Deck 14: Partial Derivatives

ملء الشاشة (f)
exit full mode
سؤال
Find three positive numbers whose sum is 291291 and whose product is a maximum.

A) x=y=z=97x = y = z = 97
B) x=109,y=99,z=89x = 109 , y = 99 , z = 89
C) x=100,y=108,z=89x = 100 , y = 108 , z = 89
D) x=99,y=z=99x = 99 , y = z = - 99
E) x=129,y=79,z=89x = 129 , y = 79 , z = 89
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Find the direction in which the maximum rate of change of f at the given point occurs. f(x,y)=2sin(xy),(1,0)f ( x , y ) = 2 \sin ( x y ) , ( 1,0 )

A) 2,0\langle2,0 \rangle
B) 1,2\langle1 , - \sqrt { 2 } \rangle
C) 2,0\langle \sqrt { 2 } , 0 \rangle
D) 0,2\langle0,2 \rangle
E) 12,12\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
سؤال
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y)=8x24y2,8x2+4y2=9f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } , 8 x ^ { 2 } + 4 y ^ { 2 } = 9

A) f(x,y)=8f ( x , y ) = 8
B) f(x,y)=14f ( x , y ) = \frac { 1 } { 4 }
C) f(x,y)=19f ( x , y ) = \frac { 1 } { 9 }
D) f(x,y)=18f ( x , y ) = \frac { 1 } { 8 }
E) f(x,y)=9f ( x , y ) = 9
سؤال
Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 8484

A) 77 , 8484 , 77
B) 4, 8, 16
C) 77 , 77 , 77
D) 32, 77 , 16
E) 32, 32, 32
سؤال
Use Lagrange multipliers to find the maximum value of the function subject to the given constraints. Use Lagrange multipliers to find the maximum value of the function subject to the given constraints.  <div style=padding-top: 35px>
سؤال
Find the points on the surface z2=xy+49z ^ { 2 } = x y + 49 that are closest to the origin.

A) (0,0,49)( 0,0 , - 49 )
B) (0,0,49)(0,0,49)( 0,0,49 ) ( 0,0 , - 49 )
C) (0,7,0)( 0,7,0 )
D) (0,0,7)(0,0,7)( 0,0,7 ) ( 0,0 , - 7 )
E) (0,0,7)( 0,0,7 )
سؤال
Suppose (1, 1) is a critical point of a function f with continuous second derivatives. In the case of fx(1,1)=8f _ { x } ( 1,1 ) = 8 , fxy(1,1)=8f _ { x y } ( 1,1 ) = 8 , fyy(1,1)=10f _ { y y } ( 1,1 ) = 10 what can you say about f ?

A) f has a local maximum at (1,1)
B) f has a saddle point at (1,1)
C) f has a local minimum at (1,1)
سؤال
Find and classify the relative extrema and saddle points of the function f(x,y)=e2xsin4yf ( x , y ) = e ^ { - 2 x } \sin 4 y for x0x \geq 0 and 0yπ20 \leq y \leq \frac { \pi } { 2 } .

A) None
B) Relative maximum f(0,π8)=1f \left( 0 , \frac { \pi } { 8 } \right) = 1
C) Saddle point (0,0,0)( 0,0,0 )
D) Relative minimum f(0,π4)=0f \left( 0 , \frac { \pi } { 4 } \right) = 0
سؤال
Use Lagrange multipliers to find the maximum and minimum values of the function Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   .<div style=padding-top: 35px> subject to the constraints Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   .<div style=padding-top: 35px> and Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   .<div style=padding-top: 35px> .
سؤال
Find all the saddle points of the function. f(x,y)=xsiny2f ( x , y ) = x \sin \frac { y } { 2 }

A) (3πn,0)( 3 \pi n , 0 )
B) (0,πn2)\left( 0 , \frac { \pi n } { 2 } \right)
C) (2πn,1)( 2 \pi n , 1 )
D) (0,2πn)( 0,2 \pi n )
E) (2nπ,0)\left( \frac { 2 n } { \pi } , 0 \right)
سؤال
Find the dimensions of the rectangular box with largest volume if the total surface area is given as 294294 cm2\mathrm { cm } ^ { 2 } .

A) 1414 cm, 1.75 cm, 1.75 cm
B) 2121 cm, 1414 cm, 1.75 cm
C) 294294 cm, 77 cm, 77 cm
D) 77 cm, 77 cm, 77 cm
E) 1414 cm, 1414 cm, 3.5 cm
سؤال
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y,z)=14x+8y+12z,x2+y2+z2=101f ( x , y , z ) = 14 x + 8 y + 12 z , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 101

A) f(14,8,12)=404f ( 14,8,12 ) = 404
B) f(20,9,18)=568f ( 20,9,18 ) = 568
C) f(7,4,6)=202f ( 7,4,6 ) = 202
D) f(18,17,5)=308f ( 18,17,5 ) = 308
E) f(8,4,12)=212f ( 8,4,12 ) = 212
سؤال
Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s). Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s).  <div style=padding-top: 35px>
سؤال
At what point is the following function a local minimum? f(x,y)=8x2+5y2f ( x , y ) = 8 x ^ { 2 } + 5 y ^ { 2 }

A) (5,0)( 5,0 )
B) (8,5)( 8 , - 5 )
C) (8,0)( 8,0 )
D) (8,5)( 8,5 )
E) (0,0)( 0,0 )
سؤال
Use Lagrange multipliers to find the minimum value of the function subject to the given constraints. Use Lagrange multipliers to find the minimum value of the function subject to the given constraints.  <div style=padding-top: 35px>
سؤال
Find the critical points of the function. f(x,y)=72+684xy+76x2+2160y+9y44f ( x , y ) = 72 + 684 x y + 76 x ^ { 2 } + 2160 y + \frac { 9 y ^ { 4 } } { 4 }

A) (4,4),(6,6),(10,10)( - 4,4 ) , ( - 6,6 ) , ( 10 , - 10 )
B) (4,6),(8,6),(8,6)( - 4,6 ) , ( - 8,6 ) , ( 8 , - 6 )
C) (4,6),(6,10),(10,4)( - 4,6 ) , ( - 6 , - 10 ) , ( 10,4 )
D) (6,6),(8,8),(8,8)( - 6,6 ) , ( - 8,8 ) , ( 8 , - 8 )
E) (4,4),(6,6),(10,0)( 4,4 ) , ( 6,6 ) , ( - 10,0 )
سؤال
Find the shortest distance from the point (3,9,8)( 3,9,8 ) to the plane 3x+9y+4z=163 x + 9 y + 4 z = 16 .

A) D=61D = 61
B) D=90D = 90
C) D=10.29D = 10.29
D) D=61D = \sqrt { 61 }
E) D=106D = 106
سؤال
At what point is the following function a local maximum? f(x,y)=310x+12y5x26y2f ( x , y ) = 3 - 10 x + 12 y - 5 x ^ { 2 } - 6 y ^ { 2 }

A) (1,1)( 1,1 )
B) (1,1)( - 1,1 )
C) (3,1)( 3,1 )
D) (0,1)( 0,1 )
E) (1,1)( 1 , - 1 )
سؤال
Find the absolute extrema of the function f(x,y)=2x+3y5f ( x , y ) = 2 x + 3 y - 5 on the closed triangular region with vertices (0,0)( 0,0 ) , (5,0)( 5,0 ) and (5,4)( 5,4 ) .

A) Absolute minimum 0, Absolute maximum 5
B) Absolute minimum -5, Absolute maximum 5
C) Absolute minimum -5, Absolute maximum 17
D) Absolute minimum 5, Absolute maximum 17
سؤال
Find the absolute minimum value of the function f(x,y)=6+3xy2x4yf ( x , y ) = 6 + 3 x y - 2 x - 4 y on the set D. D is the region bounded by the parabola y=x2y = x ^ { 2 } and the line y=4y = 4

A) 31- 31
B) 32- 32
C) 30- 30
D) 30
E) 0
سؤال
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.  <div style=padding-top: 35px>
سؤال
Find the directional derivative of the function f(x,y)=(x+5)eyf ( x , y ) = ( x + 5 ) e ^ { y } at the point P(6,0)P ( 6,0 ) in the direction of the unit vector that makes the angle θ=π2\theta = \frac { \pi } { 2 } with the positive x-axis.

