Deck 8: Infinite Sequences and Series

ملء الشاشة (f)
exit full mode
سؤال
Write the fourth-degree Taylor polynomial centered about the origin for the function Write the fourth-degree Taylor polynomial centered about the origin for the function   .<div style=padding-top: 35px> .
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Which of the following is the degree 4 Taylor polynomial centered at a=0a = 0 for f(x)=cos(2x)f ( x ) = \cos ( 2 x ) ?
1) 1(2x)2+16x41 - ( 2 x ) ^ { 2 } + 16 x ^ { 4 } 2) 12x2+23x41 - 2 x ^ { 2 } + \frac { 2 } { 3 } x ^ { 4 } 3) 1(2x)22!+(2x)44!1 - \frac { ( 2 x ) ^ { 2 } } { 2 ! } + \frac { ( 2 x ) ^ { 4 } } { 4 ! }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Find the second-degree Taylor polynomial of the function Find the second-degree Taylor polynomial of the function   .<div style=padding-top: 35px> .
سؤال
According to Taylor's Formula, what is the maximum error possible in the use of the sum n=04xnn!\sum _ { n = 0 } ^ { 4 } \frac { x ^ { n } } { n ! } to approximate exe ^ { x } in the interval 1x1- 1 \leq x \leq 1 ?

A) e240\frac { e } { 240 }
B) e48\frac { e } { 48 }
C) e480\frac { e } { 480 }
D) e24\frac { e } { 24 }
E) e20\frac { e } { 20 }
F) e120\frac { e } { 120 }
G) e12\frac { e } { 12 }
H) e60\frac { e } { 60 }
سؤال
Estimate the range of values of x for which the approximation 1x=1(x1)+(x1)2\frac { 1 } { x } = 1 - ( x - 1 ) + ( x - 1 ) ^ { 2 } is accurate to within 0.01.

A)[0.68, 1.41]
B)[0.61, 1.54]
C)[0.995, 1.005]
D)[1.51, 2.59]
E)[0.95, 1.05]
F)[0.80, 1.23]
G)[0.980, 1.023]
H)[0.89, 1.14]
سؤال
Give the 4th-degree Taylor polynomial for Give the 4th-degree Taylor polynomial for   about the point   . Using this polynomial, approximate   . Give the maximum error for this approximation.<div style=padding-top: 35px> about the point Give the 4th-degree Taylor polynomial for   about the point   . Using this polynomial, approximate   . Give the maximum error for this approximation.<div style=padding-top: 35px> . Using this polynomial, approximate Give the 4th-degree Taylor polynomial for   about the point   . Using this polynomial, approximate   . Give the maximum error for this approximation.<div style=padding-top: 35px> . Give the maximum error for this approximation.
سؤال
Find an approximation for Find an approximation for   accurate to 6 decimal places.(Note: sin's argument is measured in radians.)<div style=padding-top: 35px> accurate to 6 decimal places.(Note: sin's argument is measured in radians.)
سؤال
Which of the following is the degree 2 Taylor polynomial centered at a=1a = - 1 for f(x)=1xf ( x ) = \frac { 1 } { x } ?
1) 1xx2- 1 - x - x ^ { 2 } 2) 1(x+1)(x+1)2- 1 - ( x + 1 ) - ( x + 1 ) ^ { 2 } 3) 1(x+1)2(x+1)2- 1 - ( x + 1 ) - 2 ( x + 1 ) ^ { 2 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Which of the following is the degree 2 Taylor polynomial centered at a=2a = 2 for f(x)=lnxf ( x ) = \ln x ?
1) ln2x22(x2)28\ln 2 - \frac { x - 2 } { 2 } - \frac { ( x - 2 ) ^ { 2 } } { 8 } 2) ln2+x22(x2)24\ln 2 + \frac { x - 2 } { 2 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } 3) ln2+x22(x2)28\ln 2 + \frac { x - 2 } { 2 } - \frac { ( x - 2 ) ^ { 2 } } { 8 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Which of the following is the degree 2 Taylor polynomial centered at a=3a = 3 for f(x)=lnxf ( x ) = \ln x ?
1) ln3+x33(x3)218\ln 3 + \frac { x - 3 } { 3 } - \frac { ( x - 3 ) ^ { 2 } } { 18 } 2) ln3+x33(x3)29\ln 3 + \frac { x - 3 } { 3 } - \frac { ( x - 3 ) ^ { 2 } } { 9 } 3) ln3x33+(x3)218\ln 3 - \frac { x - 3 } { 3 } + \frac { ( x - 3 ) ^ { 2 } } { 18 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
What is the smallest value of n that will guarantee (according to Taylor's Formula) that the Taylor polynomial TnT _ { n } at the number 0 will be within 0.0001 of exe ^ { x } for 0x10 \leq x \leq 1 ?

A)4
B)5
C)8
D)6
E)7
F)2
G)3
H)9
سؤال
Estimate the range of values of x for which the approximation Estimate the range of values of x for which the approximation   is accurate to within 0.001.<div style=padding-top: 35px> is accurate to within 0.001.
سؤال
Estimate the range of values of x for which the approximation Estimate the range of values of x for which the approximation   is accurate to within 0.0002.<div style=padding-top: 35px> is accurate to within 0.0002.
سؤال
Estimate the range of values of x for which the approximation lnx=ln2+12(x2)18(x2)2\ln x = \ln 2 + \frac { 1 } { 2 } ( x - 2 ) - \frac { 1 } { 8 } ( x - 2 ) ^ { 2 } is accurate to within 0.01.

A)[1.08, 3.20]
B)[1.80, 2.20]
C)[0.89, 3.56]
D)[1.43, 2.66]
E)[0.45, 1.78]
F)[0.71, 1.33]
G)[1.90, 2.10]
H)[1.99, 2.01]
سؤال
Consider the function Consider the function   .(a) Find the fourth-degree Taylor polynomial of f at   .(b) What is the remainder? (c) What is the absolute minimum value of f, and where does it occur?<div style=padding-top: 35px> .(a) Find the fourth-degree Taylor polynomial of f at Consider the function   .(a) Find the fourth-degree Taylor polynomial of f at   .(b) What is the remainder? (c) What is the absolute minimum value of f, and where does it occur?<div style=padding-top: 35px> .(b) What is the remainder?
(c) What is the absolute minimum value of f, and where does it occur?
سؤال
Find the second-degree Taylor polynomial for Find the second-degree Taylor polynomial for   , centered about   . Also obtain a bound for the error in using this polynomial to approximate   .<div style=padding-top: 35px> , centered about Find the second-degree Taylor polynomial for   , centered about   . Also obtain a bound for the error in using this polynomial to approximate   .<div style=padding-top: 35px> . Also obtain a bound for the error in using this polynomial to approximate Find the second-degree Taylor polynomial for   , centered about   . Also obtain a bound for the error in using this polynomial to approximate   .<div style=padding-top: 35px> .
سؤال
Find the coefficient of (x2)2( x - 2 ) ^ { 2 } in the Taylor polynomial T2(x)T _ { 2 } ( x ) for the function x3x ^ { 3 } at the number 2.

