Deck 9: Vectors and the Geometry of Space

ملء الشاشة (f)
exit full mode
سؤال
Describe the surface whose equation in cylindrical coordinates is r = 3.

A)Cylinder with vertical axis
E)Horizontal plane or half-plane
B)Cylinder with horizontal axis
F)Paraboloid
C)Sphere
G)Cone or half-cone with vertical axis
D)Vertical plane or half-plane
H)Cone or half-cone with horizontal axis
استخدم زر المسافة أو
up arrow
down arrow
لقلب البطاقة.
سؤال
Describe the surface whose equation in cylindrical coordinates is z=r2z = r ^ { 2 } .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
If If   in cylindrical coordinates, find rectangular coordinates of Q.<div style=padding-top: 35px> in cylindrical coordinates, find rectangular coordinates of Q.
سؤال
Convert (1,π,π)( 1 , \pi , \pi ) from spherical coordinates to rectangular coordinates.

A) (0,0,1)( 0,0 , - 1 )
B) (0,0,1)( 0,0,1 )
C) (0,1,1)( 0,1 , - 1 )
D) (1,0,1)( 1,0 , - 1 )
E) (1,1,1)( 1,1 , - 1 )
F) (1,0,1)( 1,0,1 )
G) (0,1,1)( 0,1,1 )
H) (1,1,1)( 1,1,1 )
سؤال
Describe the surface whose equation in cylindrical coordinates is z=4rz = 4 r .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
Convert (1,1,2)( 1,1 , \sqrt { 2 } ) from rectangular coordinates to spherical coordinates.

A) (2,π4,π4)\left( \sqrt { 2 } , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right)
B) (2,π4,π4)\left( 2 , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right)
C) (2,π2,π4)\left( \sqrt { 2 } , \frac { \pi } { 2 } , \frac { \pi } { 4 } \right)
D) (2,π2,π4)\left( 2 , \frac { \pi } { 2 } , \frac { \pi } { 4 } \right)
E) (2,π4,π2)\left( \sqrt { 2 } , \frac { \pi } { 4 } , \frac { \pi } { 2 } \right)
F) (2,π4,π2)\left( 2 , \frac { \pi } { 4 } , \frac { \pi } { 2 } \right)
G) (2,π2,π2)\left( \sqrt { 2 } , \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)
H) (2,π2,π2)\left( 2 , \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)
سؤال
Convert (2,5π4,3)\left( 2 , \frac { 5 \pi } { 4 } , 3 \right) from cylindrical coordinates to rectangular coordinates.

A) (1,1,3)( 1,1,3 )
B) (0,2,3)( 0,2,3 )
C) (2,0,3)( 2,0,3 )
D) (2,2,3)( \sqrt { 2 } , \sqrt { 2 } , 3 )
E) (1,1,3)( - 1 , - 1,3 )
F) (0,2,3)( 0 , - 2,3 )
G) (2,0,3)( - 2,0,3 )
H) (2,2,3)( - \sqrt { 2 } , - \sqrt { 2 } , 3 )
سؤال
Describe the surface whose equation in cylindrical coordinates is ρ=3secϕ\rho = 3 \sec \phi .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
Convert (1,π4,π4)\left( 1 , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right) from spherical coordinates to rectangular coordinates.

A) (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
B) (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } , \frac { 1 } { \sqrt { 2 } } \right)
C) (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { 2 } \right)
D) (12,12,12)\left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
E) (0,12,12)\left( 0 , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right)
F) (12,1,12)\left( \frac { 1 } { \sqrt { 2 } } , 1 , \frac { 1 } { \sqrt { 2 } } \right)
G) (12,12,0)\left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , 0 \right)
H) (1,0,0)( 1,0,0 )
سؤال
Describe the surface whose equation in cylindrical coordinates is ρ=4cosϕ\rho = 4 \cos \phi .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
Convert (1,3,2)( - 1 , \sqrt { 3 } , 2 ) from rectangular coordinates to spherical coordinates.

A) (2,π6,π4)\left( 2 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
B) (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
C) (2,π6,π4)\left( \sqrt { 2 } , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
D) (8,2π3,π4)\left( \sqrt { 8 } , \frac { 2 \pi } { 3 } , \frac { \pi } { 4 } \right)
E) (2,π3,π4)\left( 2 , \frac { \pi } { 3 } , \frac { \pi } { 4 } \right)
F) (4,π3,π4)\left( 4 , \frac { \pi } { 3 } , \frac { \pi } { 4 } \right)
G) (2,4π3,π4)\left( \sqrt { 2 } , \frac { 4 \pi } { 3 } , \frac { \pi } { 4 } \right)
H) (8,π3,π4)\left( \sqrt { 8 } , \frac { \pi } { 3 } , \frac { \pi } { 4 } \right)
سؤال
Convert (1,1,1)( 1,1,1 ) from rectangular coordinates to cylindrical coordinates.