A) e6e ^ { 6 }
B) 1
C) 5e65 e ^ { 6 }
D) 11
سؤال
Find the directional derivative of f(x,y)=2xy3f ( x , y ) = 2 \sqrt { x } - y ^ { 3 } at the point (1, 3) in the direction toward the point (3, 1). Select the correct answer.

A) 727 \sqrt { 2 }
B) 14214 \sqrt { 2 }
C) 2\sqrt { 2 }
D) 28
E) none of these
سؤال
Find three positive numbers whose sum is Find three positive numbers whose sum is   and whose product is a maximum.<div style=padding-top: 35px> and whose product is a maximum.
سؤال
Suppose that over a certain region of space the electrical potential V is given by V(x,y,z)=8x27xy+7xyzV ( x , y , z ) = 8 x ^ { 2 } - 7 x y + 7 x y z . Find the rate of change of the potential at (1,1,1)( - 1,1 , - 1 ) in the direction of the vector v=8i+10j8k\mathbf { v } = 8 \mathbf { i } + 10 \mathbf { j } - 8 \mathbf { k } .

A) 15.099- 15.099
B) 44
C) -2.91
D) 20
E)  14. 569856\text { 14. } 569856
سؤال
Find the equation of the normal line to the given surface at the specified point. 2x2+8y2+3z2=235,(4,4,5)2 x ^ { 2 } + 8 y ^ { 2 } + 3 z ^ { 2 } = 235 , ( 4,4,5 )

A) 2x+8y+3z=12 x + 8 y + 3 z = 1
B) 16x+64y+30z=23516 x + 64 y + 30 z = 235
C) x455=y455=z555\frac { x - 4 } { 55 } = \frac { y - 4 } { 55 } = \frac { z - 5 } { 55 }
D) x416=y464=z530\frac { x - 4 } { 16 } = \frac { y - 4 } { 64 } = \frac { z - 5 } { 30 }
E) x+416=y+464=z+530\frac { x + 4 } { 16 } = \frac { y + 4 } { 64 } = \frac { z + 5 } { 30 }
سؤال
Find and classify the relative extrema and saddle points of the function Find and classify the relative extrema and saddle points of the function   .<div style=padding-top: 35px> .
سؤال
Which of the given points are the points on the hyperboloid x2y2+4z2=4x ^ { 2 } - y ^ { 2 } + 4 z ^ { 2 } = 4 where the normal line is parallel to the line that joins the points (1,1,3)( - 1,1,3 ) and (0,2,5)( 0,2,5 ) .
Select all that apply.

A) (2,2,1)( - 2,2,1 )
B) (2,2,1)( - 2,2 , - 1 )
C) (2,2,1)( 2 , - 2,1 )
D) (2,2,1)( 2 , - 2 , - 1 )
E) (2,2,1)( 2,2,1 )
سؤال
Find the maximum rate of change of f(x,y)=xy2+yf ( x , y ) = x y ^ { 2 } + \sqrt { y } at the point (4,1)( 4,1 ) (2,1). In what direction does it occur?

A) 292,1,52\frac { \sqrt { 29 } } { 2 } , \left\langle1 , \frac { 5 } { 2 } \right\rangle
B) 852,2,72\frac { 85 } { 2 } , \left\langle2 , \frac { 7 } { 2 } \right\rangle
C) 292,1,92\frac { 29 } { 2 } , \left\langle 1 , \frac { 9 } { 2 } \right\rangle
D) 2932,1,172\frac { \sqrt { 293 } } { 2 } , \left\langle1 , \frac { 17 } { 2 } \right\rangle
E) none of these
سؤال
Find the maximum rate of change of f at the given point. Find the maximum rate of change of f at the given point.  <div style=padding-top: 35px>
سؤال
Find equations for the tangent plane and the normal line to the surface with equation x2+3y2+9z2=16x ^ { 2 } + 3 y ^ { 2 } + 9 z ^ { 2 } = 16 at the point P(2,1,1)P ( 2,1,1 )

A) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
B) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
C) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
D) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
سؤال
Find the gradient of the function f(x,y,z)=z6e2xyf ( x , y , z ) = z ^ { 6 } e ^ { 2 x \sqrt { y } } .

A) ze2xy2z5y,xz5y,6z4z e ^ { 2 x \sqrt { y } } \left\langle 2 z ^ { 5 } \sqrt { y } , \frac { x z ^ { 5 } } { \sqrt { y } } , 6 z ^ { 4 } \right\rangle
B) ex2y6xzy,x2z2y,2e ^ { x ^ { 2 } \sqrt { y } } \left\langle 6 x z \sqrt { y } , \frac { x ^ { 2 } z } { 2 \sqrt { y } } , 2 \right\rangle
C) zexyzy,xz2y,6z e ^ { x \sqrt { y } } \left\langle z \sqrt { y } , \frac { x z } { 2 \sqrt { y } } , 6 \right\rangle
D) ex2y2xzy,x2z6y,1e ^ { x ^ { 2 } \sqrt { y } } \left\langle 2 x z \sqrt { y } , \frac { x ^ { 2 } z } { 6 \sqrt { y } } , 1 \right\rangle
E) ze2xy2zy,xzy,2z e ^ { 2 x \sqrt { y } } \left\langle 2 z \sqrt { y } , \frac { x z } { \sqrt { y } } , 2 \right\rangle
سؤال
A cardboard box without a lid is to have a volume of A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used.<div style=padding-top: 35px> cm A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used.<div style=padding-top: 35px> . Find the dimensions that minimize the amount of cardboard used.
سؤال
Evaluate the gradient of f at the point P. Evaluate the gradient of f at the point P.  <div style=padding-top: 35px>
سؤال
Find equations for the tangent plane and the normal line to the surface with equation xy+yz+xz=38x y + y z + x z = 38 at the point P(2,4,5)P ( 2,4,5 )

A) 6x+7y+9z=766 x + 7 y + 9 z = 76 , x26=y47=z59\frac { x - 2 } { 6 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 9 }
B) 9x+7y+6z=769 x + 7 y + 6 z = 76 , x29=y47=z56\frac { x - 2 } { 9 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 6 }
C) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x62=y74=z95\frac { x - 6 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 9 } { 5 }
D) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x92=y74=z65\frac { x - 9 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 6 } { 5 }
سؤال
Find the absolute extrema of the function Find the absolute extrema of the function   on the region bounded by the disk defined by   .<div style=padding-top: 35px> on the region bounded by the disk defined by Find the absolute extrema of the function   on the region bounded by the disk defined by   .<div style=padding-top: 35px> .
سؤال
Find three positive real numbers whose sum is 388 and whose product is as large as possible.
سؤال
Find the direction in which the function Find the direction in which the function   decreases fastest at the point   .<div style=padding-top: 35px> decreases fastest at the point Find the direction in which the function   decreases fastest at the point   .<div style=padding-top: 35px> .
سؤال
Find the local maximum, and minimum value and saddle points of the function. Find the local maximum, and minimum value and saddle points of the function.  <div style=padding-top: 35px>
سؤال
If f(x,y)=x2+7y2f ( x , y ) = x ^ { 2 } + 7 y ^ { 2 } use the gradient vector f(10,2)\nabla f ( 10,2 ) to find the tangent line to the level curve f(x,y)=136f ( x , y ) = 136 at the point (10,2)( 10,2 ) .