A)3
B)0
C)1
D)6
E)2
F)5
G)8
H)4
سؤال
Find the Taylor polynomial Find the Taylor polynomial   for the function   at the point   .<div style=padding-top: 35px> for the function Find the Taylor polynomial   for the function   at the point   .<div style=padding-top: 35px> at the point Find the Taylor polynomial   for the function   at the point   .<div style=padding-top: 35px> .
سؤال
Which of the following is the degree 3 Taylor polynomial centered at a=0a = 0 for f(x)=cos(2x)f ( x ) = \cos ( 2 x ) ?
1) 1(2x)2+16x41 - ( 2 x ) ^ { 2 } + 16 x ^ { 4 } 2) 12x2+83x41 - 2 x ^ { 2 } + \frac { 8 } { 3 } x ^ { 4 } 3) 1(2x)22!1 - \frac { ( 2 x ) ^ { 2 } } { 2 ! }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Which of the following is the degree 3 Taylor polynomial centered at a=0a = 0 for f(x)=1cosxxf ( x ) = \frac { 1 - \cos x } { x } ?
1) x2x324\frac { x } { 2 } - \frac { x ^ { 3 } } { 24 } 2) x2+x324- \frac { x } { 2 } + \frac { x ^ { 3 } } { 24 } 3) xx3x - x ^ { 3 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Find the coefficient of x3x ^ { 3 } in the Maclaurin series for f(x)=sin2xf ( x ) = \sin 2 x .

A) 23- \frac { 2 } { 3 }
B) 43- \frac { 4 } { 3 }
C) 43\frac { 4 } { 3 }
D) 83- \frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
F) 83\frac { 8 } { 3 }
G) 13- \frac { 1 } { 3 }
H) 13\frac { 1 } { 3 }
سؤال
Find the terms in the Maclaurin series for the function f(x)=exf ( x ) = e ^ { - x } , as far as the term in x3x ^ { 3 } .

A) 1x+12x216x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
B) 1+x+12x216x31 + x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
C) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
D) 1+x+x2+x31 + x + x ^ { 2 } + x ^ { 3 }
E) 1x+12x213x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 3 } x ^ { 3 }
F) 1+x+12x2+13x31 + x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
G) x+x3- x + x ^ { 3 }
H) xx3x - x ^ { 3 }
سؤال
(a) Find the third-order Taylor polynomial associated with (a) Find the third-order Taylor polynomial associated with   .(b) Use the Taylor polynomial from part (a) to find an approximation of   .(c) Compare the value you calculated in part (b) with your calculator's value for  <div style=padding-top: 35px> .(b) Use the Taylor polynomial from part (a) to find an approximation of (a) Find the third-order Taylor polynomial associated with   .(b) Use the Taylor polynomial from part (a) to find an approximation of   .(c) Compare the value you calculated in part (b) with your calculator's value for  <div style=padding-top: 35px> .(c) Compare the value you calculated in part (b) with your calculator's value for (a) Find the third-order Taylor polynomial associated with   .(b) Use the Taylor polynomial from part (a) to find an approximation of   .(c) Compare the value you calculated in part (b) with your calculator's value for  <div style=padding-top: 35px>
سؤال
Find the third-degree Taylor polynomial of the function Find the third-degree Taylor polynomial of the function   .<div style=padding-top: 35px> .
سؤال
Find the terms in the Maclaurin series for the function f(x)=ln(1+x)f ( x ) = \ln ( 1 + x ) , as far as the term in x3x ^ { 3 } .

A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) xx2+x3x - x ^ { 2 } + x ^ { 3 }
C) 1x+12x216x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
D) x12x2+13x3x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
E) 1+12x+23x2+56x31 + \frac { 1 } { 2 } x + \frac { 2 } { 3 } x ^ { 2 } + \frac { 5 } { 6 } x ^ { 3 }
F) x+12x2+16x3x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 }
G) 1+x2+16x2+124x31 + \frac { x } { 2 } + \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 }
H) x124x2+1120x3x - \frac { 1 } { 24 } x ^ { 2 } + \frac { 1 } { 120 } x ^ { 3 }
سؤال
Find the third-degree Taylor polynomial centered at Find the third-degree Taylor polynomial centered at   for   . Use this result to approximate   .<div style=padding-top: 35px> for Find the third-degree Taylor polynomial centered at   for   . Use this result to approximate   .<div style=padding-top: 35px> . Use this result to approximate Find the third-degree Taylor polynomial centered at   for   . Use this result to approximate   .<div style=padding-top: 35px> .
سؤال
Given Given   , (a) calculate   .(b) calculate   .(c) calculate   .<div style=padding-top: 35px> ,
(a) calculate Given   , (a) calculate   .(b) calculate   .(c) calculate   .<div style=padding-top: 35px> .(b) calculate Given   , (a) calculate   .(b) calculate   .(c) calculate   .<div style=padding-top: 35px> .(c) calculate Given   , (a) calculate   .(b) calculate   .(c) calculate   .<div style=padding-top: 35px> .
سؤال
Find the radius of convergence of the Maclaurin series for f(x)=14+x2f ( x ) = \frac { 1 } { 4 + x ^ { 2 } } .

A)1
B) 18\frac { 1 } { 8 }
C) \infty
D) 14\frac { 1 } { 4 }
E) 12\frac { 1 } { 2 }
F)4

G)8
H)2
سؤال
Find the coefficient of x4x ^ { 4 } in the Maclaurin series for f(x)=xcos(x3)f ( x ) = x \cos \left( x ^ { 3 } \right) .

A)16
B) 23- \frac { 2 } { 3 }
C)3
D)4
E)-16
F) 23\frac { 2 } { 3 }
G)-3
H)0
سؤال
Find the coefficient of x4x ^ { 4 } in the Maclaurin series for f(x)=e2xf ( x ) = e ^ { - 2 x } .

