i+(sint+1)j+(3t2+5)k( \cos t ) \mathbf { i } + ( \sin t + 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
D) (cost+2)i(sint1)j+(3t2+5)k( - \cos t + 2 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
E) (cost+1)i(sint1)j+(3t2+5)k( - \cos t + 1 ) \mathbf { i } - ( \sin t - 1 ) \mathbf { j } + \left( 3 t ^ { 2 } + 5 \right) \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
54
Find the arc length function Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s. for the curve defined by Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s. for Find the arc length function   for the curve defined by   for   Then use this result to find a parametrization of C in terms of s. Then use this result to find a parametrization of C in terms of s.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
55
The helix r1(t)=8costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 8 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(8+t)i+10t2j+9t3k\mathbf { r } _ { 2 } ( t ) = ( 8 + t ) \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 9 t ^ { 3 } \mathbf { k } at the point (8,0,0)( 8,0,0 ) . Find the angle of intersection.

A) π3\frac { \pi } { 3 }
B) π4\frac { \pi } { 4 }
C) π2\frac { \pi } { 2 }
D) 00
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the unit tangent vector T(t)\mathbf { T } ( t ) for r(t)=2ti+6tj+3tk\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 3 t \mathbf { k } at t=1t = - 1

A) 2i6j3k- 2 \mathbf { i } - 6 \mathbf { j } - 3 \mathbf { k }
B) 27\frac { 2 } { 7 } i + 67\frac { 6 } { 7 } j + 37\frac { 3 } { 7 } k
C) 249- \frac { 2 } { 49 } i 649- \frac { 6 } { 49 } j 349- \frac { 3 } { 49 } k
D) 2i+6j+3k2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
57
Find the point(s) on the graph of Find the point(s) on the graph of   at which the curvature is zero. at which the curvature is zero.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find the unit tangent vector T(t)T ( t ) . r(t)=2sint,4t,2cost\mathbf { r } ( t ) = \langle 2 \sin t , 4 t , 2 \cos t \rangle

A) cost25,25,sint25\left\langle\frac { \cos t } { 2 \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { 2 \sqrt { 5 } } \right\rangle
B) 3cost,6,3sint\langle3 \cos t , 6 , - 3 \sin t \rangle
C) cost5,25,sint5\left\langle\frac { \cos t } { \sqrt { 5 } } , \frac { 2 } { \sqrt { 5 } } , - \frac { \sin t } { \sqrt { 5 } } \right\rangle
D) 35cost,6,35sint\langle3 \sqrt { 5 } \cos t , 6 , - 3 \sqrt { 5 } \sin t \rangle
E) cost25,425,3sint25\left\langle- \frac { \cos t } { 2 \sqrt { 5 } } , \frac { 4 } { 2 \sqrt { 5 } } , \frac { 3 \sin t } { 2 \sqrt { 5 } } \right\rangle
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
59
At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=43 x + 9 y - 4 z = 4 ?

A) (1,3,9)( - 1 , - 3,9 )
B) (9,18,2)( 9,18 , - 2 )
C) (1,9,1)( - 1 , - 9,1 )
D) (18,9,1)( - 18,9,1 )
E) (9,1,1)( - 9,1,1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
60
The curvature of the curve given by the vector function rr is k(t)=r(t)×r(t)r(t)3k ( t ) = \frac { \left| \mathbf { r } ^ { \prime } ( t ) \times \mathbf { r } ^ { \prime \prime } ( t ) \right| } { \left| \mathbf { r } ^ { \prime } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=13t,et,et\mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right\rangle
at the point (0,1,1)( 0,1,1 ) .

A) 15\sqrt { 15 }
B) 215\frac { \sqrt { 2 } } { 15 }
C) 15215 \sqrt { 2 }
D) 152\frac { 15 } { \sqrt { 2 } }
E) 1515\frac { \sqrt { 15 } } { 15 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t11,y=t3,z=t6;(4,4,4)x = t ^ { 11 } , y = t ^ { 3 } , z = t ^ { 6 } ; ( 4,4,4 )

A) x=411t,y=4+3t,z=4+6tx = 4 - 11 t , y = 4 + 3 t , z = 4 + 6 t
B) x=4+11t,y=4+3t,z=4+6tx = 4 + 11 t , y = 4 + 3 t , z = 4 + 6 t
C) x=4+11t,y=4+3t,z=46tx = 4 + 11 t , y = 4 + 3 t , z = 4 - 6 t
D) x=11t,y=4+3t,z=4+6tx = 11 t , y = 4 + 3 t , z = 4 + 6 t
E) x=4+11t,y=43t,z=4+6tx = 4 + 11 t , y = 4 - 3 t , z = 4 + 6 t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
62
Given Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes.
a. Find Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. .
b. Sketch the curve defined by r and the vectors Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. and Given   a. Find   and   . b. Sketch the curve defined by r and the vectors   and   on the same set of axes. on the same set of axes.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
63
Find the domain of the vector function r(t)=8ti+1t4j\mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 4 } \mathbf { j } .