A) (2,π2,1)\left( \sqrt { 2 } , \frac { \pi } { 2 } , 1 \right)
B) (2,π4,1)\left( \sqrt { 2 } , \frac { \pi } { 4 } , 1 \right)
C) (1,π2,1)\left( 1 , \frac { \pi } { 2 } , 1 \right)
D) (1,π4,1)\left( 1 , \frac { \pi } { 4 } , 1 \right)
E) (1,π2,2)\left( 1 , \frac { \pi } { 2 } , \sqrt { 2 } \right)
F) (1,π4,2)\left( 1 , \frac { \pi } { 4 } , \sqrt { 2 } \right)
G) (1,π2,2)\left( 1 , \frac { \pi } { 2 } , 2 \right)
H) (1,π4,2)\left( 1 , \frac { \pi } { 4 } , 2 \right)
سؤال
Convert (1,π,1)( 1 , \pi , 1 ) from cylindrical coordinates to rectangular coordinates.

A) (1,1,1)( 1,1,1 )
B) (1,1,1)( - 1,1,1 )
C) (1,1,1)( 1 , - 1,1 )
D) (1,1,1)( 1,1 , - 1 )
E) (1,0,1)( - 1,0,1 )
F) (0,1,1)( 0 , - 1,1 ) .
G) (1,1,1)( 1,1 , - 1 ) .
H) (0,1,1)( 0,1,1 )
سؤال
Convert (1,3,3)( 1 , - \sqrt { 3 } , \sqrt { 3 } ) from rectangular coordinates to cylindrical coordinates.

A) (1,π3,3)\left( 1 , \frac { \pi } { 3 } , \sqrt { 3 } \right)
B) (1,π6,3)\left( 1 , \frac { \pi } { 6 } , \sqrt { 3 } \right)
C) (3,π3,1)\left( \sqrt { 3 } , \frac { \pi } { 3 } , 1 \right)
D) (3,π6,1)\left( \sqrt { 3 } , \frac { \pi } { 6 } , 1 \right)
E) (2,π3,3)\left( 2 , \frac { \pi } { 3 } , \sqrt { 3 } \right)
F) (2,π3,3)\left( 2 , - \frac { \pi } { 3 } , \sqrt { 3 } \right)
G) (3,π3,2)\left( \sqrt { 3 } , \frac { \pi } { 3 } , 2 \right)
H) (3,π6,2)\left( \sqrt { 3 } , \frac { \pi } { 6 } , 2 \right)
سؤال
If If   in rectangular coordinates, find the spherical coordinates of P.<div style=padding-top: 35px> in rectangular coordinates, find the spherical coordinates of P.
سؤال
Describe the surface whose equation in cylindrical coordinates is ϕ=3\phi = 3 .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
Describe the surface whose equation in cylindrical coordinates is <strong>Describe the surface whose equation in cylindrical coordinates is   = 3.</strong> A)Cylinder with vertical axis E)Horizontal plane or half-plane B)Cylinder with horizontal axis F)Paraboloid C)Sphere G)Cone or half-cone with vertical axis D)Vertical plane or half-plane H)Cone or half-cone with horizontal axis <div style=padding-top: 35px> = 3.

A)Cylinder with vertical axis
E)Horizontal plane or half-plane
B)Cylinder with horizontal axis
F)Paraboloid
C)Sphere
G)Cone or half-cone with vertical axis
D)Vertical plane or half-plane
H)Cone or half-cone with horizontal axis
سؤال
Describe the surface whose equation in cylindrical coordinates is ϕ=π\phi = \pi .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Positive z-axis
E)Negative z-axis
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
Describe the surface whose equation in cylindrical coordinates is z = 3.