A)16
B) 23- \frac { 2 } { 3 }
C)3
D)4
E)-16
F) 23\frac { 2 } { 3 }
G)-3
H)0
سؤال
Use the 3rd-degree Taylor polynomial of Use the 3rd-degree Taylor polynomial of   about   to approximate   . Use the remainder term to give an upper bound for the error in this approximation.<div style=padding-top: 35px> about Use the 3rd-degree Taylor polynomial of   about   to approximate   . Use the remainder term to give an upper bound for the error in this approximation.<div style=padding-top: 35px> to approximate Use the 3rd-degree Taylor polynomial of   about   to approximate   . Use the remainder term to give an upper bound for the error in this approximation.<div style=padding-top: 35px> . Use the remainder term to give an upper bound for the error in this approximation.
سؤال
Find the coefficient of x5x ^ { 5 } in the Maclaurin series for f(x)=cos(x2)dxf ( x ) = \int \cos \left( x ^ { 2 } \right) d x .Note: The series is unique except for the constant of integration.

A) 110- \frac { 1 } { 10 }
B) 115\frac { 1 } { 15 }
C) 15- \frac { 1 } { 5 }
D) 25\frac { 2 } { 5 }
E) 25- \frac { 2 } { 5 }
F) 115- \frac { 1 } { 15 }
G) 15\frac { 1 } { 5 }
H) 110\frac { 1 } { 10 }
سؤال
Write the Taylor polynomial at 0 of degree 4 for Write the Taylor polynomial at 0 of degree 4 for   .<div style=padding-top: 35px> .
سؤال
Find the second-degree Taylor polynomial of the function Find the second-degree Taylor polynomial of the function   .<div style=padding-top: 35px> .
سؤال
(a) Use series to compute (a) Use series to compute   correct to three decimal places.(b) Use integration by parts to compute   .(c) Compare your answers in parts (a) and (b) above.<div style=padding-top: 35px> correct to three decimal places.(b) Use integration by parts to compute (a) Use series to compute   correct to three decimal places.(b) Use integration by parts to compute   .(c) Compare your answers in parts (a) and (b) above.<div style=padding-top: 35px> .(c) Compare your answers in parts (a) and (b) above.
سؤال
Use series to compute Use series to compute   correct to four decimal places.<div style=padding-top: 35px> correct to four decimal places.
سؤال
Find the third Taylor polynomial associated with Find the third Taylor polynomial associated with   . What is the remainder?<div style=padding-top: 35px> . What is the remainder?
سؤال
Find the first four terms in the Maclaurin series for f(x)=xexf ( x ) = x e ^ { - x } .

A) xx2+x3x4x - x ^ { 2 } + x ^ { 3 } - x ^ { 4 }
B) x12x2+13x314x4x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }
C) xx2+12x316x4x - x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 } - \frac { 1 } { 6 } x ^ { 4 }
D) x2x2+3x34x4x - 2 x ^ { 2 } + 3 x ^ { 3 } - 4 x ^ { 4 }
E) x+12x2+16x3+124x4x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 } + \frac { 1 } { 24 } x ^ { 4 }
F) x+x2+13x3+18x4x + x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } + \frac { 1 } { 8 } x ^ { 4 }
G) x+x2+12x3+16x4x + x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 } + \frac { 1 } { 6 } x ^ { 4 }
H) 12x16x2+124x31120x4\frac { 1 } { 2 } x - \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 } - \frac { 1 } { 120 } x ^ { 4 }
سؤال
The first three derivatives of The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> are The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> , The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> and The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> .(a) Give the first four terms of the Taylor series associated with f at The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> .(b) Give the second-order Taylor polynomial, The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> , associated with f at The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> .(c) Suppose that The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> and that The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> from part (b) is used to approximate The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> . Prove that the error in this approximation does not exceed The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   .<div style=padding-top: 35px> .
سؤال
Find the third-degree Taylor polynomial of the function Find the third-degree Taylor polynomial of the function   .<div style=padding-top: 35px> .
سؤال
Give the Taylor series expansion of Give the Taylor series expansion of   about the point   .<div style=padding-top: 35px> about the point Give the Taylor series expansion of   about the point   .<div style=padding-top: 35px> .
سؤال
Find the coefficient of x3x ^ { 3 } in the binomial series for 1+x\sqrt { 1 + x } .

A) 12- \frac { 1 } { 2 }
B) 14- \frac { 1 } { 4 }
C) 18\frac { 1 } { 8 }
D) 12\frac { 1 } { 2 } h. 14\frac { 1 } { 4 }

E) 18- \frac { 1 } { 8 }
F) 116- \frac { 1 } { 16 }
G) 116\frac { 1 } { 16 }
سؤال
(a) Express (a) Express   as a Maclaurin series.(b) Evaluate   as a series.<div style=padding-top: 35px> as a Maclaurin series.(b) Evaluate (a) Express   as a Maclaurin series.(b) Evaluate   as a series.<div style=padding-top: 35px> as a series.
سؤال
Express Express   as a Maclaurin Series.<div style=padding-top: 35px> as a Maclaurin Series.
سؤال
Find the terms of the Maclaurin series for 11x\frac { 1 } { \sqrt { 1 - x } } , as far as the term in x3x ^ { 3 } .

A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) 112x+14x2+18x31 - \frac { 1 } { 2 } x + \frac { 1 } { 4 } x ^ { 2 } + \frac { 1 } { 8 } x ^ { 3 }
C) 1+12x+38x2+516x31 + \frac { 1 } { 2 } x + \frac { 3 } { 8 } x ^ { 2 } + \frac { 5 } { 16 } x ^ { 3 }
D) 112x+34x258x31 - \frac { 1 } { 2 } x + \frac { 3 } { 4 } x ^ { 2 } - \frac { 5 } { 8 } x ^ { 3 }
E) 1+12x+14x2+16x31 + \frac { 1 } { 2 } x + \frac { 1 } { 4 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 }
F) 112x+16x2+124x31 - \frac { 1 } { 2 } x + \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 }
G) 1+12x+34x2+1516x31 + \frac { 1 } { 2 } x + \frac { 3 } { 4 } x ^ { 2 } + \frac { 15 } { 16 } x ^ { 3 }
H) 112x+38x2+724x31 - \frac { 1 } { 2 } x + \frac { 3 } { 8 } x ^ { 2 } + \frac { 7 } { 24 } x ^ { 3 }
سؤال
(a) Express (a) Express   as a Maclaurin series.(b) Evaluate   as a series.<div style=padding-top: 35px> as a Maclaurin series.(b) Evaluate (a) Express   as a Maclaurin series.(b) Evaluate   as a series.<div style=padding-top: 35px> as a series.
سؤال
Find the coefficient of x3x ^ { 3 } in the binomial series for 1(1+x)4\frac { 1 } { ( 1 + x ) ^ { 4 } } .