A) 10x+14y=1210 x + 14 y = 12
B) 10x+14y=13610 x + 14 y = 136
C) 100x49y=12100 x - 49 y = 12
D) 100x+49y=136100 x + 49 y = 136
E) 100x14y=12100 x - 14 y = 12
سؤال
Use the Chain Rule to find up\frac { \partial u } { \partial p } . u=x+yy+zu = \frac { x + y } { y + z } x=p+5r+7t,y=p5r+7t,z=p+5r7tx = p + 5 r + 7 t , y = p - 5 r + 7 t , z = p + 5 r - 7 t

A) up=7tp2\frac { \partial u } { \partial p } = - \frac { 7 t } { p ^ { 2 } }
B) up=7tp\frac { \partial u } { \partial p } = \frac { 7 t } { p }
C) up=5tp3\frac { \partial u } { \partial p } = - \frac { 5 t } { p ^ { 3 } }
D) up=35tp2\frac { \partial u } { \partial p } = - \frac { 35 t } { p ^ { 2 } }
E) up=35tp2+t\frac { \partial u } { \partial p } = \frac { 35 t } { p ^ { 2 } } + t
سؤال
Find the limit if Find the limit if   .  <div style=padding-top: 35px> . Find the limit if   .  <div style=padding-top: 35px>
سؤال
The radius of a right circular cone is increasing at a rate of 5 in/s while its height is decreasing at a rate of 3.6 in/s. At what rate is the volume of the cone changing when the radius is 108108 in. and the height is 132132 in.?

A) 108316.24in3/s108316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
B) 105316.24in3/s105316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
C) 111316.24in3/s111316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
D) 102316.24in3/s102316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
E) 99316.24in3/s99316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
سؤال
Find the differential of the function z=3x3y6z = 3 x ^ { 3 } y ^ { 6 }

A) dz=9x2y5dx+18x2y5dyd z = 9 x ^ { 2 } y ^ { 5 } d x + 18 x ^ { 2 } y ^ { 5 } d y
B) dz=9x2y6dx+18x3y5dyd z = 9 x ^ { 2 } y ^ { 6 } d x + 18 x ^ { 3 } y ^ { 5 } d y
C) dz=18x2y5dx+9x2y5dyd z = 18 x ^ { 2 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 5 } d y
D) dz=18x3y5dx+9x2y6dyd z = 18 x ^ { 3 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 6 } d y
سؤال
Use the Chain Rule to find zs\frac { \partial z } { \partial s } . z=eycos(θ),r=8st,θ=s2+t2z = e ^ { y } \cos ( \theta ) , r = 8 s t , \theta = \sqrt { s ^ { 2 } + t ^ { 2 } }

A) zs=eγ(8tcos(θ)ssin(θ)s2+t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
B) zs=eγ(8tcos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
C) zs=(8tcos(θ)+seγsin(θ)s2+t2)\frac { \partial z } { \partial s } = \left( 8 t \cos ( \theta ) + \frac { s e ^ { \gamma } \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
D) zs=eγ(cos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
E) zs=eγ(tcos(θ)ssin(θ)s2+t)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t } } \right)
سؤال
Use the Chain Rule to find Use the Chain Rule to find   where   .  <div style=padding-top: 35px> where Use the Chain Rule to find   where   .  <div style=padding-top: 35px> . Use the Chain Rule to find   where   .  <div style=padding-top: 35px>
سؤال
Find an equation of the tangent plane to the given surface at the specified point. Find an equation of the tangent plane to the given surface at the specified point.  <div style=padding-top: 35px>
سؤال
Use the Chain Rule to find wr\frac { \partial w } { \partial r } and wt\frac { \partial w } { \partial t } if r=5r = 5 s=2s = 2 and t=0t = 0 w=x2yz2,x=rest,y=sent,z=erstw = \frac { x ^ { 2 } y } { z ^ { 2 } } , \quad x = r e ^ { s t } , \quad y = s e ^ { n t } , \quad z = e ^ { r s t }

A) wr=20,wt=550\frac { \partial w } { \partial r } = 20 , \quad \frac { \partial w } { \partial t } = - 550
B) wr=100,wt=200\frac { \partial w } { \partial r } = 100 , \quad \frac { \partial w } { \partial t } = 200
C) wr=10,wt=0\frac { \partial w } { \partial r } = 10 , \quad \frac { \partial w } { \partial t } = 0
D) wr=7,wt=550\frac { \partial w } { \partial r } = 7 , \quad \frac { \partial w } { \partial t } = - 550
سؤال
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.  <div style=padding-top: 35px>
سؤال
Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x7y)=xe4y\cos ( x - 7 y ) = x e ^ { 4 y }

A) dydx=sin(xy)+e4y7sin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - x e ^ { 4 y } }
B) dydx=sin(xy)+e4ysin(xy)xey\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - y ) - x e ^ { y } }
C) dydx=sin(x7y)+e4y7sin(x7y)4xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - 4 x e ^ { 4 y } }
D) dydx=7sin(xy)+e4ysin(x7y)7xey\frac { d y } { d x } = \frac { 7 \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - 7 x e ^ { y } }
E) dydx=sin(x7y)+e4ysin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - x e ^ { 4 y } }
سؤال
The length l, width w and height h of a box change with time. At a certain instant the dimensions are The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.<div style=padding-top: 35px> and The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.<div style=padding-top: 35px> , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.
سؤال
Use implicit differentiation to find Use implicit differentiation to find   .  <div style=padding-top: 35px> . Use implicit differentiation to find   .  <div style=padding-top: 35px>
سؤال
Find the equation of the tangent plane to the given surface at the specified point. z+7=xeycosz,(7,0,0)z + 7 = x e ^ { y } \cos z , ( 7,0,0 )

A) x+7y+z=7x + 7 y + z = 7
B) x+7yz=7x + 7 y - z = 7
C) x+yz=7x + y - z = 7
D) 7x+yz=77 x + y - z = 7
E) x+y7z=7x + y - 7 z = 7
سؤال
Use the Chain Rule to find dwdt\frac { d w } { d t } w=9x4y3z,x=6t,y=cos7t,z=tsintw = 9 x ^ { 4 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 7 t , \quad z = t \sin t

A) 4,536x4y3zsin7t(sint+tcost)4,536 x ^ { 4 } y ^ { 3 } z \sin 7 t ( \sin t + t \cos t )
B) 9x4y3(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 4 } y ^ { 3 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
C) 4,536x3y2sin7t(sint+tcost)4,536 x ^ { 3 } y ^ { 2 } \sin 7 t ( \sin t + t \cos t )
D) 9x3y2(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 3 } y ^ { 2 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
سؤال
Find the gradient of the function Find the gradient of the function   .<div style=padding-top: 35px> .
سؤال
Find the equation of the normal line to the given surface at the specified point. Find the equation of the normal line to the given surface at the specified point.  <div style=padding-top: 35px>
سؤال
A boundary stripe 2 in. wide is painted around a rectangle whose dimensions are 100 ft by 240 ft. Use differentials to approximate the number of square feet of paint in the stripe.

A) 113 ft2\mathrm { ft } ^ { 2 }
B) 113.81 ft2\mathrm { ft } ^ { 2 }
C) 113.23 ft2\mathrm { ft } ^ { 2 }
D) 113.89 ft2\mathrm { ft } ^ { 2 }
E) 113.33 ft2\mathrm { ft } ^ { 2 }
سؤال
Use partial derivatives to find the implicit partial derivatives Use partial derivatives to find the implicit partial derivatives   and    <div style=padding-top: 35px> and Use partial derivatives to find the implicit partial derivatives   and    <div style=padding-top: 35px> Use partial derivatives to find the implicit partial derivatives   and    <div style=padding-top: 35px>
سؤال
Find the gradient of Find the gradient of   at the point  <div style=padding-top: 35px> at the point Find the gradient of   at the point  <div style=padding-top: 35px>
سؤال
Use differentials to estimate the amount of metal in a closed cylindrical can that is 12 cm high and 8 cm in diameter if the metal in the top and bottom is 0.09 cm thick and the metal in the sides is 0.01 cm thick. (rounded to the nearest hundredth.)