A)Cylinder with vertical axis
E)Horizontal plane or half-plane
B)Cylinder with horizontal axis
F)Paraboloid
C)Sphere
G)Cone or half-cone with vertical axis
D)Vertical plane or half-plane
H)Cone or half-cone with horizontal axis
سؤال
Describe the surface whose equation in cylindrical coordinates is β=3\beta = 3 .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
سؤال
Convert the point (0, -5, 0) to cylindrical and spherical coordinates.
سؤال
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> .
سؤال
Find cylindrical and spherical equations for the surface whose equation in rectangular coordinates is x = 2. Describe the surface.
سؤال
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> .
سؤال
Describe the surface whose equation in cylindrical coordinates is Describe the surface whose equation in cylindrical coordinates is   .<div style=padding-top: 35px> .
سؤال
Describe the surface whose equation in spherical coordinates is Describe the surface whose equation in spherical coordinates is   .<div style=padding-top: 35px> .
سؤال
Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B = Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> , and C = Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> .(a) Find the angle between Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> and Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> .(b) Find the angle between Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> and Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> .(c) Find the angle between Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> and Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   .<div style=padding-top: 35px> .
سؤال
Describe the surface whose equation in cylindrical coordinates is Describe the surface whose equation in cylindrical coordinates is   .<div style=padding-top: 35px> .
سؤال
Find rectangular and spherical equations for the surface whose equation in cylindrical coordinates is Find rectangular and spherical equations for the surface whose equation in cylindrical coordinates is   . Describe the surface.<div style=padding-top: 35px> . Describe the surface.
سؤال
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> .
سؤال
Sketch the solid given in cylindrical coordinates by Sketch the solid given in cylindrical coordinates by   .  <div style=padding-top: 35px> . Sketch the solid given in cylindrical coordinates by   .  <div style=padding-top: 35px>
سؤال
Sketch the solid given in spherical coordinates by Sketch the solid given in spherical coordinates by   .  <div style=padding-top: 35px> . Sketch the solid given in spherical coordinates by   .  <div style=padding-top: 35px>
سؤال
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> .
سؤال
Find rectangular and cylindrical equations for the surface whose equation in spherical coordinates is Find rectangular and cylindrical equations for the surface whose equation in spherical coordinates is   . Describe the surface.<div style=padding-top: 35px> . Describe the surface.
سؤال
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   .<div style=padding-top: 35px> .
سؤال
New Orleans is situated at latitude 30° N and longitude 90° W, and New York is situated at latitude 41° N and longitude 74° W. Find the distance from New Orleans to New York, assuming that the radius of the earth is 3960 miles.
سؤال
Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities   .  <div style=padding-top: 35px> . Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities   .  <div style=padding-top: 35px>
سؤال
Use the given data:
Los Angeles: Latitude 34.05°N and Longitude 118.25°W;
Hawaii: Latitude 21.3°N and Longitude 157.83°W.Find the distance from Los Angeles to Hawaii (Assume the radius of earth is 3960 miles.)
سؤال
Convert the point Convert the point   to cylindrical and spherical coordinates.<div style=padding-top: 35px> to cylindrical and spherical coordinates.
سؤال
Describe in words the solid represented in spherical coordinates by the inequality Describe in words the solid represented in spherical coordinates by the inequality   .<div style=padding-top: 35px> .
سؤال
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane z = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane z = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane x = y.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Given points A = Given points A =   and B =   in spherical coordinates, find the distance between the two points.<div style=padding-top: 35px> and B = Given points A =   and B =   in spherical coordinates, find the distance between the two points.<div style=padding-top: 35px> in spherical coordinates, find the distance between the two points.
سؤال
Given points A = Given points A =   and B =   in cylindrical coordinates, find the distance between the two points.<div style=padding-top: 35px> and B = Given points A =   and B =   in cylindrical coordinates, find the distance between the two points.<div style=padding-top: 35px> in cylindrical coordinates, find the distance between the two points.
سؤال
Identify the trace of the surface x=2y2+3z2x = 2 y ^ { 2 } + 3 z ^ { 2 } in the plane x = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the surface x=y2z2x = y ^ { 2 } - z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)hyperbolic paraboloid
سؤال
Identify the surface x=y2+2z2x = y ^ { 2 } + 2 z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the surface x2+y2+z2=3x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 3 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the surface x2y2+z2=10x ^ { 2 } - y ^ { 2 } + z ^ { 2 } = 10 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane z = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane x = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane x = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane y = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane x = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Identify the surface x2+y2z2=10- x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 10 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the surface 2=y2+z22 = y ^ { 2 } + z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the surface x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
سؤال
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane y = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
سؤال
Let f(x, y) = (x2+y)3\left( x ^ { 2 } + y \right) ^ { 3 } . If x = 1, find f(x, 2x).

A)1
B)2
C)3
D)4
E)8
F)9
G)16
H)27
سؤال
Sketch and identify the quadric surface given by Sketch and identify the quadric surface given by   .  <div style=padding-top: 35px> . Sketch and identify the quadric surface given by   .  <div style=padding-top: 35px>
سؤال
Find the range of the function f(x, y) = xy2\sqrt { x - y ^ { 2 } } .

A) (0,)( 0 , \infty )
B) [0,)[ 0 , \infty )
C) (,0)( - \infty , 0 )
D) (,)( - \infty , \infty )
E) (1,)( 1 , \infty )
F) [1,)[ 1 , \infty )
G) (2,)( \sqrt { 2 } , \infty )
H) [2,)[ \sqrt { 2 } , \infty )
سؤال
Find the domain of the function f(x, y) = exy2e ^ { x - y ^ { 2 } } .

A)All points on or to the left of x=y2x = y ^ { 2 }
B)All points on or to the right of x=y2x = y ^ { 2 }
C)All points to the left of x=y2x = y ^ { 2 }
D)All points to the right of x=y2x = y ^ { 2 }
E)All points on or to the left of x = 0
F)All points on or to the right of x = 0
G)All points to the left of x = 0
H)All points in the xy-plane
سؤال
Describe the trace of the surface z = Describe the trace of the surface z =   = 0 in the plane z = 1.<div style=padding-top: 35px> = 0 in the plane z = 1.
سؤال
Find the coordinates of the point(s) of intersection of the line x = 1 - t, y = 1 - t, z = 4t and the surface z = Find the coordinates of the point(s) of intersection of the line x = 1 - t, y = 1 - t, z = 4t and the surface z =   .<div style=padding-top: 35px> .
سؤال
Let f(x, y) = x2+2xy+y2x ^ { 2 } + 2 x y + y ^ { 2 } . If x = 2, find f(x, 2x).