A)6
B)20
C)-6
D)-10
E)-20
F)-12
G)10
H)12
سؤال
Find the terms of the Maclaurin series for f(x)=11+2xf ( x ) = \frac { 1 } { \sqrt { 1 + 2 x } } , as far as the term in x3x ^ { 3 } .

A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) 1+x12x2+13x31 + x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
C) 1x+32x252x31 - x + \frac { 3 } { 2 } x ^ { 2 } - \frac { 5 } { 2 } x ^ { 3 }
D) 1+x+3x2+5x31 + x + 3 x ^ { 2 } + 5 x ^ { 3 }
E) 1x+32x273x31 - x + \frac { 3 } { 2 } x ^ { 2 } - \frac { 7 } { 3 } x ^ { 3 }
F) 1+x+12x2+73x31 + x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 7 } { 3 } x ^ { 3 }
G) 1x+52x273x31 - x + \frac { 5 } { 2 } x ^ { 2 } - \frac { 7 } { 3 } x ^ { 3 }
H) 1+x+72x2+113x31 + x + \frac { 7 } { 2 } x ^ { 2 } + \frac { 11 } { 3 } x ^ { 3 }
سؤال
Find the Taylor series for Find the Taylor series for   at 2.<div style=padding-top: 35px> at 2.
سؤال
Express Express   as a Maclaurin Series.<div style=padding-top: 35px> as a Maclaurin Series.
سؤال
Find the Maclaurin series expansion with Find the Maclaurin series expansion with   for   . Use this expansion to approximate   .<div style=padding-top: 35px> for Find the Maclaurin series expansion with   for   . Use this expansion to approximate   .<div style=padding-top: 35px> . Use this expansion to approximate Find the Maclaurin series expansion with   for   . Use this expansion to approximate   .<div style=padding-top: 35px> .
سؤال
Find the Maclaurin series expansion for Find the Maclaurin series expansion for   and determine the interval of convergence.<div style=padding-top: 35px> and determine the interval of convergence.
سؤال
Find the Taylor polynomial of degree 4 at 0 for the function defined by Find the Taylor polynomial of degree 4 at 0 for the function defined by   . Then compute the value of   accurate to as many decimal places as the polynomial of degree 4 allows.<div style=padding-top: 35px> . Then compute the value of Find the Taylor polynomial of degree 4 at 0 for the function defined by   . Then compute the value of   accurate to as many decimal places as the polynomial of degree 4 allows.<div style=padding-top: 35px> accurate to as many decimal places as the polynomial of degree 4 allows.
سؤال
Express Express   as a Maclaurin Series.<div style=padding-top: 35px> as a Maclaurin Series.
سؤال
If the Maclaurin series for If the Maclaurin series for   is   , find   .<div style=padding-top: 35px> is If the Maclaurin series for   is   , find   .<div style=padding-top: 35px> , find If the Maclaurin series for   is   , find   .<div style=padding-top: 35px> .
سؤال
Find the coefficient of xx in the binomial series for 1+x\sqrt { 1 + x } .

A)2
B)-1
C)1
D) 12- \frac { 1 } { 2 }
E) 12\frac { 1 } { 2 }
F) 2- \sqrt { 2 }
G)-2

H) 2\sqrt { 2 }
سؤال
How many coefficients in the binomial series expansion of (1+x)7( 1 + x ) ^ { 7 } are divisible by 7?

A)0
B)5
C)7
D)3
E)2
F)6
G)1
H)4
سؤال
Find the coefficient of x3x ^ { 3 } in the binomial series for (1+x)5( 1 + x ) ^ { 5 } .

A)3
B)6
C)15
D)20
E)10
F)5
G)16
H)12
سؤال
Use the binomial series to expand the function 4+x\sqrt { 4 + x } as a power series. Give the coefficient of x2x ^ { 2 } in that series.