A) 8.34 cm3\mathrm { cm } ^ { 3 }
B) 6.99 cm3\mathrm { cm } ^ { 3 }
C) 6.91 cm3\mathrm { cm } ^ { 3 }
D) 6.7 cm3\mathrm { cm } ^ { 3 }
E) 12.0612.06 cm3\mathrm { cm } ^ { 3 }
سؤال
Find fxyf _ { x y } for the function f(x,y)=2x3y7xy2f ( x , y ) = 2 x ^ { 3 } y - 7 x y ^ { 2 } .

A) fxy=6x214yf _ { x y } = 6 x ^ { 2 } - 14 y
B) fxy=6x2+14yf _ { x y } = 6 x ^ { 2 } + 14 y
C) fxy=14x2+6yf _ { x y } = 14 x ^ { 2 } + 6 y
D) fxy=14x26yf _ { x y } = 14 x ^ { 2 } - 6 y
E) fxy=24x214yf _ { x y } = 24 x ^ { 2 } - 14 y
سؤال
If If   and   changes from (2, 1) to   find dz.<div style=padding-top: 35px> and If   and   changes from (2, 1) to   find dz.<div style=padding-top: 35px> changes from (2, 1) to If   and   changes from (2, 1) to   find dz.<div style=padding-top: 35px> find dz.
سؤال
Find the differential of the function. Find the differential of the function.  <div style=padding-top: 35px>
سؤال
Use the linearization L(x, y) of the function. Use the linearization L(x, y) of the function.   at   to approximate   .<div style=padding-top: 35px> at Use the linearization L(x, y) of the function.   at   to approximate   .<div style=padding-top: 35px> to approximate Use the linearization L(x, y) of the function.   at   to approximate   .<div style=padding-top: 35px> .
سؤال
How many nth-order partial derivatives does a function of two variables have?

A) n2n ^ { 2 }
B) 2n2 ^ { n }
C) 2n2 n
D) n2\frac { n } { 2 }
E) n2nn 2 ^ { n }
سؤال
Find the differential of the function Find the differential of the function  <div style=padding-top: 35px>
سؤال
Find fmw(x,y)f _ { m w } ( x , y ) for the function f(x,y)=x49x2y2+2xy3+6y4f ( x , y ) = x ^ { 4 } - 9 x ^ { 2 } y ^ { 2 } + 2 x y ^ { 3 } + 6 y ^ { 4 }

A) 24x24 x
B) 92x292 x ^ { 2 }
C) 15y2- 15 y ^ { 2 }
D) 36y- 36 y
سؤال
Find the indicated partial derivative. f(x,y)=x2y43x4y;fmxf ( x , y ) = x ^ { 2 } y ^ { 4 } - 3 x ^ { 4 } y ; f _ { m x }

A) fmx=12x2yf _ { m x } = 12 x ^ { 2 } y
B) fmx=36xyf _ { m x } = - 36 x y
C) fmx=3xyf _ { m x } = 3 x y
D) fmx=72xyf _ { m x } = - 72 x y
E) fmx=3xyf _ { m x } = - 3 x y
سؤال
Use implicit differentiation to find zx\frac { \partial z } { \partial x } ln(x2+z2)+yz3+4x2=6\ln \left( x ^ { 2 } + z ^ { 2 } \right) + y z ^ { 3 } + 4 x ^ { 2 } = 6

A) zx=2x(x2+z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( x ^ { 2 } + z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
B) zx=2x(4x2+4z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
C) zx=2x(4x2+4z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
D) zx=2x(6x2+6z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 6 x ^ { 2 } + 6 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
سؤال
Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height   cm if the tin is 0.04 cm thick.<div style=padding-top: 35px> cm if the tin is 0.04 cm thick.
سؤال
Find the indicated partial derivative. u=xeybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { e } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3

A) 6uxy2z3=cb(b1)c(a1)(a2)xc1yb2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = c b ( b - 1 ) c ( a - 1 ) ( a - 2 ) x ^ { c - 1 } y ^ { b - 2 } z ^ { a - 3 }
B) 6uxy2z3=xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
C) 6uxy2z3=ab(b1)c(c1)(c2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a b ( b - 1 ) c ( c - 1 ) ( c - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
D) 6uxy2z3=acb(a1)(a2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a c b ( a - 1 ) ( a - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
E) 6uxy2z3=xb1yc2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { b - 1 } y ^ { c - 2 } z ^ { a - 3 }
سؤال
Find the differential of the function Find the differential of the function  <div style=padding-top: 35px>
سؤال
Let Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> and suppose that Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> changes from Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> to Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> (a) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px> (b) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute  <div style=padding-top: 35px>
سؤال
The height of a hill (in feet) is given by h(x,y)=30(145x22y2+3xy+30x18y)h ( x , y ) = 30 \left( 14 - 5 x ^ { 2 } - 2 y ^ { 2 } + 3 x y + 30 x - 18 y \right) where x is the distance (in miles) east and y is the distance (in miles) north of your cabin. If you are at a point on the hill 1 mile north and 1 mile east of your cabin, what is the rate of change of the height of the hill (a) in a northerly direction and (b) in an easterly direction?

A) (a) 570 ft/mi, (b) 690 ft/mi
B) (a) -570 ft/mi, (b) 690 ft/mi
C) (a) 690 ft/mi, (b) 570 ft/mi
D) (a) 690 ft/mi, (b) -570 ft/mi
سؤال
Find hmy(x,y,z)h_{m y}(x, y, z) for the function h(x,y,z)=e9xcos(y+7z)h ( x , y , z ) = e ^ { 9 x } \cos ( y + 7 z )

A) 63e9xcos(y+7z)63 e ^ { 9 x } \cos ( y + 7 z )
B) 49e9xsin(y+7z)49 e ^ { 9 x } \sin ( y + 7 z )
C) 63e9xsin(y+7z)- 63 e ^ { 9 x } \sin ( y + 7 z )
D) 49e9xcos(y+7z)- 49 e ^ { 9 x } \cos ( y + 7 z )
سؤال
Use the definition of partial derivatives as limits to find fx(x,y)f _ { x } ( x , y ) if f(x,y)=5x29xy+2y2f ( x , y ) = 5 x ^ { 2 } - 9 x y + 2 y ^ { 2 } .

A) 5y9x5 y - 9 x
B) 10x9y10 x - 9 y
C) 10x910 x - 9
D) 10x9xy10 x - 9 x y
E) 5x9y5 x - 9 y
سؤال
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px> . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px> to the wind chill index function when T is near The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px> and v is near 30 kmh.
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  <div style=padding-top: 35px>
سؤال
Find the linearization L(x, y) of the function at the given point. Find the linearization L(x, y) of the function at the given point.   Round the answers to the nearest hundredth. <div style=padding-top: 35px> Round the answers to the nearest hundredth.
سؤال
Use implicit differentiation to find zx\frac { \partial z } { \partial x } x4y+xz+yz2=7x ^ { 4 } y + x z + y z ^ { 2 } = 7

A) zx=4x3y1+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y } { 1 + 2 y }
B) zx=4x3y+zx+2yz\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y + z } { x + 2 y z }
C) zx=4x31+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } } { 1 + 2 y }
D) zx=11+2y\frac { \partial z } { \partial x } = \frac { 1 } { 1 + 2 y }
سؤال
Find fy(24,8)f _ { y } ( - 24,8 ) for f(x,y)=sin(4x+12y)f ( x , y ) = \sin ( 4 x + 12 y ) .

A) 1212
B) 4- 4
C) 12- 12
D) 44
E) 0
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/132
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 14: Partial Derivatives
1
Find three positive numbers whose sum is 291291 and whose product is a maximum.