A)12
B)16
C)24
D)28
E)32
F)36
G)42
H)48
سؤال
Let S be the quadric surface given by Let S be the quadric surface given by   . What kind of surface is S?<div style=padding-top: 35px> . What kind of surface is S?
سؤال
Let f(x, y) = x sin y. If x = π\pi , find f(x, x/2).

A) π6\frac { \pi } { 6 }
B) π4\frac { \pi } { 4 }
C) π3\frac { \pi } { 3 }
D) π2\frac { \pi } { 2 }
E) 2π3\frac { 2 \pi } { 3 }
F) 3π4\frac { 3 \pi } { 4 }
G) π\pi
H) 2π2 \pi
سؤال
Find the domain of the function f(x, y) = ln(xy2)\ln \left( x - y ^ { 2 } \right) .

A)All points on or to the left of x=y2x = y ^ { 2 } e.All points on or to the left of x = 0
B)All points on or to the right of x=y2x = y ^ { 2 } f.All points on or to the right of x = 0
C)All points to the left of x=y2x = y ^ { 2 } g.All points to the left of x = 0
D)All points to the right of x=y2x = y ^ { 2 } h.All points in the xy-plane
سؤال
Find the range of the function f(x, y) = exy2e ^ { x - y ^ { 2 } } .

A) (0,)( 0 , \infty )
B) [0,)[ 0 , \infty )
C) (,)( - \infty , \infty )
D) (,0)( - \infty , 0 )
E) (1,)( 1 , \infty )
F) [1,)[ 1 , \infty )
G) (2,)( \sqrt { 2 } , \infty )
H) [2,)[ \sqrt { 2 } , \infty )
سؤال
Find the range of the function f(x, y) = ln(xy2)\ln \left( x - y ^ { 2 } \right) .

A) (0,)( 0 , \infty )
B) [0,)[ 0 , \infty )
C) (,)( - \infty , \infty )
D) (,0)( - \infty , 0 )
E) (1,)( 1 , \infty )
F) [1,)[ 1 , \infty )
G) (2,)( \sqrt { 2 } , \infty )
H) [2,)[ \sqrt { 2 } , \infty )
سؤال
Let S be the quadric surface given by Let S be the quadric surface given by   . What are the traces of S in each of the three coordinate planes?<div style=padding-top: 35px> . What are the traces of S in each of the three coordinate planes?
سؤال
Which of the following is not a quadric surface?

A) x2+z2=1x ^ { 2 } + z ^ { 2 } = 1
B) z=x2+y2z = x ^ { 2 } + y ^ { 2 }
C) y=x3+zy = x ^ { 3 } + z

D) z=x2y2z = x ^ { 2 } - y ^ { 2 }
E) x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1
سؤال
Let f(x, y) = x sin y. Find f (2,π3)\left( 2 , \frac { \pi } { 3 } \right) .

A) 3\sqrt { 3 }
B) 2\sqrt { 2 }
C) 32\frac { \sqrt { 3 } } { 2 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 12\frac { 1 } { 2 }
F) 13\frac { 1 } { 3 }
G)1
H)0
سؤال
Identify the graph of the function f(x, y) = 3x2y23 - x ^ { 2 } - y ^ { 2 } .

A)Cone
B)Paraboloid
C)Ellipsoid
D)Hyperboloid of one sheet
E)Hyperboloid of two sheets
F)Hyperbolic cylinder
G)Elliptic cylinder
H)Parabolic cylinder
سؤال
Sketch the graph of Sketch the graph of   in   , and name the surface.  <div style=padding-top: 35px> in Sketch the graph of   in   , and name the surface.  <div style=padding-top: 35px> , and name the surface. Sketch the graph of   in   , and name the surface.  <div style=padding-top: 35px>
سؤال
Find the domain of the function f(x, y) = xy2\sqrt { x - y ^ { 2 } } .

A)All points on or to the left of x=y2x = y ^ { 2 } e.All points on or to the left of x = 0
B)All points on or to the right of x=y2x = y ^ { 2 } f.All points on or to the right of x = 0
C)All points to the left of x=y2x = y ^ { 2 } g.All points to the left of x = 0
D)All points to the right of x=y2x = y ^ { 2 } h.All points in the xy-plane
سؤال
Sketch the graph of Sketch the graph of   in   , and name the surface.  <div style=padding-top: 35px> in Sketch the graph of   in   , and name the surface.  <div style=padding-top: 35px> , and name the surface. Sketch the graph of   in   , and name the surface.  <div style=padding-top: 35px>
سؤال
Describe the vertical traces x = 0 and the horizontal traces z = -1 (if any) for the surfaces Describe the vertical traces x = 0 and the horizontal traces z = -1 (if any) for the surfaces   and   .<div style=padding-top: 35px> and Describe the vertical traces x = 0 and the horizontal traces z = -1 (if any) for the surfaces   and   .<div style=padding-top: 35px> .
فتح الحزمة
قم بالتسجيل لفتح البطاقات في هذه المجموعة!
Unlock Deck
Unlock Deck
1/269
auto play flashcards
العب
simple tutorial
ملء الشاشة (f)
exit full mode
Deck 9: Vectors and the Geometry of Space
1
Describe the surface whose equation in cylindrical coordinates is r = 3.