A) 18- \frac { 1 } { 8 }
B) 132- \frac { 1 } { 32 }
C) 164- \frac { 1 } { 64 }
D) 18\frac { 1 } { 8 }
E) 132\frac { 1 } { 32 }
F) 116- \frac { 1 } { 16 }
G) 164\frac { 1 } { 64 }
H) 116\frac { 1 } { 16 }
سؤال
Find the Taylor series for Find the Taylor series for   about the origin.<div style=padding-top: 35px> about the origin.
سؤال
Find the coefficient of Find the coefficient of   in the Maclaurin series for   .<div style=padding-top: 35px> in the Maclaurin series for Find the coefficient of   in the Maclaurin series for   .<div style=padding-top: 35px> .
سؤال
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence.<div style=padding-top: 35px> as a power series. State the radius of convergence.
سؤال
Find the terms in the power series expansion for the function Find the terms in the power series expansion for the function   , as far as the term in   .<div style=padding-top: 35px> , as far as the term in Find the terms in the power series expansion for the function   , as far as the term in   .<div style=padding-top: 35px> .
سؤال
Find the sum of the series Find the sum of the series   .<div style=padding-top: 35px> .
سؤال
Find the sum of the series Find the sum of the series   .<div style=padding-top: 35px> .
سؤال
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence.<div style=padding-top: 35px> as a power series. State the radius of convergence.
سؤال
Which of the following is the power series centered at a=0a = 0 for f(x)=x1+4xf ( x ) = \frac { x } { 1 + 4 x } ?
1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n } 2) n=04nxn+1\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n + 1 } 3) n=0(1)n4nxn+1\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n + 1 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Which of the following is the power series centered at a=0a = 0 for f(x)=1x+4f ( x ) = \frac { 1 } { x + 4 } ?
1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { n } 2) n=0(1)n4n+1xn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n + 1 } } x ^ { n } 3) n=1(1)n14nxn1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { 4 ^ { n } } x ^ { n - 1 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
Use the binomial series formula to obtain the Maclaurin series for Use the binomial series formula to obtain the Maclaurin series for   .<div style=padding-top: 35px> .
سؤال
Which of the following is the power series centered at a=0a = 0 for f(x)=11+4xf ( x ) = \frac { 1 } { 1 + 4 x } ?
1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n } 2) n=04nxn\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n } 3) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { n }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
سؤال
If If   , compute   .<div style=padding-top: 35px> , compute If   , compute   .<div style=padding-top: 35px> .
سؤال
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence.<div style=padding-top: 35px> as a power series. State the radius of convergence.
سؤال
Find the sum of the series Find the sum of the series   .<div style=padding-top: 35px> .
سؤال
Let Let   , compute   .<div style=padding-top: 35px> , compute Let   , compute   .<div style=padding-top: 35px> .
سؤال
Find the terms of the Maclaurin series for Find the terms of the Maclaurin series for   , as far as the term in   .<div style=padding-top: 35px> , as far as the term in Find the terms of the Maclaurin series for   , as far as the term in   .<div style=padding-top: 35px> .
سؤال
Find the sum of the series Find the sum of the series   .<div style=padding-top: 35px> .
سؤال
If If   , compute   .<div style=padding-top: 35px> , compute If   , compute   .<div style=padding-top: 35px> .
سؤال
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence.<div style=padding-top: 35px> as a power series. State the radius of convergence.
سؤال
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence.<div style=padding-top: 35px> as a power series. State the radius of convergence.
سؤال
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence.<div style=padding-top: 35px> as a power series. State the radius of convergence.
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/341
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 8: Infinite Sequences and Series
1
Write the fourth-degree Taylor polynomial centered about the origin for the function Write the fourth-degree Taylor polynomial centered about the origin for the function   . .
2
Which of the following is the degree 4 Taylor polynomial centered at a=0a = 0 for f(x)=cos(2x)f ( x ) = \cos ( 2 x ) ?
1) 1(2x)2+16x41 - ( 2 x ) ^ { 2 } + 16 x ^ { 4 } 2) 12x2+23x41 - 2 x ^ { 2 } + \frac { 2 } { 3 } x ^ { 4 } 3) 1(2x)22!+(2x)44!1 - \frac { ( 2 x ) ^ { 2 } } { 2 ! } + \frac { ( 2 x ) ^ { 4 } } { 4 ! }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
2, 3
3
Find the second-degree Taylor polynomial of the function Find the second-degree Taylor polynomial of the function   . .
4
According to Taylor's Formula, what is the maximum error possible in the use of the sum n=04xnn!\sum _ { n = 0 } ^ { 4 } \frac { x ^ { n } } { n ! } to approximate exe ^ { x } in the interval 1x1- 1 \leq x \leq 1 ?

A) e240\frac { e } { 240 }
B) e48\frac { e } { 48 }
C) e480\frac { e } { 480 }
D) e24\frac { e } { 24 }
E) e20\frac { e } { 20 }
F) e120\frac { e } { 120 }
G) e12\frac { e } { 12 }
H) e60\frac { e } { 60 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
5
Estimate the range of values of x for which the approximation 1x=1(x1)+(x1)2\frac { 1 } { x } = 1 - ( x - 1 ) + ( x - 1 ) ^ { 2 } is accurate to within 0.01.

A)[0.68, 1.41]
B)[0.61, 1.54]
C)[0.995, 1.005]
D)[1.51, 2.59]
E)[0.95, 1.05]
F)[0.80, 1.23]
G)[0.980, 1.023]
H)[0.89, 1.14]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
6
Give the 4th-degree Taylor polynomial for Give the 4th-degree Taylor polynomial for   about the point   . Using this polynomial, approximate   . Give the maximum error for this approximation. about the point Give the 4th-degree Taylor polynomial for   about the point   . Using this polynomial, approximate   . Give the maximum error for this approximation. . Using this polynomial, approximate Give the 4th-degree Taylor polynomial for   about the point   . Using this polynomial, approximate   . Give the maximum error for this approximation. . Give the maximum error for this approximation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
7
Find an approximation for Find an approximation for   accurate to 6 decimal places.(Note: sin's argument is measured in radians.) accurate to 6 decimal places.(Note: sin's argument is measured in radians.)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
8
Which of the following is the degree 2 Taylor polynomial centered at a=1a = - 1 for f(x)=1xf ( x ) = \frac { 1 } { x } ?
1) 1xx2- 1 - x - x ^ { 2 } 2) 1(x+1)(x+1)2- 1 - ( x + 1 ) - ( x + 1 ) ^ { 2 } 3) 1(x+1)2(x+1)2- 1 - ( x + 1 ) - 2 ( x + 1 ) ^ { 2 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
9
Which of the following is the degree 2 Taylor polynomial centered at a=2a = 2 for f(x)=lnxf ( x ) = \ln x ?
1) ln2x22(x2)28\ln 2 - \frac { x - 2 } { 2 } - \frac { ( x - 2 ) ^ { 2 } } { 8 } 2) ln2+x22(x2)24\ln 2 + \frac { x - 2 } { 2 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } 3) ln2+x22(x2)28\ln 2 + \frac { x - 2 } { 2 } - \frac { ( x - 2 ) ^ { 2 } } { 8 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
10
Which of the following is the degree 2 Taylor polynomial centered at a=3a = 3 for f(x)=lnxf ( x ) = \ln x ?
1) ln3+x33(x3)218\ln 3 + \frac { x - 3 } { 3 } - \frac { ( x - 3 ) ^ { 2 } } { 18 } 2) ln3+x33(x3)29\ln 3 + \frac { x - 3 } { 3 } - \frac { ( x - 3 ) ^ { 2 } } { 9 } 3) ln3x33+(x3)218\ln 3 - \frac { x - 3 } { 3 } + \frac { ( x - 3 ) ^ { 2 } } { 18 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
11
What is the smallest value of n that will guarantee (according to Taylor's Formula) that the Taylor polynomial TnT _ { n } at the number 0 will be within 0.0001 of exe ^ { x } for 0x10 \leq x \leq 1 ?

A)4
B)5
C)8
D)6
E)7
F)2
G)3
H)9
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
12
Estimate the range of values of x for which the approximation Estimate the range of values of x for which the approximation   is accurate to within 0.001. is accurate to within 0.001.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
13
Estimate the range of values of x for which the approximation Estimate the range of values of x for which the approximation   is accurate to within 0.0002. is accurate to within 0.0002.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
14
Estimate the range of values of x for which the approximation lnx=ln2+12(x2)18(x2)2\ln x = \ln 2 + \frac { 1 } { 2 } ( x - 2 ) - \frac { 1 } { 8 } ( x - 2 ) ^ { 2 } is accurate to within 0.01.