A) x=y=z=97x = y = z = 97
B) x=109,y=99,z=89x = 109 , y = 99 , z = 89
C) x=100,y=108,z=89x = 100 , y = 108 , z = 89
D) x=99,y=z=99x = 99 , y = z = - 99
E) x=129,y=79,z=89x = 129 , y = 79 , z = 89
x=y=z=97x = y = z = 97
2
Find the direction in which the maximum rate of change of f at the given point occurs. f(x,y)=2sin(xy),(1,0)f ( x , y ) = 2 \sin ( x y ) , ( 1,0 )

A) 2,0\langle2,0 \rangle
B) 1,2\langle1 , - \sqrt { 2 } \rangle
C) 2,0\langle \sqrt { 2 } , 0 \rangle
D) 0,2\langle0,2 \rangle
E) 12,12\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
0,2\langle0,2 \rangle
3
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y)=8x24y2,8x2+4y2=9f ( x , y ) = 8 x ^ { 2 } - 4 y ^ { 2 } , 8 x ^ { 2 } + 4 y ^ { 2 } = 9

A) f(x,y)=8f ( x , y ) = 8
B) f(x,y)=14f ( x , y ) = \frac { 1 } { 4 }
C) f(x,y)=19f ( x , y ) = \frac { 1 } { 9 }
D) f(x,y)=18f ( x , y ) = \frac { 1 } { 8 }
E) f(x,y)=9f ( x , y ) = 9
f(x,y)=9f ( x , y ) = 9
4
Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is 8484

A) 77 , 8484 , 77
B) 4, 8, 16
C) 77 , 77 , 77
D) 32, 77 , 16
E) 32, 32, 32
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
5
Use Lagrange multipliers to find the maximum value of the function subject to the given constraints. Use Lagrange multipliers to find the maximum value of the function subject to the given constraints.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
6
Find the points on the surface z2=xy+49z ^ { 2 } = x y + 49 that are closest to the origin.

A) (0,0,49)( 0,0 , - 49 )
B) (0,0,49)(0,0,49)( 0,0,49 ) ( 0,0 , - 49 )
C) (0,7,0)( 0,7,0 )
D) (0,0,7)(0,0,7)( 0,0,7 ) ( 0,0 , - 7 )
E) (0,0,7)( 0,0,7 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
7
Suppose (1, 1) is a critical point of a function f with continuous second derivatives. In the case of fx(1,1)=8f _ { x } ( 1,1 ) = 8 , fxy(1,1)=8f _ { x y } ( 1,1 ) = 8 , fyy(1,1)=10f _ { y y } ( 1,1 ) = 10 what can you say about f ?

A) f has a local maximum at (1,1)
B) f has a saddle point at (1,1)
C) f has a local minimum at (1,1)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
8
Find and classify the relative extrema and saddle points of the function f(x,y)=e2xsin4yf ( x , y ) = e ^ { - 2 x } \sin 4 y for x0x \geq 0 and 0yπ20 \leq y \leq \frac { \pi } { 2 } .

A) None
B) Relative maximum f(0,π8)=1f \left( 0 , \frac { \pi } { 8 } \right) = 1
C) Saddle point (0,0,0)( 0,0,0 )
D) Relative minimum f(0,π4)=0f \left( 0 , \frac { \pi } { 4 } \right) = 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
9
Use Lagrange multipliers to find the maximum and minimum values of the function Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   . subject to the constraints Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   . and Use Lagrange multipliers to find the maximum and minimum values of the function   subject to the constraints   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
10
Find all the saddle points of the function. f(x,y)=xsiny2f ( x , y ) = x \sin \frac { y } { 2 }

A) (3πn,0)( 3 \pi n , 0 )
B) (0,πn2)\left( 0 , \frac { \pi n } { 2 } \right)
C) (2πn,1)( 2 \pi n , 1 )
D) (0,2πn)( 0,2 \pi n )
E) (2nπ,0)\left( \frac { 2 n } { \pi } , 0 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
11
Find the dimensions of the rectangular box with largest volume if the total surface area is given as 294294 cm2\mathrm { cm } ^ { 2 } .

A) 1414 cm, 1.75 cm, 1.75 cm
B) 2121 cm, 1414 cm, 1.75 cm
C) 294294 cm, 77 cm, 77 cm
D) 77 cm, 77 cm, 77 cm
E) 1414 cm, 1414 cm, 3.5 cm
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
12
Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y,z)=14x+8y+12z,x2+y2+z2=101f ( x , y , z ) = 14 x + 8 y + 12 z , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 101

A) f(14,8,12)=404f ( 14,8,12 ) = 404
B) f(20,9,18)=568f ( 20,9,18 ) = 568
C) f(7,4,6)=202f ( 7,4,6 ) = 202
D) f(18,17,5)=308f ( 18,17,5 ) = 308
E) f(8,4,12)=212f ( 8,4,12 ) = 212
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
13
Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s). Use Lagrange multipliers to find the maximum and the minimum of f subject to the given constraint(s).
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
14
At what point is the following function a local minimum? f(x,y)=8x2+5y2f ( x , y ) = 8 x ^ { 2 } + 5 y ^ { 2 }

A) (5,0)( 5,0 )
B) (8,5)( 8 , - 5 )
C) (8,0)( 8,0 )
D) (8,5)( 8,5 )
E) (0,0)( 0,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
15
Use Lagrange multipliers to find the minimum value of the function subject to the given constraints. Use Lagrange multipliers to find the minimum value of the function subject to the given constraints.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the critical points of the function. f(x,y)=72+684xy+76x2+2160y+9y44f ( x , y ) = 72 + 684 x y + 76 x ^ { 2 } + 2160 y + \frac { 9 y ^ { 4 } } { 4 }

A) (4,4),(6,6),(10,10)( - 4,4 ) , ( - 6,6 ) , ( 10 , - 10 )
B) (4,6),(8,6),(8,6)( - 4,6 ) , ( - 8,6 ) , ( 8 , - 6 )
C) (4,6),(6,10),(10,4)( - 4,6 ) , ( - 6 , - 10 ) , ( 10,4 )
D) (6,6),(8,8),(8,8)( - 6,6 ) , ( - 8,8 ) , ( 8 , - 8 )
E) (4,4),(6,6),(10,0)( 4,4 ) , ( 6,6 ) , ( - 10,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the shortest distance from the point (3,9,8)( 3,9,8 ) to the plane 3x+9y+4z=163 x + 9 y + 4 z = 16 .

A) D=61D = 61
B) D=90D = 90
C) D=10.29D = 10.29
D) D=61D = \sqrt { 61 }
E) D=106D = 106
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
18
At what point is the following function a local maximum? f(x,y)=310x+12y5x26y2f ( x , y ) = 3 - 10 x + 12 y - 5 x ^ { 2 } - 6 y ^ { 2 }

A) (1,1)( 1,1 )
B) (1,1)( - 1,1 )
C) (3,1)( 3,1 )
D) (0,1)( 0,1 )
E) (1,1)( 1 , - 1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
19
Find the absolute extrema of the function f(x,y)=2x+3y5f ( x , y ) = 2 x + 3 y - 5 on the closed triangular region with vertices (0,0)( 0,0 ) , (5,0)( 5,0 ) and (5,4)( 5,4 ) .

A) Absolute minimum 0, Absolute maximum 5
B) Absolute minimum -5, Absolute maximum 5
C) Absolute minimum -5, Absolute maximum 17
D) Absolute minimum 5, Absolute maximum 17
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
20
Find the absolute minimum value of the function f(x,y)=6+3xy2x4yf ( x , y ) = 6 + 3 x y - 2 x - 4 y on the set D. D is the region bounded by the parabola y=x2y = x ^ { 2 } and the line y=4y = 4

A) 31- 31
B) 32- 32
C) 30- 30
D) 30
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
21
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the directional derivative of the function f(x,y)=(x+5)eyf ( x , y ) = ( x + 5 ) e ^ { y } at the point P(6,0)P ( 6,0 ) in the direction of the unit vector that makes the angle θ=π2\theta = \frac { \pi } { 2 } with the positive x-axis.

A) e6e ^ { 6 }
B) 1
C) 5e65 e ^ { 6 }
D) 11
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find the directional derivative of f(x,y)=2xy3f ( x , y ) = 2 \sqrt { x } - y ^ { 3 } at the point (1, 3) in the direction toward the point (3, 1). Select the correct answer.