A)Cylinder with vertical axis
E)Horizontal plane or half-plane
B)Cylinder with horizontal axis
F)Paraboloid
C)Sphere
G)Cone or half-cone with vertical axis
D)Vertical plane or half-plane
H)Cone or half-cone with horizontal axis
A
2
Describe the surface whose equation in cylindrical coordinates is z=r2z = r ^ { 2 } .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
Paraboloid
3
If If   in cylindrical coordinates, find rectangular coordinates of Q. in cylindrical coordinates, find rectangular coordinates of Q.
(0, 1, 3)
4
Convert (1,π,π)( 1 , \pi , \pi ) from spherical coordinates to rectangular coordinates.

A) (0,0,1)( 0,0 , - 1 )
B) (0,0,1)( 0,0,1 )
C) (0,1,1)( 0,1 , - 1 )
D) (1,0,1)( 1,0 , - 1 )
E) (1,1,1)( 1,1 , - 1 )
F) (1,0,1)( 1,0,1 )
G) (0,1,1)( 0,1,1 )
H) (1,1,1)( 1,1,1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
5
Describe the surface whose equation in cylindrical coordinates is z=4rz = 4 r .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
6
Convert (1,1,2)( 1,1 , \sqrt { 2 } ) from rectangular coordinates to spherical coordinates.

A) (2,π4,π4)\left( \sqrt { 2 } , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right)
B) (2,π4,π4)\left( 2 , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right)
C) (2,π2,π4)\left( \sqrt { 2 } , \frac { \pi } { 2 } , \frac { \pi } { 4 } \right)
D) (2,π2,π4)\left( 2 , \frac { \pi } { 2 } , \frac { \pi } { 4 } \right)
E) (2,π4,π2)\left( \sqrt { 2 } , \frac { \pi } { 4 } , \frac { \pi } { 2 } \right)
F) (2,π4,π2)\left( 2 , \frac { \pi } { 4 } , \frac { \pi } { 2 } \right)
G) (2,π2,π2)\left( \sqrt { 2 } , \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)
H) (2,π2,π2)\left( 2 , \frac { \pi } { 2 } , \frac { \pi } { 2 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
7
Convert (2,5π4,3)\left( 2 , \frac { 5 \pi } { 4 } , 3 \right) from cylindrical coordinates to rectangular coordinates.

A) (1,1,3)( 1,1,3 )
B) (0,2,3)( 0,2,3 )
C) (2,0,3)( 2,0,3 )
D) (2,2,3)( \sqrt { 2 } , \sqrt { 2 } , 3 )
E) (1,1,3)( - 1 , - 1,3 )
F) (0,2,3)( 0 , - 2,3 )
G) (2,0,3)( - 2,0,3 )
H) (2,2,3)( - \sqrt { 2 } , - \sqrt { 2 } , 3 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
8
Describe the surface whose equation in cylindrical coordinates is ρ=3secϕ\rho = 3 \sec \phi .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
9
Convert (1,π4,π4)\left( 1 , \frac { \pi } { 4 } , \frac { \pi } { 4 } \right) from spherical coordinates to rectangular coordinates.

A) (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
B) (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { 2 } , \frac { 1 } { \sqrt { 2 } } \right)
C) (12,12,12)\left( \frac { 1 } { 2 } , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { 2 } \right)
D) (12,12,12)\left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { 2 } , \frac { 1 } { 2 } \right)
E) (0,12,12)\left( 0 , \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } \right)
F) (12,1,12)\left( \frac { 1 } { \sqrt { 2 } } , 1 , \frac { 1 } { \sqrt { 2 } } \right)
G) (12,12,0)\left( \frac { 1 } { \sqrt { 2 } } , \frac { 1 } { \sqrt { 2 } } , 0 \right)
H) (1,0,0)( 1,0,0 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
10
Describe the surface whose equation in cylindrical coordinates is ρ=4cosϕ\rho = 4 \cos \phi .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
11
Convert (1,3,2)( - 1 , \sqrt { 3 } , 2 ) from rectangular coordinates to spherical coordinates.

A) (2,π6,π4)\left( 2 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
B) (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
C) (2,π6,π4)\left( \sqrt { 2 } , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)
D) (8,2π3,π4)\left( \sqrt { 8 } , \frac { 2 \pi } { 3 } , \frac { \pi } { 4 } \right)
E) (2,π3,π4)\left( 2 , \frac { \pi } { 3 } , \frac { \pi } { 4 } \right)
F) (4,π3,π4)\left( 4 , \frac { \pi } { 3 } , \frac { \pi } { 4 } \right)
G) (2,4π3,π4)\left( \sqrt { 2 } , \frac { 4 \pi } { 3 } , \frac { \pi } { 4 } \right)
H) (8,π3,π4)\left( \sqrt { 8 } , \frac { \pi } { 3 } , \frac { \pi } { 4 } \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
12
Convert (1,1,1)( 1,1,1 ) from rectangular coordinates to cylindrical coordinates.