A)[1.08, 3.20]
B)[1.80, 2.20]
C)[0.89, 3.56]
D)[1.43, 2.66]
E)[0.45, 1.78]
F)[0.71, 1.33]
G)[1.90, 2.10]
H)[1.99, 2.01]
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
15
Consider the function Consider the function   .(a) Find the fourth-degree Taylor polynomial of f at   .(b) What is the remainder? (c) What is the absolute minimum value of f, and where does it occur? .(a) Find the fourth-degree Taylor polynomial of f at Consider the function   .(a) Find the fourth-degree Taylor polynomial of f at   .(b) What is the remainder? (c) What is the absolute minimum value of f, and where does it occur? .(b) What is the remainder?
(c) What is the absolute minimum value of f, and where does it occur?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
16
Find the second-degree Taylor polynomial for Find the second-degree Taylor polynomial for   , centered about   . Also obtain a bound for the error in using this polynomial to approximate   . , centered about Find the second-degree Taylor polynomial for   , centered about   . Also obtain a bound for the error in using this polynomial to approximate   . . Also obtain a bound for the error in using this polynomial to approximate Find the second-degree Taylor polynomial for   , centered about   . Also obtain a bound for the error in using this polynomial to approximate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
17
Find the coefficient of (x2)2( x - 2 ) ^ { 2 } in the Taylor polynomial T2(x)T _ { 2 } ( x ) for the function x3x ^ { 3 } at the number 2.

A)3
B)0
C)1
D)6
E)2
F)5
G)8
H)4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
18
Find the Taylor polynomial Find the Taylor polynomial   for the function   at the point   . for the function Find the Taylor polynomial   for the function   at the point   . at the point Find the Taylor polynomial   for the function   at the point   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
19
Which of the following is the degree 3 Taylor polynomial centered at a=0a = 0 for f(x)=cos(2x)f ( x ) = \cos ( 2 x ) ?
1) 1(2x)2+16x41 - ( 2 x ) ^ { 2 } + 16 x ^ { 4 } 2) 12x2+83x41 - 2 x ^ { 2 } + \frac { 8 } { 3 } x ^ { 4 } 3) 1(2x)22!1 - \frac { ( 2 x ) ^ { 2 } } { 2 ! }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
20
Which of the following is the degree 3 Taylor polynomial centered at a=0a = 0 for f(x)=1cosxxf ( x ) = \frac { 1 - \cos x } { x } ?
1) x2x324\frac { x } { 2 } - \frac { x ^ { 3 } } { 24 } 2) x2+x324- \frac { x } { 2 } + \frac { x ^ { 3 } } { 24 } 3) xx3x - x ^ { 3 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
21
Find the coefficient of x3x ^ { 3 } in the Maclaurin series for f(x)=sin2xf ( x ) = \sin 2 x .

A) 23- \frac { 2 } { 3 }
B) 43- \frac { 4 } { 3 }
C) 43\frac { 4 } { 3 }
D) 83- \frac { 8 } { 3 }
E) 23\frac { 2 } { 3 }
F) 83\frac { 8 } { 3 }
G) 13- \frac { 1 } { 3 }
H) 13\frac { 1 } { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the terms in the Maclaurin series for the function f(x)=exf ( x ) = e ^ { - x } , as far as the term in x3x ^ { 3 } .

A) 1x+12x216x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
B) 1+x+12x216x31 + x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
C) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
D) 1+x+x2+x31 + x + x ^ { 2 } + x ^ { 3 }
E) 1x+12x213x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 3 } x ^ { 3 }
F) 1+x+12x2+13x31 + x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
G) x+x3- x + x ^ { 3 }
H) xx3x - x ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
23
(a) Find the third-order Taylor polynomial associated with (a) Find the third-order Taylor polynomial associated with   .(b) Use the Taylor polynomial from part (a) to find an approximation of   .(c) Compare the value you calculated in part (b) with your calculator's value for  .(b) Use the Taylor polynomial from part (a) to find an approximation of (a) Find the third-order Taylor polynomial associated with   .(b) Use the Taylor polynomial from part (a) to find an approximation of   .(c) Compare the value you calculated in part (b) with your calculator's value for  .(c) Compare the value you calculated in part (b) with your calculator's value for (a) Find the third-order Taylor polynomial associated with   .(b) Use the Taylor polynomial from part (a) to find an approximation of   .(c) Compare the value you calculated in part (b) with your calculator's value for
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the third-degree Taylor polynomial of the function Find the third-degree Taylor polynomial of the function   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
25
Find the terms in the Maclaurin series for the function f(x)=ln(1+x)f ( x ) = \ln ( 1 + x ) , as far as the term in x3x ^ { 3 } .

A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) xx2+x3x - x ^ { 2 } + x ^ { 3 }
C) 1x+12x216x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
D) x12x2+13x3x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
E) 1+12x+23x2+56x31 + \frac { 1 } { 2 } x + \frac { 2 } { 3 } x ^ { 2 } + \frac { 5 } { 6 } x ^ { 3 }
F) x+12x2+16x3x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 }
G) 1+x2+16x2+124x31 + \frac { x } { 2 } + \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 }
H) x124x2+1120x3x - \frac { 1 } { 24 } x ^ { 2 } + \frac { 1 } { 120 } x ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
26
Find the third-degree Taylor polynomial centered at Find the third-degree Taylor polynomial centered at   for   . Use this result to approximate   . for Find the third-degree Taylor polynomial centered at   for   . Use this result to approximate   . . Use this result to approximate Find the third-degree Taylor polynomial centered at   for   . Use this result to approximate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
27
Given Given   , (a) calculate   .(b) calculate   .(c) calculate   . ,
(a) calculate Given   , (a) calculate   .(b) calculate   .(c) calculate   . .(b) calculate Given   , (a) calculate   .(b) calculate   .(c) calculate   . .(c) calculate Given   , (a) calculate   .(b) calculate   .(c) calculate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
28
Find the radius of convergence of the Maclaurin series for f(x)=14+x2f ( x ) = \frac { 1 } { 4 + x ^ { 2 } } .

A)1
B) 18\frac { 1 } { 8 }
C) \infty
D) 14\frac { 1 } { 4 }
E) 12\frac { 1 } { 2 }
F)4

G)8
H)2
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find the coefficient of x4x ^ { 4 } in the Maclaurin series for f(x)=xcos(x3)f ( x ) = x \cos \left( x ^ { 3 } \right) .