A) 727 \sqrt { 2 }
B) 14214 \sqrt { 2 }
C) 2\sqrt { 2 }
D) 28
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find three positive numbers whose sum is Find three positive numbers whose sum is   and whose product is a maximum. and whose product is a maximum.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
25
Suppose that over a certain region of space the electrical potential V is given by V(x,y,z)=8x27xy+7xyzV ( x , y , z ) = 8 x ^ { 2 } - 7 x y + 7 x y z . Find the rate of change of the potential at (1,1,1)( - 1,1 , - 1 ) in the direction of the vector v=8i+10j8k\mathbf { v } = 8 \mathbf { i } + 10 \mathbf { j } - 8 \mathbf { k } .

A) 15.099- 15.099
B) 44
C) -2.91
D) 20
E)  14. 569856\text { 14. } 569856
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the equation of the normal line to the given surface at the specified point. 2x2+8y2+3z2=235,(4,4,5)2 x ^ { 2 } + 8 y ^ { 2 } + 3 z ^ { 2 } = 235 , ( 4,4,5 )

A) 2x+8y+3z=12 x + 8 y + 3 z = 1
B) 16x+64y+30z=23516 x + 64 y + 30 z = 235
C) x455=y455=z555\frac { x - 4 } { 55 } = \frac { y - 4 } { 55 } = \frac { z - 5 } { 55 }
D) x416=y464=z530\frac { x - 4 } { 16 } = \frac { y - 4 } { 64 } = \frac { z - 5 } { 30 }
E) x+416=y+464=z+530\frac { x + 4 } { 16 } = \frac { y + 4 } { 64 } = \frac { z + 5 } { 30 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
27
Find and classify the relative extrema and saddle points of the function Find and classify the relative extrema and saddle points of the function   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
28
Which of the given points are the points on the hyperboloid x2y2+4z2=4x ^ { 2 } - y ^ { 2 } + 4 z ^ { 2 } = 4 where the normal line is parallel to the line that joins the points (1,1,3)( - 1,1,3 ) and (0,2,5)( 0,2,5 ) .
Select all that apply.

A) (2,2,1)( - 2,2,1 )
B) (2,2,1)( - 2,2 , - 1 )
C) (2,2,1)( 2 , - 2,1 )
D) (2,2,1)( 2 , - 2 , - 1 )
E) (2,2,1)( 2,2,1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the maximum rate of change of f(x,y)=xy2+yf ( x , y ) = x y ^ { 2 } + \sqrt { y } at the point (4,1)( 4,1 ) (2,1). In what direction does it occur?

A) 292,1,52\frac { \sqrt { 29 } } { 2 } , \left\langle1 , \frac { 5 } { 2 } \right\rangle
B) 852,2,72\frac { 85 } { 2 } , \left\langle2 , \frac { 7 } { 2 } \right\rangle
C) 292,1,92\frac { 29 } { 2 } , \left\langle 1 , \frac { 9 } { 2 } \right\rangle
D) 2932,1,172\frac { \sqrt { 293 } } { 2 } , \left\langle1 , \frac { 17 } { 2 } \right\rangle
E) none of these
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the maximum rate of change of f at the given point. Find the maximum rate of change of f at the given point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
31
Find equations for the tangent plane and the normal line to the surface with equation x2+3y2+9z2=16x ^ { 2 } + 3 y ^ { 2 } + 9 z ^ { 2 } = 16 at the point P(2,1,1)P ( 2,1,1 )

A) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
B) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
C) x+3y+9z=16x + 3 y + 9 z = 16 , x22=y13=z19\frac { x - 2 } { 2 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 9 }
D) 2x+3y+9z=162 x + 3 y + 9 z = 16 , x22=y3=z9\frac { x - 2 } { 2 } = y - 3 = z - 9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the gradient of the function f(x,y,z)=z6e2xyf ( x , y , z ) = z ^ { 6 } e ^ { 2 x \sqrt { y } } .

A) ze2xy2z5y,xz5y,6z4z e ^ { 2 x \sqrt { y } } \left\langle 2 z ^ { 5 } \sqrt { y } , \frac { x z ^ { 5 } } { \sqrt { y } } , 6 z ^ { 4 } \right\rangle
B) ex2y6xzy,x2z2y,2e ^ { x ^ { 2 } \sqrt { y } } \left\langle 6 x z \sqrt { y } , \frac { x ^ { 2 } z } { 2 \sqrt { y } } , 2 \right\rangle
C) zexyzy,xz2y,6z e ^ { x \sqrt { y } } \left\langle z \sqrt { y } , \frac { x z } { 2 \sqrt { y } } , 6 \right\rangle
D) ex2y2xzy,x2z6y,1e ^ { x ^ { 2 } \sqrt { y } } \left\langle 2 x z \sqrt { y } , \frac { x ^ { 2 } z } { 6 \sqrt { y } } , 1 \right\rangle
E) ze2xy2zy,xzy,2z e ^ { 2 x \sqrt { y } } \left\langle 2 z \sqrt { y } , \frac { x z } { \sqrt { y } } , 2 \right\rangle
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
33
A cardboard box without a lid is to have a volume of A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used. cm A cardboard box without a lid is to have a volume of   cm   . Find the dimensions that minimize the amount of cardboard used. . Find the dimensions that minimize the amount of cardboard used.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
34
Evaluate the gradient of f at the point P. Evaluate the gradient of f at the point P.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find equations for the tangent plane and the normal line to the surface with equation xy+yz+xz=38x y + y z + x z = 38 at the point P(2,4,5)P ( 2,4,5 )

A) 6x+7y+9z=766 x + 7 y + 9 z = 76 , x26=y47=z59\frac { x - 2 } { 6 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 9 }
B) 9x+7y+6z=769 x + 7 y + 6 z = 76 , x29=y47=z56\frac { x - 2 } { 9 } = \frac { y - 4 } { 7 } = \frac { z - 5 } { 6 }
C) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x62=y74=z95\frac { x - 6 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 9 } { 5 }
D) 2x+4y+5z=762 x + 4 y + 5 z = 76 , x92=y74=z65\frac { x - 9 } { 2 } = \frac { y - 7 } { 4 } = \frac { z - 6 } { 5 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
36
Find the absolute extrema of the function Find the absolute extrema of the function   on the region bounded by the disk defined by   . on the region bounded by the disk defined by Find the absolute extrema of the function   on the region bounded by the disk defined by   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find three positive real numbers whose sum is 388 and whose product is as large as possible.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the direction in which the function Find the direction in which the function   decreases fastest at the point   . decreases fastest at the point Find the direction in which the function   decreases fastest at the point   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
39
Find the local maximum, and minimum value and saddle points of the function. Find the local maximum, and minimum value and saddle points of the function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
40
If f(x,y)=x2+7y2f ( x , y ) = x ^ { 2 } + 7 y ^ { 2 } use the gradient vector f(10,2)\nabla f ( 10,2 ) to find the tangent line to the level curve f(x,y)=136f ( x , y ) = 136 at the point (10,2)( 10,2 ) .

A) 10x+14y=1210 x + 14 y = 12
B) 10x+14y=13610 x + 14 y = 136
C) 100x49y=12100 x - 49 y = 12
D) 100x+49y=136100 x + 49 y = 136
E) 100x14y=12100 x - 14 y = 12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
41
Use the Chain Rule to find up\frac { \partial u } { \partial p } . u=x+yy+zu = \frac { x + y } { y + z } x=p+5r+7t,y=p5r+7t,z=p+5r7tx = p + 5 r + 7 t , y = p - 5 r + 7 t , z = p + 5 r - 7 t

A) up=7tp2\frac { \partial u } { \partial p } = - \frac { 7 t } { p ^ { 2 } }
B) up=7tp\frac { \partial u } { \partial p } = \frac { 7 t } { p }
C) up=5tp3\frac { \partial u } { \partial p } = - \frac { 5 t } { p ^ { 3 } }
D) up=35tp2\frac { \partial u } { \partial p } = - \frac { 35 t } { p ^ { 2 } }
E) up=35tp2+t\frac { \partial u } { \partial p } = \frac { 35 t } { p ^ { 2 } } + t
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the limit if Find the limit if   .  . Find the limit if   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
43
The radius of a right circular cone is increasing at a rate of 5 in/s while its height is decreasing at a rate of 3.6 in/s. At what rate is the volume of the cone changing when the radius is 108108 in. and the height is 132132 in.?