A) (2,π2,1)\left( \sqrt { 2 } , \frac { \pi } { 2 } , 1 \right)
B) (2,π4,1)\left( \sqrt { 2 } , \frac { \pi } { 4 } , 1 \right)
C) (1,π2,1)\left( 1 , \frac { \pi } { 2 } , 1 \right)
D) (1,π4,1)\left( 1 , \frac { \pi } { 4 } , 1 \right)
E) (1,π2,2)\left( 1 , \frac { \pi } { 2 } , \sqrt { 2 } \right)
F) (1,π4,2)\left( 1 , \frac { \pi } { 4 } , \sqrt { 2 } \right)
G) (1,π2,2)\left( 1 , \frac { \pi } { 2 } , 2 \right)
H) (1,π4,2)\left( 1 , \frac { \pi } { 4 } , 2 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
13
Convert (1,π,1)( 1 , \pi , 1 ) from cylindrical coordinates to rectangular coordinates.

A) (1,1,1)( 1,1,1 )
B) (1,1,1)( - 1,1,1 )
C) (1,1,1)( 1 , - 1,1 )
D) (1,1,1)( 1,1 , - 1 )
E) (1,0,1)( - 1,0,1 )
F) (0,1,1)( 0 , - 1,1 ) .
G) (1,1,1)( 1,1 , - 1 ) .
H) (0,1,1)( 0,1,1 )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
14
Convert (1,3,3)( 1 , - \sqrt { 3 } , \sqrt { 3 } ) from rectangular coordinates to cylindrical coordinates.

A) (1,π3,3)\left( 1 , \frac { \pi } { 3 } , \sqrt { 3 } \right)
B) (1,π6,3)\left( 1 , \frac { \pi } { 6 } , \sqrt { 3 } \right)
C) (3,π3,1)\left( \sqrt { 3 } , \frac { \pi } { 3 } , 1 \right)
D) (3,π6,1)\left( \sqrt { 3 } , \frac { \pi } { 6 } , 1 \right)
E) (2,π3,3)\left( 2 , \frac { \pi } { 3 } , \sqrt { 3 } \right)
F) (2,π3,3)\left( 2 , - \frac { \pi } { 3 } , \sqrt { 3 } \right)
G) (3,π3,2)\left( \sqrt { 3 } , \frac { \pi } { 3 } , 2 \right)
H) (3,π6,2)\left( \sqrt { 3 } , \frac { \pi } { 6 } , 2 \right)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
15
If If   in rectangular coordinates, find the spherical coordinates of P. in rectangular coordinates, find the spherical coordinates of P.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
16
Describe the surface whose equation in cylindrical coordinates is ϕ=3\phi = 3 .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
17
Describe the surface whose equation in cylindrical coordinates is <strong>Describe the surface whose equation in cylindrical coordinates is   = 3.</strong> A)Cylinder with vertical axis E)Horizontal plane or half-plane B)Cylinder with horizontal axis F)Paraboloid C)Sphere G)Cone or half-cone with vertical axis D)Vertical plane or half-plane H)Cone or half-cone with horizontal axis = 3.

A)Cylinder with vertical axis
E)Horizontal plane or half-plane
B)Cylinder with horizontal axis
F)Paraboloid
C)Sphere
G)Cone or half-cone with vertical axis
D)Vertical plane or half-plane
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
18
Describe the surface whose equation in cylindrical coordinates is ϕ=π\phi = \pi .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Positive z-axis
E)Negative z-axis
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
19
Describe the surface whose equation in cylindrical coordinates is z = 3.

A)Cylinder with vertical axis
E)Horizontal plane or half-plane
B)Cylinder with horizontal axis
F)Paraboloid
C)Sphere
G)Cone or half-cone with vertical axis
D)Vertical plane or half-plane
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
20
Describe the surface whose equation in cylindrical coordinates is β=3\beta = 3 .