A)16
B) 23- \frac { 2 } { 3 }
C)3
D)4
E)-16
F) 23\frac { 2 } { 3 }
G)-3
H)0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the coefficient of x4x ^ { 4 } in the Maclaurin series for f(x)=e2xf ( x ) = e ^ { - 2 x } .

A)16
B) 23- \frac { 2 } { 3 }
C)3
D)4
E)-16
F) 23\frac { 2 } { 3 }
G)-3
H)0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
31
Use the 3rd-degree Taylor polynomial of Use the 3rd-degree Taylor polynomial of   about   to approximate   . Use the remainder term to give an upper bound for the error in this approximation. about Use the 3rd-degree Taylor polynomial of   about   to approximate   . Use the remainder term to give an upper bound for the error in this approximation. to approximate Use the 3rd-degree Taylor polynomial of   about   to approximate   . Use the remainder term to give an upper bound for the error in this approximation. . Use the remainder term to give an upper bound for the error in this approximation.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
32
Find the coefficient of x5x ^ { 5 } in the Maclaurin series for f(x)=cos(x2)dxf ( x ) = \int \cos \left( x ^ { 2 } \right) d x .Note: The series is unique except for the constant of integration.

A) 110- \frac { 1 } { 10 }
B) 115\frac { 1 } { 15 }
C) 15- \frac { 1 } { 5 }
D) 25\frac { 2 } { 5 }
E) 25- \frac { 2 } { 5 }
F) 115- \frac { 1 } { 15 }
G) 15\frac { 1 } { 5 }
H) 110\frac { 1 } { 10 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
33
Write the Taylor polynomial at 0 of degree 4 for Write the Taylor polynomial at 0 of degree 4 for   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find the second-degree Taylor polynomial of the function Find the second-degree Taylor polynomial of the function   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
35
(a) Use series to compute (a) Use series to compute   correct to three decimal places.(b) Use integration by parts to compute   .(c) Compare your answers in parts (a) and (b) above. correct to three decimal places.(b) Use integration by parts to compute (a) Use series to compute   correct to three decimal places.(b) Use integration by parts to compute   .(c) Compare your answers in parts (a) and (b) above. .(c) Compare your answers in parts (a) and (b) above.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
36
Use series to compute Use series to compute   correct to four decimal places. correct to four decimal places.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
37
Find the third Taylor polynomial associated with Find the third Taylor polynomial associated with   . What is the remainder? . What is the remainder?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
38
Find the first four terms in the Maclaurin series for f(x)=xexf ( x ) = x e ^ { - x } .

A) xx2+x3x4x - x ^ { 2 } + x ^ { 3 } - x ^ { 4 }
B) x12x2+13x314x4x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }
C) xx2+12x316x4x - x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 } - \frac { 1 } { 6 } x ^ { 4 }
D) x2x2+3x34x4x - 2 x ^ { 2 } + 3 x ^ { 3 } - 4 x ^ { 4 }
E) x+12x2+16x3+124x4x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 } + \frac { 1 } { 24 } x ^ { 4 }
F) x+x2+13x3+18x4x + x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } + \frac { 1 } { 8 } x ^ { 4 }
G) x+x2+12x3+16x4x + x ^ { 2 } + \frac { 1 } { 2 } x ^ { 3 } + \frac { 1 } { 6 } x ^ { 4 }
H) 12x16x2+124x31120x4\frac { 1 } { 2 } x - \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 } - \frac { 1 } { 120 } x ^ { 4 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
39
The first three derivatives of The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . are The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . , The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . and The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . .(a) Give the first four terms of the Taylor series associated with f at The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . .(b) Give the second-order Taylor polynomial, The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . , associated with f at The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . .(c) Suppose that The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . and that The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . from part (b) is used to approximate The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . . Prove that the error in this approximation does not exceed The first three derivatives of   are   ,   and   .(a) Give the first four terms of the Taylor series associated with f at   .(b) Give the second-order Taylor polynomial,   , associated with f at   .(c) Suppose that   and that   from part (b) is used to approximate   . Prove that the error in this approximation does not exceed   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
40
Find the third-degree Taylor polynomial of the function Find the third-degree Taylor polynomial of the function   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
41
Give the Taylor series expansion of Give the Taylor series expansion of   about the point   . about the point Give the Taylor series expansion of   about the point   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
42
Find the coefficient of x3x ^ { 3 } in the binomial series for 1+x\sqrt { 1 + x } .

A) 12- \frac { 1 } { 2 }
B) 14- \frac { 1 } { 4 }
C) 18\frac { 1 } { 8 }
D) 12\frac { 1 } { 2 } h. 14\frac { 1 } { 4 }

E) 18- \frac { 1 } { 8 }
F) 116- \frac { 1 } { 16 }
G) 116\frac { 1 } { 16 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
43
(a) Express (a) Express   as a Maclaurin series.(b) Evaluate   as a series. as a Maclaurin series.(b) Evaluate (a) Express   as a Maclaurin series.(b) Evaluate   as a series. as a series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
44
Express Express   as a Maclaurin Series. as a Maclaurin Series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
45
Find the terms of the Maclaurin series for 11x\frac { 1 } { \sqrt { 1 - x } } , as far as the term in x3x ^ { 3 } .

A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) 112x+14x2+18x31 - \frac { 1 } { 2 } x + \frac { 1 } { 4 } x ^ { 2 } + \frac { 1 } { 8 } x ^ { 3 }
C) 1+12x+38x2+516x31 + \frac { 1 } { 2 } x + \frac { 3 } { 8 } x ^ { 2 } + \frac { 5 } { 16 } x ^ { 3 }
D) 112x+34x258x31 - \frac { 1 } { 2 } x + \frac { 3 } { 4 } x ^ { 2 } - \frac { 5 } { 8 } x ^ { 3 }
E) 1+12x+14x2+16x31 + \frac { 1 } { 2 } x + \frac { 1 } { 4 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 }
F) 112x+16x2+124x31 - \frac { 1 } { 2 } x + \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 }
G) 1+12x+34x2+1516x31 + \frac { 1 } { 2 } x + \frac { 3 } { 4 } x ^ { 2 } + \frac { 15 } { 16 } x ^ { 3 }
H) 112x+38x2+724x31 - \frac { 1 } { 2 } x + \frac { 3 } { 8 } x ^ { 2 } + \frac { 7 } { 24 } x ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
46
(a) Express (a) Express   as a Maclaurin series.(b) Evaluate   as a series. as a Maclaurin series.(b) Evaluate (a) Express   as a Maclaurin series.(b) Evaluate   as a series. as a series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
47
Find the coefficient of x3x ^ { 3 } in the binomial series for 1(1+x)4\frac { 1 } { ( 1 + x ) ^ { 4 } } .