A) (,4)(4,)( - \infty , - 4 ) \cup ( - 4 , \infty )
B) (,8)(8,)( - \infty , 8 ) \cup ( 8 , \infty )
C) (,8)(8,)( - \infty , - 8 ) \cup ( - 8 , \infty )
D) (,4)(4,)( - \infty , 4 ) \cup ( 4 , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the unit tangent vector for the curve given by r(t)=17t7,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 7 } t ^ { 7 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .

A) t6,t2,1t10+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 10 } + t ^ { 4 } } }
B) t6,t2,16t12+4t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { 6 t ^ { 12 } + 4 t ^ { 4 } + 1 } }
C) t6,t2,1t12+t4\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } } }
D) t6,t2,1t12+t4+1\frac { \left\langle t ^ { 6 } , t ^ { 2 } , 1 \right\rangle } { \sqrt { t ^ { 12 } + t ^ { 4 } + 1 } }
E) None of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the derivative of the vector function. Find the derivative of the vector function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
66
If If   and   , find   . and If   and   , find   . , find If   and   , find   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find Find   and   for  and Find   and   for  for Find   and   for
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the point of intersection of the tangent lines to the curve Find the point of intersection of the tangent lines to the curve   , at the points where   and   . , at the points where Find the point of intersection of the tangent lines to the curve   , at the points where   and   . and Find the point of intersection of the tangent lines to the curve   , at the points where   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
69
The curves The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree. and The curves   and   intersects at the origin. Find their angle of intersection correct to the nearest degree. intersects at the origin. Find their angle of intersection correct to the nearest degree.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
70
Let r(t)=6t,(et2)t,ln(t+1)\mathbf { r } ( t ) = \left\langle \sqrt { 6 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\rangle . Find the domain of rr .

A) (2,6]( - 2,6 ]
B) (2,0)(0,6]( - 2,0 ) \cup ( 0,6 ]
C) (6,]( 6 , \infty ]
D) (,2)( - \infty , - 2 )
E) [6,0)(0,2)[ 6,0 ) \cup ( 0,2 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find an expression for Find an expression for   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find Find   if   and   . if Find   if   and   . and Find   if   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,5,5)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,5,5 )

A) x=0,y=524t,z=5+24tx = 0 , y = 5 - 24 t , z = 5 + 24 t
B) x=1,y=5+24t,z=424tx = 1 , y = 5 + 24 t , z = 4 - 24 t
C) x=t,y=5+24t,z=524tx = t , y = 5 + 24 t , z = 5 - 24 t
D) x=t,y=524t,z=5+24tx = t , y = 5 - 24 t , z = 5 + 24 t
E) x=1,y=5+24t,z=524tx = 1 , y = 5 + 24 t , z = 5 - 24 t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
74
Find Find   and   for  and Find   and   for  for Find   and   for
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find the domain of the vector function r(t)=9t,1t3,lnt\mathbf { r } ( t ) = \left\langle 9 \sqrt { t } , \frac { 1 } { t - 3 } , \ln t \right\rangle .

A) [0,3)(3,9)(9,)[ 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
B) (0,3)(3,)( 0,3 ) \cup ( 3 , \infty )
C) (0,3)(3,9)(9,)( 0,3 ) \cup ( 3,9 ) \cup ( 9 , \infty )
D) (0,9)(9,)( 0,9 ) \cup ( 9 , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find the limit. limt0+10cost,30sint,5tlnt\lim _ { t \rightarrow 0 ^ { + } } \langle10 \cos t , 30 \sin t , 5 t \ln t\rangle

A) r(t)=10k\mathbf { r } ( t ) = 10 \mathbf { k }
B) r(t)=10j\mathbf { r } ( t ) = 10 \mathbf { j }
C) r(t)=10i5k\mathbf { r } ( t ) = 10 \mathbf { i } - 5 \mathbf { k }
D) r(t)=10i+30j+5k\mathbf { r } ( t ) = 10 \mathbf { i } + 30 \mathbf { j } + 5 \mathbf { k }
E) r(t)=10i\mathbf { r } ( t ) = 10 \mathbf { i }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
77
Find the derivative Find the derivative
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=4i+sintj+costk\mathbf { r } ( t ) = 4 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

A) r(t)=sintjcostkr ^ { \prime \prime } ( t ) = \sin t j - \cos t \mathrm { k }
B) r(t)=4sintjcostkr ^ { \prime \prime } ( t ) = - 4 \sin t \mathrm { j } - \cos t \mathrm { k }
C) r(t)=4costjsintkr ^ { \prime \prime } ( t ) = - 4 \cos t j - \sin t \mathrm { k }
D) r(t)=costjsintkr ^ { \prime \prime } ( t ) = \cos t j - \sin t \mathrm { k }
E) r(t)=sintj+4costkr ^ { \prime \prime } ( t ) = - \sin t \mathrm { j } + 4 \cos t \mathrm { k }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
79
Find the integral Find the integral
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find Find   for the function given.  for the function given. Find   for the function given.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 93 في هذه المجموعة.