A)Cylinder with vertical axis
B)Cylinder with horizontal axis
C)Sphere
D)Vertical plane or half-plane
E)Horizontal plane or half-plane
F)Paraboloid
G)Cone or half-cone with vertical axis
H)Cone or half-cone with horizontal axis
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
21
Convert the point (0, -5, 0) to cylindrical and spherical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
22
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
23
Find cylindrical and spherical equations for the surface whose equation in rectangular coordinates is x = 2. Describe the surface.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
24
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
25
Describe the surface whose equation in cylindrical coordinates is Describe the surface whose equation in cylindrical coordinates is   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
26
Describe the surface whose equation in spherical coordinates is Describe the surface whose equation in spherical coordinates is   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
27
Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B = Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . , and C = Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . .(a) Find the angle between Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . and Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . .(b) Find the angle between Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . and Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . .(c) Find the angle between Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . and Let A, B, and C be three points on the unit sphere centered at the origin whose spherical coordinates are A = (1, 0, 0), B =   , and C =   .(a) Find the angle between   and   .(b) Find the angle between   and   .(c) Find the angle between   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
28
Describe the surface whose equation in cylindrical coordinates is Describe the surface whose equation in cylindrical coordinates is   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
29
Find rectangular and spherical equations for the surface whose equation in cylindrical coordinates is Find rectangular and spherical equations for the surface whose equation in cylindrical coordinates is   . Describe the surface. . Describe the surface.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
30
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
31
Sketch the solid given in cylindrical coordinates by Sketch the solid given in cylindrical coordinates by   .  . Sketch the solid given in cylindrical coordinates by   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
32
Sketch the solid given in spherical coordinates by Sketch the solid given in spherical coordinates by   .  . Sketch the solid given in spherical coordinates by   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
33
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
34
Find rectangular and cylindrical equations for the surface whose equation in spherical coordinates is Find rectangular and cylindrical equations for the surface whose equation in spherical coordinates is   . Describe the surface. . Describe the surface.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
35
Find the set of intersection of the surfaces whose equations in spherical coordinates are Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . and Find the set of intersection of the surfaces whose equations in spherical coordinates are   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
36
New Orleans is situated at latitude 30° N and longitude 90° W, and New York is situated at latitude 41° N and longitude 74° W. Find the distance from New Orleans to New York, assuming that the radius of the earth is 3960 miles.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
37
Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities   .  . Describe in words or sketch the solid represented in cylindrical coordinates by the inequalities   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
38
Use the given data:
Los Angeles: Latitude 34.05°N and Longitude 118.25°W;
Hawaii: Latitude 21.3°N and Longitude 157.83°W.Find the distance from Los Angeles to Hawaii (Assume the radius of earth is 3960 miles.)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
39
Convert the point Convert the point   to cylindrical and spherical coordinates. to cylindrical and spherical coordinates.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
40
Describe in words the solid represented in spherical coordinates by the inequality Describe in words the solid represented in spherical coordinates by the inequality   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
41
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane z = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
42
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane z = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
43
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane x = y.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
44
Given points A = Given points A =   and B =   in spherical coordinates, find the distance between the two points. and B = Given points A =   and B =   in spherical coordinates, find the distance between the two points. in spherical coordinates, find the distance between the two points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
45
Given points A = Given points A =   and B =   in cylindrical coordinates, find the distance between the two points. and B = Given points A =   and B =   in cylindrical coordinates, find the distance between the two points. in cylindrical coordinates, find the distance between the two points.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
46
Identify the trace of the surface x=2y2+3z2x = 2 y ^ { 2 } + 3 z ^ { 2 } in the plane x = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
47
Identify the surface x=y2z2x = y ^ { 2 } - z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)hyperbolic paraboloid
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
48
Identify the surface x=y2+2z2x = y ^ { 2 } + 2 z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
49
Identify the surface x2+y2+z2=3x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 3 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
50
Identify the surface x2y2+z2=10x ^ { 2 } - y ^ { 2 } + z ^ { 2 } = 10 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
51
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane z = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
52
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane x = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
53
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane x = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
54
Identify the trace of the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } in the plane y = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
55
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane x = 1.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
56
Identify the surface x2+y2z2=10- x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 10 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
57
Identify the surface 2=y2+z22 = y ^ { 2 } + z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
58
Identify the surface x2=y2+z2x ^ { 2 } = y ^ { 2 } + z ^ { 2 } .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
59
Identify the surface x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .

A)ellipsoid but not a sphere
B)hyperboloid of one sheet
C)hyperboloid of two sheets
D)cylinder
E)sphere
F)elliptic but not circular paraboloid
G)cone
H)circular paraboloid (figure of revolution)
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
60
Identify the trace of the surface x=y2+z2x = y ^ { 2 } + z ^ { 2 } in the plane y = 0.

A)ellipse but not a circle
B)parabola
C)hyperbola
D)circle
E)two parallel straight lines
F)two intersecting straight lines
G)point
H)straight line
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
61
Let f(x, y) = (x2+y)3\left( x ^ { 2 } + y \right) ^ { 3 } . If x = 1, find f(x, 2x).

A)1
B)2
C)3
D)4
E)8
F)9
G)16
H)27
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
62
Sketch and identify the quadric surface given by Sketch and identify the quadric surface given by   .  . Sketch and identify the quadric surface given by   .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
63
Find the range of the function f(x, y) = xy2\sqrt { x - y ^ { 2 } } .

A) (0,)( 0 , \infty )
B) [0,)[ 0 , \infty )
C) (,0)( - \infty , 0 )
D) (,)( - \infty , \infty )
E) (1,)( 1 , \infty )
F) [1,)[ 1 , \infty )
G) (2,)( \sqrt { 2 } , \infty )
H) [2,)[ \sqrt { 2 } , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
64
Find the domain of the function f(x, y) = exy2e ^ { x - y ^ { 2 } } .

A)All points on or to the left of x=y2x = y ^ { 2 }
B)All points on or to the right of x=y2x = y ^ { 2 }
C)All points to the left of x=y2x = y ^ { 2 }
D)All points to the right of x=y2x = y ^ { 2 }
E)All points on or to the left of x = 0
F)All points on or to the right of x = 0
G)All points to the left of x = 0
H)All points in the xy-plane
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
65
Describe the trace of the surface z = Describe the trace of the surface z =   = 0 in the plane z = 1. = 0 in the plane z = 1.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
66
Find the coordinates of the point(s) of intersection of the line x = 1 - t, y = 1 - t, z = 4t and the surface z = Find the coordinates of the point(s) of intersection of the line x = 1 - t, y = 1 - t, z = 4t and the surface z =   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
67
Let f(x, y) = x2+2xy+y2x ^ { 2 } + 2 x y + y ^ { 2 } . If x = 2, find f(x, 2x).