A)6
B)20
C)-6
D)-10
E)-20
F)-12
G)10
H)12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
48
Find the terms of the Maclaurin series for f(x)=11+2xf ( x ) = \frac { 1 } { \sqrt { 1 + 2 x } } , as far as the term in x3x ^ { 3 } .

A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) 1+x12x2+13x31 + x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
C) 1x+32x252x31 - x + \frac { 3 } { 2 } x ^ { 2 } - \frac { 5 } { 2 } x ^ { 3 }
D) 1+x+3x2+5x31 + x + 3 x ^ { 2 } + 5 x ^ { 3 }
E) 1x+32x273x31 - x + \frac { 3 } { 2 } x ^ { 2 } - \frac { 7 } { 3 } x ^ { 3 }
F) 1+x+12x2+73x31 + x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 7 } { 3 } x ^ { 3 }
G) 1x+52x273x31 - x + \frac { 5 } { 2 } x ^ { 2 } - \frac { 7 } { 3 } x ^ { 3 }
H) 1+x+72x2+113x31 + x + \frac { 7 } { 2 } x ^ { 2 } + \frac { 11 } { 3 } x ^ { 3 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
49
Find the Taylor series for Find the Taylor series for   at 2. at 2.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
50
Express Express   as a Maclaurin Series. as a Maclaurin Series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
51
Find the Maclaurin series expansion with Find the Maclaurin series expansion with   for   . Use this expansion to approximate   . for Find the Maclaurin series expansion with   for   . Use this expansion to approximate   . . Use this expansion to approximate Find the Maclaurin series expansion with   for   . Use this expansion to approximate   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
52
Find the Maclaurin series expansion for Find the Maclaurin series expansion for   and determine the interval of convergence. and determine the interval of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
53
Find the Taylor polynomial of degree 4 at 0 for the function defined by Find the Taylor polynomial of degree 4 at 0 for the function defined by   . Then compute the value of   accurate to as many decimal places as the polynomial of degree 4 allows. . Then compute the value of Find the Taylor polynomial of degree 4 at 0 for the function defined by   . Then compute the value of   accurate to as many decimal places as the polynomial of degree 4 allows. accurate to as many decimal places as the polynomial of degree 4 allows.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
54
Express Express   as a Maclaurin Series. as a Maclaurin Series.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
55
If the Maclaurin series for If the Maclaurin series for   is   , find   . is If the Maclaurin series for   is   , find   . , find If the Maclaurin series for   is   , find   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
56
Find the coefficient of xx in the binomial series for 1+x\sqrt { 1 + x } .

A)2
B)-1
C)1
D) 12- \frac { 1 } { 2 }
E) 12\frac { 1 } { 2 }
F) 2- \sqrt { 2 }
G)-2

H) 2\sqrt { 2 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
57
How many coefficients in the binomial series expansion of (1+x)7( 1 + x ) ^ { 7 } are divisible by 7?

A)0
B)5
C)7
D)3
E)2
F)6
G)1
H)4
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
58
Find the coefficient of x3x ^ { 3 } in the binomial series for (1+x)5( 1 + x ) ^ { 5 } .

A)3
B)6
C)15
D)20
E)10
F)5
G)16
H)12
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
59
Use the binomial series to expand the function 4+x\sqrt { 4 + x } as a power series. Give the coefficient of x2x ^ { 2 } in that series.

A) 18- \frac { 1 } { 8 }
B) 132- \frac { 1 } { 32 }
C) 164- \frac { 1 } { 64 }
D) 18\frac { 1 } { 8 }
E) 132\frac { 1 } { 32 }
F) 116- \frac { 1 } { 16 }
G) 164\frac { 1 } { 64 }
H) 116\frac { 1 } { 16 }
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
60
Find the Taylor series for Find the Taylor series for   about the origin. about the origin.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
61
Find the coefficient of Find the coefficient of   in the Maclaurin series for   . in the Maclaurin series for Find the coefficient of   in the Maclaurin series for   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
62
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence. as a power series. State the radius of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
63
Find the terms in the power series expansion for the function Find the terms in the power series expansion for the function   , as far as the term in   . , as far as the term in Find the terms in the power series expansion for the function   , as far as the term in   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the sum of the series Find the sum of the series   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
65
Find the sum of the series Find the sum of the series   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
66
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence. as a power series. State the radius of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
67
Which of the following is the power series centered at a=0a = 0 for f(x)=x1+4xf ( x ) = \frac { x } { 1 + 4 x } ?
1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n } 2) n=04nxn+1\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n + 1 } 3) n=0(1)n4nxn+1\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n + 1 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
68
Which of the following is the power series centered at a=0a = 0 for f(x)=1x+4f ( x ) = \frac { 1 } { x + 4 } ?
1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { n } 2) n=0(1)n4n+1xn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n + 1 } } x ^ { n } 3) n=1(1)n14nxn1\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n - 1 } } { 4 ^ { n } } x ^ { n - 1 }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
69
Use the binomial series formula to obtain the Maclaurin series for Use the binomial series formula to obtain the Maclaurin series for   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
70
Which of the following is the power series centered at a=0a = 0 for f(x)=11+4xf ( x ) = \frac { 1 } { 1 + 4 x } ?
1) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 4 ^ { n } x ^ { n } 2) n=04nxn\sum _ { n = 0 } ^ { \infty } 4 ^ { n } x ^ { n } 3) n=0(1)n4nxn\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 4 ^ { n } } x ^ { n }

A)None
B)1
C)2
D)3
E)1, 2
F)1, 3
G)2, 3
H)1, 2, 3
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
71
If If   , compute   . , compute If   , compute   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
72
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence. as a power series. State the radius of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
73
Find the sum of the series Find the sum of the series   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
74
Let Let   , compute   . , compute Let   , compute   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
75
Find the terms of the Maclaurin series for Find the terms of the Maclaurin series for   , as far as the term in   . , as far as the term in Find the terms of the Maclaurin series for   , as far as the term in   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
76
Find the sum of the series Find the sum of the series   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
77
If If   , compute   . , compute If   , compute   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
78
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence. as a power series. State the radius of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
79
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence. as a power series. State the radius of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
80
Use the binomial series to expand Use the binomial series to expand   as a power series. State the radius of convergence. as a power series. State the radius of convergence.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 341 في هذه المجموعة.