A) 108316.24in3/s108316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
B) 105316.24in3/s105316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
C) 111316.24in3/s111316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
D) 102316.24in3/s102316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
E) 99316.24in3/s99316.24 \mathrm { in } ^ { 3 } / \mathrm { s }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
44
Find the differential of the function z=3x3y6z = 3 x ^ { 3 } y ^ { 6 }

A) dz=9x2y5dx+18x2y5dyd z = 9 x ^ { 2 } y ^ { 5 } d x + 18 x ^ { 2 } y ^ { 5 } d y
B) dz=9x2y6dx+18x3y5dyd z = 9 x ^ { 2 } y ^ { 6 } d x + 18 x ^ { 3 } y ^ { 5 } d y
C) dz=18x2y5dx+9x2y5dyd z = 18 x ^ { 2 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 5 } d y
D) dz=18x3y5dx+9x2y6dyd z = 18 x ^ { 3 } y ^ { 5 } d x + 9 x ^ { 2 } y ^ { 6 } d y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
45
Use the Chain Rule to find zs\frac { \partial z } { \partial s } . z=eycos(θ),r=8st,θ=s2+t2z = e ^ { y } \cos ( \theta ) , r = 8 s t , \theta = \sqrt { s ^ { 2 } + t ^ { 2 } }

A) zs=eγ(8tcos(θ)ssin(θ)s2+t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
B) zs=eγ(8tcos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( 8 t \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
C) zs=(8tcos(θ)+seγsin(θ)s2+t2)\frac { \partial z } { \partial s } = \left( 8 t \cos ( \theta ) + \frac { s e ^ { \gamma } \sin ( \theta ) } { \sqrt { s ^ { 2 } + t ^ { 2 } } } \right)
D) zs=eγ(cos(θ)+ssin(θ)s2t2)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( \cos ( \theta ) + \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } - t ^ { 2 } } } \right)
E) zs=eγ(tcos(θ)ssin(θ)s2+t)\frac { \partial z } { \partial s } = e ^ { \gamma } \left( t \cos ( \theta ) - \frac { s \sin ( \theta ) } { \sqrt { s ^ { 2 } + t } } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
46
Use the Chain Rule to find Use the Chain Rule to find   where   .  where Use the Chain Rule to find   where   .  . Use the Chain Rule to find   where   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find an equation of the tangent plane to the given surface at the specified point. Find an equation of the tangent plane to the given surface at the specified point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
48
Use the Chain Rule to find wr\frac { \partial w } { \partial r } and wt\frac { \partial w } { \partial t } if r=5r = 5 s=2s = 2 and t=0t = 0 w=x2yz2,x=rest,y=sent,z=erstw = \frac { x ^ { 2 } y } { z ^ { 2 } } , \quad x = r e ^ { s t } , \quad y = s e ^ { n t } , \quad z = e ^ { r s t }

A) wr=20,wt=550\frac { \partial w } { \partial r } = 20 , \quad \frac { \partial w } { \partial t } = - 550
B) wr=100,wt=200\frac { \partial w } { \partial r } = 100 , \quad \frac { \partial w } { \partial t } = 200
C) wr=10,wt=0\frac { \partial w } { \partial r } = 10 , \quad \frac { \partial w } { \partial t } = 0
D) wr=7,wt=550\frac { \partial w } { \partial r } = 7 , \quad \frac { \partial w } { \partial t } = - 550
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the equation of the tangent plane to the given surface at the specified point. Find the equation of the tangent plane to the given surface at the specified point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
50
Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x7y)=xe4y\cos ( x - 7 y ) = x e ^ { 4 y }

A) dydx=sin(xy)+e4y7sin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - x e ^ { 4 y } }
B) dydx=sin(xy)+e4ysin(xy)xey\frac { d y } { d x } = \frac { \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - y ) - x e ^ { y } }
C) dydx=sin(x7y)+e4y7sin(x7y)4xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { 7 \sin ( x - 7 y ) - 4 x e ^ { 4 y } }
D) dydx=7sin(xy)+e4ysin(x7y)7xey\frac { d y } { d x } = \frac { 7 \sin ( x - y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - 7 x e ^ { y } }
E) dydx=sin(x7y)+e4ysin(x7y)xe4y\frac { d y } { d x } = \frac { \sin ( x - 7 y ) + e ^ { 4 y } } { \sin ( x - 7 y ) - x e ^ { 4 y } }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
51
The length l, width w and height h of a box change with time. At a certain instant the dimensions are The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing. and The length l, width w and height h of a box change with time. At a certain instant the dimensions are   and   , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing. , and l and w are increasing at a rate of 10 m/s while h is decreasing at a rate of 1 m/s. At that instant find the rates at which the surface area is changing.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
52
Use implicit differentiation to find Use implicit differentiation to find   .  . Use implicit differentiation to find   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the equation of the tangent plane to the given surface at the specified point. z+7=xeycosz,(7,0,0)z + 7 = x e ^ { y } \cos z , ( 7,0,0 )

A) x+7y+z=7x + 7 y + z = 7
B) x+7yz=7x + 7 y - z = 7
C) x+yz=7x + y - z = 7
D) 7x+yz=77 x + y - z = 7
E) x+y7z=7x + y - 7 z = 7
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
54
Use the Chain Rule to find dwdt\frac { d w } { d t } w=9x4y3z,x=6t,y=cos7t,z=tsintw = 9 x ^ { 4 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 7 t , \quad z = t \sin t

A) 4,536x4y3zsin7t(sint+tcost)4,536 x ^ { 4 } y ^ { 3 } z \sin 7 t ( \sin t + t \cos t )
B) 9x4y3(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 4 } y ^ { 3 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
C) 4,536x3y2sin7t(sint+tcost)4,536 x ^ { 3 } y ^ { 2 } \sin 7 t ( \sin t + t \cos t )
D) 9x3y2(24yz21xzsin7t+xy(sint+tcost))9 x ^ { 3 } y ^ { 2 } ( 24 y z - 21 x z \sin 7 t + x y ( \sin t + t \cos t ) )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
55
Find the gradient of the function Find the gradient of the function   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the equation of the normal line to the given surface at the specified point. Find the equation of the normal line to the given surface at the specified point.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
57
A boundary stripe 2 in. wide is painted around a rectangle whose dimensions are 100 ft by 240 ft. Use differentials to approximate the number of square feet of paint in the stripe.

A) 113 ft2\mathrm { ft } ^ { 2 }
B) 113.81 ft2\mathrm { ft } ^ { 2 }
C) 113.23 ft2\mathrm { ft } ^ { 2 }
D) 113.89 ft2\mathrm { ft } ^ { 2 }
E) 113.33 ft2\mathrm { ft } ^ { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
58
Use partial derivatives to find the implicit partial derivatives Use partial derivatives to find the implicit partial derivatives   and    and Use partial derivatives to find the implicit partial derivatives   and    Use partial derivatives to find the implicit partial derivatives   and
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
59
Find the gradient of Find the gradient of   at the point  at the point Find the gradient of   at the point
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
60
Use differentials to estimate the amount of metal in a closed cylindrical can that is 12 cm high and 8 cm in diameter if the metal in the top and bottom is 0.09 cm thick and the metal in the sides is 0.01 cm thick. (rounded to the nearest hundredth.)

A) 8.34 cm3\mathrm { cm } ^ { 3 }
B) 6.99 cm3\mathrm { cm } ^ { 3 }
C) 6.91 cm3\mathrm { cm } ^ { 3 }
D) 6.7 cm3\mathrm { cm } ^ { 3 }
E) 12.0612.06 cm3\mathrm { cm } ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find fxyf _ { x y } for the function f(x,y)=2x3y7xy2f ( x , y ) = 2 x ^ { 3 } y - 7 x y ^ { 2 } .