A)12
B)16
C)24
D)28
E)32
F)36
G)42
H)48
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
68
Let S be the quadric surface given by Let S be the quadric surface given by   . What kind of surface is S? . What kind of surface is S?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
69
Let f(x, y) = x sin y. If x = π\pi , find f(x, x/2).

A) π6\frac { \pi } { 6 }
B) π4\frac { \pi } { 4 }
C) π3\frac { \pi } { 3 }
D) π2\frac { \pi } { 2 }
E) 2π3\frac { 2 \pi } { 3 }
F) 3π4\frac { 3 \pi } { 4 }
G) π\pi
H) 2π2 \pi
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
70
Find the domain of the function f(x, y) = ln(xy2)\ln \left( x - y ^ { 2 } \right) .

A)All points on or to the left of x=y2x = y ^ { 2 } e.All points on or to the left of x = 0
B)All points on or to the right of x=y2x = y ^ { 2 } f.All points on or to the right of x = 0
C)All points to the left of x=y2x = y ^ { 2 } g.All points to the left of x = 0
D)All points to the right of x=y2x = y ^ { 2 } h.All points in the xy-plane
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
71
Find the range of the function f(x, y) = exy2e ^ { x - y ^ { 2 } } .

A) (0,)( 0 , \infty )
B) [0,)[ 0 , \infty )
C) (,)( - \infty , \infty )
D) (,0)( - \infty , 0 )
E) (1,)( 1 , \infty )
F) [1,)[ 1 , \infty )
G) (2,)( \sqrt { 2 } , \infty )
H) [2,)[ \sqrt { 2 } , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
72
Find the range of the function f(x, y) = ln(xy2)\ln \left( x - y ^ { 2 } \right) .

A) (0,)( 0 , \infty )
B) [0,)[ 0 , \infty )
C) (,)( - \infty , \infty )
D) (,0)( - \infty , 0 )
E) (1,)( 1 , \infty )
F) [1,)[ 1 , \infty )
G) (2,)( \sqrt { 2 } , \infty )
H) [2,)[ \sqrt { 2 } , \infty )
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
73
Let S be the quadric surface given by Let S be the quadric surface given by   . What are the traces of S in each of the three coordinate planes? . What are the traces of S in each of the three coordinate planes?
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
74
Which of the following is not a quadric surface?

A) x2+z2=1x ^ { 2 } + z ^ { 2 } = 1
B) z=x2+y2z = x ^ { 2 } + y ^ { 2 }
C) y=x3+zy = x ^ { 3 } + z

D) z=x2y2z = x ^ { 2 } - y ^ { 2 }
E) x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
75
Let f(x, y) = x sin y. Find f (2,π3)\left( 2 , \frac { \pi } { 3 } \right) .

A) 3\sqrt { 3 }
B) 2\sqrt { 2 }
C) 32\frac { \sqrt { 3 } } { 2 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 12\frac { 1 } { 2 }
F) 13\frac { 1 } { 3 }
G)1
H)0
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
76
Identify the graph of the function f(x, y) = 3x2y23 - x ^ { 2 } - y ^ { 2 } .

A)Cone
B)Paraboloid
C)Ellipsoid
D)Hyperboloid of one sheet
E)Hyperboloid of two sheets
F)Hyperbolic cylinder
G)Elliptic cylinder
H)Parabolic cylinder
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
77
Sketch the graph of Sketch the graph of   in   , and name the surface.  in Sketch the graph of   in   , and name the surface.  , and name the surface. Sketch the graph of   in   , and name the surface.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
78
Find the domain of the function f(x, y) = xy2\sqrt { x - y ^ { 2 } } .

A)All points on or to the left of x=y2x = y ^ { 2 } e.All points on or to the left of x = 0
B)All points on or to the right of x=y2x = y ^ { 2 } f.All points on or to the right of x = 0
C)All points to the left of x=y2x = y ^ { 2 } g.All points to the left of x = 0
D)All points to the right of x=y2x = y ^ { 2 } h.All points in the xy-plane
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
79
Sketch the graph of Sketch the graph of   in   , and name the surface.  in Sketch the graph of   in   , and name the surface.  , and name the surface. Sketch the graph of   in   , and name the surface.
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
80
Describe the vertical traces x = 0 and the horizontal traces z = -1 (if any) for the surfaces Describe the vertical traces x = 0 and the horizontal traces z = -1 (if any) for the surfaces   and   . and Describe the vertical traces x = 0 and the horizontal traces z = -1 (if any) for the surfaces   and   . .
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.
فتح الحزمة
k this deck
locked card icon
فتح الحزمة
افتح القفل للوصول البطاقات البالغ عددها 269 في هذه المجموعة.