A) fxy=6x214yf _ { x y } = 6 x ^ { 2 } - 14 y
B) fxy=6x2+14yf _ { x y } = 6 x ^ { 2 } + 14 y
C) fxy=14x2+6yf _ { x y } = 14 x ^ { 2 } + 6 y
D) fxy=14x26yf _ { x y } = 14 x ^ { 2 } - 6 y
E) fxy=24x214yf _ { x y } = 24 x ^ { 2 } - 14 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
62
If If   and   changes from (2, 1) to   find dz. and If   and   changes from (2, 1) to   find dz. changes from (2, 1) to If   and   changes from (2, 1) to   find dz. find dz.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
63
Find the differential of the function. Find the differential of the function.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
64
Use the linearization L(x, y) of the function. Use the linearization L(x, y) of the function.   at   to approximate   . at Use the linearization L(x, y) of the function.   at   to approximate   . to approximate Use the linearization L(x, y) of the function.   at   to approximate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
65
How many nth-order partial derivatives does a function of two variables have?

A) n2n ^ { 2 }
B) 2n2 ^ { n }
C) 2n2 n
D) n2\frac { n } { 2 }
E) n2nn 2 ^ { n }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
66
Find the differential of the function Find the differential of the function
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
67
Find fmw(x,y)f _ { m w } ( x , y ) for the function f(x,y)=x49x2y2+2xy3+6y4f ( x , y ) = x ^ { 4 } - 9 x ^ { 2 } y ^ { 2 } + 2 x y ^ { 3 } + 6 y ^ { 4 }

A) 24x24 x
B) 92x292 x ^ { 2 }
C) 15y2- 15 y ^ { 2 }
D) 36y- 36 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
68
Find the indicated partial derivative. f(x,y)=x2y43x4y;fmxf ( x , y ) = x ^ { 2 } y ^ { 4 } - 3 x ^ { 4 } y ; f _ { m x }

A) fmx=12x2yf _ { m x } = 12 x ^ { 2 } y
B) fmx=36xyf _ { m x } = - 36 x y
C) fmx=3xyf _ { m x } = 3 x y
D) fmx=72xyf _ { m x } = - 72 x y
E) fmx=3xyf _ { m x } = - 3 x y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
69
Use implicit differentiation to find zx\frac { \partial z } { \partial x } ln(x2+z2)+yz3+4x2=6\ln \left( x ^ { 2 } + z ^ { 2 } \right) + y z ^ { 3 } + 4 x ^ { 2 } = 6

A) zx=2x(x2+z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( x ^ { 2 } + z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
B) zx=2x(4x2+4z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
C) zx=2x(4x2+4z2+6)z(3yz3+3x2yz+6)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 4 x ^ { 2 } + 4 z ^ { 2 } + 6 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 6 \right) }
D) zx=2x(6x2+6z2+1)z(3yz3+3x2yz+2)\frac { \partial z } { \partial x } = - \frac { 2 x \left( 6 x ^ { 2 } + 6 z ^ { 2 } + 1 \right) } { z \left( 3 y z ^ { 3 } + 3 x ^ { 2 } y z + 2 \right) }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
70
Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height   cm if the tin is 0.04 cm thick. cm if the tin is 0.04 cm thick.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find the indicated partial derivative. u=xeybzc;6uxy2z3,a>1,b>2,c>3u = x ^ { e } y ^ { b } z ^ { c } ; \frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } , a > 1 , b > 2 , c > 3

A) 6uxy2z3=cb(b1)c(a1)(a2)xc1yb2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = c b ( b - 1 ) c ( a - 1 ) ( a - 2 ) x ^ { c - 1 } y ^ { b - 2 } z ^ { a - 3 }
B) 6uxy2z3=xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
C) 6uxy2z3=ab(b1)c(c1)(c2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a b ( b - 1 ) c ( c - 1 ) ( c - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
D) 6uxy2z3=acb(a1)(a2)xa1yb2zc3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = a c b ( a - 1 ) ( a - 2 ) x ^ { a - 1 } y ^ { b - 2 } z ^ { c - 3 }
E) 6uxy2z3=xb1yc2za3\frac { \partial ^ { 6 } u } { \partial x \partial y ^ { 2 } \partial z ^ { 3 } } = x ^ { b - 1 } y ^ { c - 2 } z ^ { a - 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the differential of the function Find the differential of the function
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
73
Let Let   and suppose that   changes from   to   (a) Compute   (b) Compute  and suppose that Let   and suppose that   changes from   to   (a) Compute   (b) Compute  changes from Let   and suppose that   changes from   to   (a) Compute   (b) Compute  to Let   and suppose that   changes from   to   (a) Compute   (b) Compute  (a) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute  (b) Compute Let   and suppose that   changes from   to   (a) Compute   (b) Compute
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
74
The height of a hill (in feet) is given by h(x,y)=30(145x22y2+3xy+30x18y)h ( x , y ) = 30 \left( 14 - 5 x ^ { 2 } - 2 y ^ { 2 } + 3 x y + 30 x - 18 y \right) where x is the distance (in miles) east and y is the distance (in miles) north of your cabin. If you are at a point on the hill 1 mile north and 1 mile east of your cabin, what is the rate of change of the height of the hill (a) in a northerly direction and (b) in an easterly direction?

A) (a) 570 ft/mi, (b) 690 ft/mi
B) (a) -570 ft/mi, (b) 690 ft/mi
C) (a) 690 ft/mi, (b) 570 ft/mi
D) (a) 690 ft/mi, (b) -570 ft/mi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find hmy(x,y,z)h_{m y}(x, y, z) for the function h(x,y,z)=e9xcos(y+7z)h ( x , y , z ) = e ^ { 9 x } \cos ( y + 7 z )

A) 63e9xcos(y+7z)63 e ^ { 9 x } \cos ( y + 7 z )
B) 49e9xsin(y+7z)49 e ^ { 9 x } \sin ( y + 7 z )
C) 63e9xsin(y+7z)- 63 e ^ { 9 x } \sin ( y + 7 z )
D) 49e9xcos(y+7z)- 49 e ^ { 9 x } \cos ( y + 7 z )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
76
Use the definition of partial derivatives as limits to find fx(x,y)f _ { x } ( x , y ) if f(x,y)=5x29xy+2y2f ( x , y ) = 5 x ^ { 2 } - 9 x y + 2 y ^ { 2 } .

A) 5y9x5 y - 9 x
B) 10x9y10 x - 9 y
C) 10x910 x - 9
D) 10x9xy10 x - 9 x y
E) 5x9y5 x - 9 y
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
77
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  to the wind chill index function when T is near The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.  and v is near 30 kmh.
The wind-chill index I is the perceived temperature when the actual temperature is T and the wind speed is v so we can write   . The following table of values is an excerpt from a table compiled by the National Atmospheric and Oceanic Administration. Use the table to find a linear approximation   to the wind chill index function when T is near   and v is near 30 kmh.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find the linearization L(x, y) of the function at the given point. Find the linearization L(x, y) of the function at the given point.   Round the answers to the nearest hundredth. Round the answers to the nearest hundredth.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
79
Use implicit differentiation to find zx\frac { \partial z } { \partial x } x4y+xz+yz2=7x ^ { 4 } y + x z + y z ^ { 2 } = 7

A) zx=4x3y1+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y } { 1 + 2 y }
B) zx=4x3y+zx+2yz\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } y + z } { x + 2 y z }
C) zx=4x31+2y\frac { \partial z } { \partial x } = - \frac { 4 x ^ { 3 } } { 1 + 2 y }
D) zx=11+2y\frac { \partial z } { \partial x } = \frac { 1 } { 1 + 2 y }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
80
Find fy(24,8)f _ { y } ( - 24,8 ) for f(x,y)=sin(4x+12y)f ( x , y ) = \sin ( 4 x + 12 y ) .

A) 1212
B) 4- 4
C) 12- 12
D) 44
E) 0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 132 في هذه المجموعة.